Major research findings pertaining to peripheral neuroinflammation and the BNB are found in the following references:

Peripheral neuroinflammation:

  • Xia RH, Yosef N, Ubogu EE. Clinical, electrophysiological and pathologic correlations in a severe murine experimental autoimmune neuritis model of Guillain-Barré syndrome. Journal of Neuroimmunology 2010; 219:54-63 (DOI: 10.1016/j.jneuroim.2009.11.019).
  • Xia RH, Yosef N, Ubogu EE. Selective expression and cellular localization of pro-inflammatory chemokine ligand/receptor pairs in the sciatic nerves of a severe murine experimental autoimmune neuritis model of Guillain-Barré syndrome. Neuropathology and Applied Neurobiology 2010; 36:388-398 (DOI: 10.1111/j.1365-2990.2010.01092.x).
  • Ubogu EE, Yosef N, Xia RH, Sheikh KA. Behavioral, electrophysiological and histopathological characterization of a severe murine chronic demyelinating polyneuritis model. Journal of the Peripheral Nervous System 2012; 17: 53-61 (DOI: 10.1111/j.1529-8027.2012. 00375.x).
  • Yosef N, Ubogu EE. αMβ2-integrin-intercellular adhesion molecule-1 interactions drive the flow-dependent trafficking of Guillain-Barré syndrome patient derived mononuclear leukocytes at the blood-nerve barrier in vitro. Journal of Cellular Physiology 2012; 227:3857-3875 (DOI: 10.1002/jcp.24100).
  • Yuan F, Yosef N, Lakshmana Reddy C, Huang A, Chiang SC, Rahman Tithi H, Ubogu EE. CCR2 gene deletion and pharmacologic blockade ameliorate a severe murine experimental autoimmune neuritis model of Guillain-Barré syndrome. PLOS One 2014;9: e90463 (DOI: 10.1371/journal.pone.0090463).
  • Dong C, Palladino SP, Helton ES, Ubogu EE. The pathogenic relevance of αM-integrin in Guillain-Barré syndrome. Acta Neuropathologica 2016; 132: 739-752 (DOI: 10.1007/s00401-016-1599-0).
  • Dong C, Greathouse KM, Beacham RL, Palladino SP, Helton ES, Ubogu EE. Fibronectin connecting segment-1 peptide inhibits pathogenic leukocyte trafficking and inflammatory demyelination in experimental models of chronic inflammatory demyelinating polyradiculoneuropathy. Experimental Neurology 2017; 292: 35-45 (DOI: 10.1016/j.expneurol.2017.02.012).

Blood-nerve barrier:

  • Yosef N, Xia RH, Ubogu EE. Development and characterization of a novel human in vitro blood-nerve barrier model using primary endoneurial endothelial cells. Journal of Neuropathology and Experimental Neurology 2010; 69:82-97 (DOI: 10.1097/NEN/0b013e3181c84a9).
  • Yosef N, Ubogu EE. GDNF restores human blood-nerve barrier function via RET tyrosine kinase-mediated cytoskeletal reorganization. Microvascular Research 2012; 83:298-310 (DOI: 10.1016/j.mvr.2012.01.005).
  • Yosef N, Ubogu EE. An immortalized human blood-nerve barrier endothelial cell line for in vitro permeability studies. Cellular and Molecular Neurobiology 2013; 33:175-186 (DOI: 10.1007/s10571-012-9882-7).
  • Lakshmana Reddy C, Yosef N, Ubogu EE. VEGF-A165 potently induces human blood-nerve barrier endothelial cell proliferation, angiogenesis and wound healing in vitro. Cellular and Molecular Neurobiology 2013; 33:789-801 (DOI: 10.1007/s10571-013-9946-3).
  • Helton ES, Palladino SP, Ubogu EE. A novel method for measuring hydraulic conductivity at the human blood-nerve barrier in vitro. Microvascular Research 2017; 109:1-6 (DOI: 10.1016/j.mvr.2016.08.005).
  • Palladino SP, Helton ES, Jain P, Dong C, Crowley MR, Crossman DK, Ubogu EE. The human blood-nerve barrier transcriptome. Scientific Reports 2017; 7: 17477 (DOI: 10.1038/s41598-017-17475-y. Springer Nature SharedIt link: http://rdcu.be/A7LQ).
  • Dong C, Helton ES, Zhou P, Ouyang X, d’Anglemont de Tassigny X, Pascual A, López-Barneo J, Ubogu EE. Glial-derived neurotrophic factor is essential for blood-nerve barrier functional recovery in an experimental murine model of traumatic peripheral neuropathy. Tissue Barriers 2018; 6 (2):1-22 (DOI: 10.1080/21688370.2018.1479570).
  • Dong C, Ubogu EE. GDNF enhances human blood-nerve barrier function in vitro via MAPK signaling pathways. Tissue Barriers 2018; 6 (4),1-22 (DOI: 10.1080/21688370.2018.1546537).