NSF Awards CNMB Scientist Major Instrumentation Grant
National Science Foundation Awards Major Research Instrumentation Grant to CNMB Investigators Andrei Stanishevsky, (Principal Investigator), Sergey Vyazovkin (Co-PI), Ho-Wook Jun (Co-PI), Yogesh Vohra (Co-PI) and Derrick Dean (Co-PI).The proposed imaging microprobe X-ray photoelectron spectroscopy (XPS) system is designed for spatially resolved chemical analysis of solid surfaces. This tool creates a new multi-user element of the core shared
The imaging microprobe X-ray photoelectron spectroscopy (XPS) system is designed for spatially resolved chemical analysis of solid surfaces. This tool creates a new multi-user element of the core shared analytical facility in the interdisciplinary Center for Nanoscale Materials and Biointegration (CNMB) at U of Alabama at Birmingham (UAB). It serves a large team of users from CNMB, four UAB science and engineering departments, and fosters collaborations through the partnership with Alabama State U (ASU) and NSF-Materials World Network with Technical U of Lodz (Poland). XPS is critical for us due to its unique ability to discriminate between different oxidation states and chemical environments in a thin layer (<5 nm) of a material, yet capable of the depth profiling of chemical composition when using a sputtering accessory. Imaging XPS is the only tool that has a combination of features to address the challenges of microscale characterization in our projects on: (i) surface modification and functionalization of new multi-scale biomaterials; (ii) bio-active monolayers and self-assembled biomimetic
Imaging XPS is the only tool that has a combination of features to address the challenges of microscale characterization in our projects on: (i) surface modification and functionalization of new multi-scale biomaterials; (ii) bio-active monolayers and self-assembled biomimetic nanoarchitectures; (iii) novel phases formed under extreme pressures; (iv) chemistry of interfaces and thermally-induced processes in polymer and polymer-ceramic multifunctional nanocomposites; (v) surface and interface phenomena in wide band-gap semiconductor materials and structures; and (vi) nanostructured, multilayer, and gradient metal-ceramic and ceramic thin-film materials. This XPS system provides training in 3 graduate and 5 undergraduate courses with enrollment of ~135 per semester, enhances research opportunities in our interdisciplinary NSF-REU site where women and minorities account for 57% of the participants and in our partner ASU?s CREST and HBCUUP programs, and raises the awareness of surface science and engineering among K-12 students, teachers, and general public through our NSF-RET site and UAB day at McWane Science Center in Birmingham. CNMB provides necessary infrastructure and long-term support for the XPS system operation, accommodation of multiple users, and the initiation of new projects at local, national, and international levels.