NSF EPSCoR Program Harnesses Non-thermal Plasma Processing for Nano-structuring 3D Printed Tissue-Scaffolds: 

Vinoy_Thomas
Dr. Vinoy Thomas, Materials Science and Engineering

A UAB team led by Dr. Vinoy Thomas, Department of Materials Science & Engineering, has surface engineered 3D Printed polymeric soft biomaterial scaffolds by an in-situ robust synthesis of nanoparticles using low temperature dusty plasma.

The proof-of-concept communication published in ACS Applied Nano Materials, reports a rapid and easy method for nanoparticles (SiNp) synthesis from a liquid precursor into dusty plasma and deposition of them onto 3D printed polymer. “Non-thermal plasma has emerged as a viable method for surface engineering soft materials and biomaterials”, says Dr. Vineeth Vijayan, (first author of the publication), “and we have successfully utilized non-thermal plasma for making super-hydrophilic and blood-friendly materials surfaces in our previous publication in Journal of Materials Chemistry”.

As part of the NSF supported EPSCoR collaborative CPU2AL program, the new method we reported has many appealing attributes:

    1. It is a single step greener and cost effective process
    2. The radiofrequency plasma reactor can be an ideal scalable technology for industries to produce and modify the surface of various biomedical scaffolds/devices with SiNp, and
    3. This method can simultaneously modify the 3D printed scaffolds with SiNp for biomedical applications (bone tissue engineering) and also sterilize them.

The future aspects of this present work will deal with (I) functionalization and attachment of SiNp with biochemical moieties by using volatile amino acids in the plasma phase and (II) strategies for preparation titanium dioxide nanoparticles and nanowires via plasma process which in turn could be used for decontaminate corona virus during the current COVID-19 pandemic.

Eugenia Kharlampieva Appointed as Co-Director of CNMB

Congratulations to Dr. Eugenia Kharlampieva

Eugenia Kharlampieva
Dr. Eugenia Kharlampieva, Chemistry

Dr. Eugenia Kharlampieva has been appointed as Co-Director of the Center for Nanoscale Materials and Biointergration.  Dr. Kharlampieva’s primary appointment is Associate Professor in the College of Arts and Sciences Department of Chemistry where her research is in the design of polymeric materials for biomedical applications. Her lab works on synthesis and assembly of water-soluble stimuli-responsive macromolecules to develop novel nanostructured materials as “intelligent” platforms for therapeutic applications such as controlled drug delivery, regenerative medicine, and biosensing.

Dr. Kharlampieva joined the Chemistry faculty in 2010 from Georgia Institute of Technology. Since coming to UAB, she has authored more than 50 peer-reviewed publication and five book chapters. Dr. Kharlampieva was a recipient  of NSF CAREER Award, UAB Dean’s Award for Excellence in Mentorship, UAB College of Arts and Sciences Interdisciplinary Innovation Award, Faculty Innovator of the Year Award from the UAB Bill L. Harbert Institute for Innovation and Entrepreneurship. She was named as an Emerging Investigator by the Royal Society of Chemistry, Journal of Materials Chemistry B.

In her role as Co-Director of the CNMB, her primary responsibilities will be assisting in advancing the mission of the Center which is to promote interdisciplinary research and student training in the synthesis and characterization of nanoscale materials with broad applicability in materials under extreme environments, nano-enabled biomedical imaging and drug delivery platforms, and nanostructured coatings and materials for biomedical implants and vascular grafts. Dr. Kharlampieva will play an instrumental role in aiding in the achievement of core-objectives of CNMB, identify and lead interdisciplinary grant opportunities, contribute to acquiring new and maintaining existing core facilities.

Applying Old Technology to Cutting-Edge Science

Vinoy_Thomas
Dr. Vinoy Thomas, Materials Science Engineering

Tissue engineering is a transformative branch of regenerative medicine —a cutting-edge field that has the potential to revolutionize the future of healthcare.

See enitre article at the Journal of Biomedical Materials Research web site.

Dr. Yogesh K. Vohra Receives Award for Interdisciplinary Initiatives

Yogesh K Vohra-2Dr. Yogesh K. Vohra, Professor of Physics, University Scholar and Director of the Center for Nanoscale Materials and Biointegration (CNMB) is the recipient of the 2016 Sam Brown Bridge Builder Award.  Dr. Vohra has a tremendous ability to bring disciplines together for collaborative efforts and it’s this inherent ability that has garnered him this recognition.

In addition to the above-mentioned positions, Dr. Vohra is the Campus Director for the NASA – Alabama Space Grant Consortium as well as Director one of the longest running National Science Foundation’s (NSF) Research Experiences for Undergraduates programs (REU).

Dr. Vinoy Thomas on Tenure Track

Vinoy_ThomasDr. Vinoy Thomas, a UAB CNMB member has accepted a tenure-track Assistant Professor Faculty appointment in the UAB Department of Materials Science and Engineering. His new position began on February 1, 2015. Dr. Thomas has been working in many projects on Nanomaterials, Biomaterials and Polymeric Materials for Medical and Composite applications between UAB CNMB as a Research Scientist and the Department of Materials Science & Engineering as a Research Assistant Professor.

He started to work on the electrospinning technology for polymeric nanofiber scaffolds at UAB in the beginning of 2005 and continues his efforts on the basic and developmental aspects to integrate the nanofibers in Medical and Healthcare Devices in his new lab for Healthcare Materials & Devices at BEC 361.  His R&D works on Nano-biomaterials and 3D Printing fabrication blended with Materials Chemistry, and Structure- Property Relationships in functional polymeric materials spans different research units in the campus including Department of Materials Science & Engineering, Center for Nanoscale Materials & Bio-integration (CNMB), Materials Processing & Applications Development (MPAD) Center and School of Medicine.   Dr. Thomas teaches undergraduate and graduate courses related to Polymeric Materials, Polymer Characterization, and Nanomaterials etc.  He is also in charge of the polymer characterization facility at the Department of Materials Science & Engineering.

Dr. Eugenia Kharlampieva Awarded a NSF Faculty Early Career Development Award

NSF Faculty Early Career Development Award (CAREER)


Eugenia Kharlampieva“CNMB member and a faculty member in the UAB Department of Chemistry Dr. Eugenia Kharlampieva
has been awarded a  National Science Foundation (NSF) Faculty Early Career Development Award entitled “CAREER:  Shape Responses of Ultrathin Hydrogel Microcapsules” for a five year period 2014-2019. This is one of the  National Science Foundation’s most prestigious awards in support of junior faculty who exemplify the role of teacher-scholars through outstanding research, excellent education and the integration of education and research within the context of the mission of their organizations”

Dr. Claudiu T Lungu Awarded a National Institute for Occupational Safety & Health Grant

CNMB Member Dr. Claudiu T Lungu Awarded a National Institute for Occupational Safety & Health Grant (CDC/DHHS R21, Total amount for two years: 09/01/2013 – 08/31/2015: $398,672) 

LunguThe goal of this study is to develop a new technique that allows accurate sampling of gases and vapors at low levels.

Dr. Lungu is investigating a new process of using pulsed visible light to release chemicals from new substrates based on carbon nanotubes. These substrates will be used in air sampling devices for volatile organic compounds and gases for workplace or environmental monitoring. This research could potential lead to a new generation of air samplers that may be faster, cheaper, and more sensitive than the currently available models.

Dr. Eugenia Kharlampieva Awarded a NSF Biomaterials Grant

Dr. Eugenia Kharlampieva Awarded a National Science Foundation Biomaterials Grant
Immunomodulatory Ultrathin Multilayer Coatings for Pancreatic islet Transplantation NSF-DMR1306110, program of Biomaterials (BMAT)
Eugenia KharlampievaThis grant will supports the development of a novel type of cytoprotective material with controlled immunomodulatory and inflammatory responses to be used for cell-basedtransplantation therapy for diabetic recipients. This project is in collaboration between departments of Chemistry (Eugenia Kharlampieva, PI) and Microbiology (Hubert Tse, coPI).  Although transplantation of pancreatic islet cells has emerged as a promising treatment for Type 1 diabetes, its clinical application remains limited due to adverse effects of immunosuppression and declining allograft function. The awarded project will develop a preclinical approach to preserve islet viability and function during culturing and transplantation by protecting pancreatic islets (cell clusters) with a novel polymer coating. These coatings will be designed through hydrogen-bonded assembly of cytocompatible macromolecules with antioxidant and anti-inflammatory characteristics.  This project is particularly timely since current islet encapsulation systems are challenging for transplantations due to high cytotoxicity and the requirement for large injection volumes. The design of novel immunoprotective materials will open new prospects for developing biomaterials with unique characteristics having applications in various bio-related areas such as bioengineering and tissue engineering. The awarded project will develop interdisciplinary collaborative research which should stimulate awareness of the needs of the UAB biomedical research community for specialized polymer-based biomaterials as novel platforms for cell transplantation therapy.

NSF Awards CNMB Scientist Major Instrumentation Grant

NSF Awards CNMB Scientist Major Instrumentation Grant

National Science Foundation Awards Major Research Instrumentation Grant to CNMB Investigators Andrei Stanishevsky, (Principal Investigator), Sergey Vyazovkin (Co-PI), Ho-Wook Jun (Co-PI), Yogesh Vohra (Co-PI) and Derrick Dean (Co-PI).The proposed imaging microprobe X-ray photoelectron spectroscopy (XPS) system is designed for spatially resolved chemical analysis of solid surfaces. This tool creates a new multi-user element of the core shared

The imaging microprobe X-ray photoelectron spectroscopy (XPS) system is designed for spatially resolved chemical analysis of solid surfaces. This tool creates a new multi-user element of the core shared analytical facility in the interdisciplinary Center for Nanoscale Materials and Biointegration (CNMB) at U of Alabama at Birmingham (UAB). It serves a large team of users from CNMB, four UAB science and engineering departments, and fosters collaborations through the partnership with Alabama State U (ASU) and NSF-Materials World Network with Technical U of Lodz (Poland). XPS is critical for us due to its unique ability to discriminate between different oxidation states and chemical environments in a thin layer (<5 nm) of a material, yet capable of the depth profiling of chemical composition when using a sputtering accessory. Imaging XPS is the only tool that has a combination of features to address the challenges of microscale characterization in our projects on: (i) surface modification and functionalization of new multi-scale biomaterials; (ii) bio-active monolayers and self-assembled biomimetic

Imaging XPS is the only tool that has a combination of features to address the challenges of microscale characterization in our projects on: (i) surface modification and functionalization of new multi-scale biomaterials; (ii) bio-active monolayers and self-assembled biomimetic nanoarchitectures; (iii) novel phases formed under extreme pressures; (iv) chemistry of interfaces and thermally-induced processes in polymer and polymer-ceramic multifunctional nanocomposites; (v) surface and interface phenomena in wide band-gap semiconductor materials and structures; and (vi) nanostructured, multilayer, and gradient metal-ceramic and ceramic thin-film materials. This XPS system provides training in 3 graduate and 5 undergraduate courses with enrollment of ~135 per semester, enhances research opportunities in our interdisciplinary NSF-REU site where women and minorities account for 57% of the participants and in our partner ASU?s CREST and HBCUUP programs, and raises the awareness of surface science and engineering among K-12 students, teachers, and general public through our NSF-RET site and UAB day at McWane Science Center in Birmingham. CNMB provides necessary infrastructure and long-term support for the XPS system operation, accommodation of multiple users, and the initiation of new projects at local, national, and international levels.