Eugenia Kharlampieva Appointed as Co-Director of CNMB

Congratulations to Dr. Eugenia Kharlampieva

Eugenia Kharlampieva
Dr. Eugenia Kharlampieva, Chemistry

Dr. Eugenia Kharlampieva has been appointed as Co-Director of the Center for Nanoscale Materials and Biointergration.  Dr. Kharlampieva’s primary appointment is Associate Professor in the College of Arts and Sciences Department of Chemistry where her research is in the design of polymeric materials for biomedical applications. Her lab works on synthesis and assembly of water-soluble stimuli-responsive macromolecules to develop novel nanostructured materials as “intelligent” platforms for therapeutic applications such as controlled drug delivery, regenerative medicine, and biosensing.

Dr. Kharlampieva joined the Chemistry faculty in 2010 from Georgia Institute of Technology. Since coming to UAB, she has authored more than 50 peer-reviewed publication and five book chapters. Dr. Kharlampieva was a recipient  of NSF CAREER Award, UAB Dean’s Award for Excellence in Mentorship, UAB College of Arts and Sciences Interdisciplinary Innovation Award, Faculty Innovator of the Year Award from the UAB Bill L. Harbert Institute for Innovation and Entrepreneurship. She was named as an Emerging Investigator by the Royal Society of Chemistry, Journal of Materials Chemistry B.

In her role as Co-Director of the CNMB, her primary responsibilities will be assisting in advancing the mission of the Center which is to promote interdisciplinary research and student training in the synthesis and characterization of nanoscale materials with broad applicability in materials under extreme environments, nano-enabled biomedical imaging and drug delivery platforms, and nanostructured coatings and materials for biomedical implants and vascular grafts. Dr. Kharlampieva will play an instrumental role in aiding in the achievement of core-objectives of CNMB, identify and lead interdisciplinary grant opportunities, contribute to acquiring new and maintaining existing core facilities.

Atomic Force Microscope for Materials Research and Education

Atomic Force Microscope for Materials Research and Education

Eugenia Kharlampieva
Dr. Eugenia Kharlampieva, Chemistry

Congratulations to Dr. Eugenia Khamlampieva on her new National Science Foundation grant for MRI:  Acquisition of an Atomic Force Microscope for Materials Research and Education.

Dr. Kharlampieva says:  This Major Research Instrumentation award supports the University of Alabama at Birmingham to acquire an atomic force microscope for interdisciplinary materials research and education. This microscope supports a diverse, multi-departmental research in soft materials ranging from soft synthetic hydrogels to relatively dense composites and biological structures. The instrument will be located at UAB Department of Chemistry and will combine the capabilities for high-resolution and high-speed imaging with quantitative nanomechanical mapping.

The ability to acquire multifunctional, high-resolution data under a wide range of operating conditions allows for studies on a broad spectrum of dry and hydrated samples. The types of samples extend from synthetic networks, polymer composites, nanodevices, to cell membranes and tissues. The common theme among these samples is that they all involve soft materials, i.e., synthetic polymers, biological structures, or combinations of the two. An increased ability to characterize state-of-the-art nanomaterials results in an enhanced fundamental understanding of the structural properties of soft materials and the composition at their surfaces. This includes the effect of the surface morphology on the physical, biological, and chemical characteristics of the materials.

The understanding enables transformative research for the development of new materials in tissue regenerative therapies, controlled drug delivery, molecular sensing, and related biotechnologies. The atomic force microscope will also play a vital role in student education in the fields of chemistry, materials science, biomedical science, and biomedical engineering. A high-caliber research environment is vital to the regional economy in Central Alabama through raising community awareness toward biomedical and soft-materials technologies.