Congratulations to Dr. Wenli Bi, UAB Department of Physics and Member of Center for Nanoscale Materials and Biointergration. The award is in the amount of $419,614. The grant, led by Bi, is titled “MRI: Acquisition of a Quantum Design Physical Properties Measurement System for Materials Research and Education.”
The MRI grant supports the acquisition of a Physical Properties Measurement System from Quantum Design, which is a state-of-the-art, highly automated and multifunctional system capable of measuring a multitude of material properties at cryogenic temperature, high magnetic field and high pressure.
Continue reading here as originally reported in UAB News.
Thanks to Katherine Zobre for arranging the tour at Innovaton Depot and special thanks to TruSpin Chief Executive Office Robert Agnew and Chief Technology Officer Anthony Brayer and Jessica Lewis for the time they took out of their schedules to speak with the REUs.
Congratulations are in order for Dr. Aaron Catledge. He has been awarded a new NSF DMR award as a PI starting a new area of research in UAB physics. The Project is titled: New frontiers in synthesis of high-entropy transition metal borides enabled by microwave-induced plasma.
The significance of this project is that it addresses the need for advanced ceramics as a key enabling technology for many applications in aerospace, defense, power generation, and processing industries having significant national impact. The study of materials designed for operation under harsh conditions is essential to meet a range of challenges—from creating better turbines, reactors, and batteries to developing future energy systems.
You can read the full technical and non-technical summary here.
Best wishes to Dr. Catledge the very best in the execution of this award!
Attending the SPIE Photonics West conference in San Francisco was an incredible experience that shed new light onto my research and the filed of optics and lasers that I was previously unaware of. This was my first academic conference that I had attended and being a talk presenter made it feel even more like jumping into the deep end of a pool. The first couple days the scale of the conference was quite overwhelming, with the events spanning three conference halls and multiple hotels in the area. I was able deal with the nerves that I had going into my presentation using some meditation skills I have acquired through collegiate baseball. Going over my talk with my research advisor it came to my attention how important it is to be as accurate as possible when discussing my research in the professional setting. I had previously presented this research in August of 2019 to fellow undergraduate physics researchers and mentors at the University of Alabama at Birmingham. At Photonics West my talk would be under significantly more scrutiny than in the undergraduate setting. The pressure resulted in me having to know the ins and outs of all aspects of my talk. Post-talk questions also brought to light a couple aspects of my research I has not previously thought of. For most, I was asked about potential utilization of the InP crystal analyzed for laser applications going forward which could have real merit and possibilities. This would turn my summer research project into a large-scale project similar to a dissertation.
At the conference I was also able to attend a four-hour course on laser fundamentals with the emphasis being placed how the private laser sector discusses and buys/sells laser systems. The course in addition to providing new information allowed me to think about private optics companies which may be a field I have interest getting into in my future.
The conference also had a large exhibition for companies to showcase new technologies that they have developed. Companies ranged from small photonics start-ups to large companies such as ThorLabs and M2. Personally, walking about the exhibition hall and discussing products and jobs with exhibitioners was more insightful than sitting in on talks. I was able to relate skills and tools that I have developed in the lab to what others are doing in private sectors. To me the exhibition hall was the hidden aspect of science that is an accumulation of academia. Up to this point in my life, education has been the end goal but I now a new perspective of where my education may lead me to. And Photonics West was a great intersection of academics presenting talks and posters while companies showcase their technologies. Overall, the conference was a challenge I had to face in presenting and getting over fears along with a great opportunity to see how much insightful and interesting stuff is going on in optics. I am incredibly humble and grateful to be given this opportunity to present and attend the conference and I hope to continue to make the most of the opportunity that I was given.
Atomic Force Microscope for Materials Research and Education
Dr. Eugenia Kharlampieva, Chemistry
Congratulations to Dr. Eugenia Khamlampieva on her new National Science Foundation grant for MRI: Acquisition of an Atomic Force Microscope for Materials Research and Education.
Dr. Kharlampieva says: This Major Research Instrumentation award supports the University of Alabama at Birmingham to acquire an atomic force microscope for interdisciplinary materials research and education. This microscope supports a diverse, multi-departmental research in soft materials ranging from soft synthetic hydrogels to relatively dense composites and biological structures. The instrument will be located at UAB Department of Chemistry and will combine the capabilities for high-resolution and high-speed imaging with quantitative nanomechanical mapping.
The ability to acquire multifunctional, high-resolution data under a wide range of operating conditions allows for studies on a broad spectrum of dry and hydrated samples. The types of samples extend from synthetic networks, polymer composites, nanodevices, to cell membranes and tissues. The common theme among these samples is that they all involve soft materials, i.e., synthetic polymers, biological structures, or combinations of the two. An increased ability to characterize state-of-the-art nanomaterials results in an enhanced fundamental understanding of the structural properties of soft materials and the composition at their surfaces. This includes the effect of the surface morphology on the physical, biological, and chemical characteristics of the materials.
The understanding enables transformative research for the development of new materials in tissue regenerative therapies, controlled drug delivery, molecular sensing, and related biotechnologies. The atomic force microscope will also play a vital role in student education in the fields of chemistry, materials science, biomedical science, and biomedical engineering. A high-caliber research environment is vital to the regional economy in Central Alabama through raising community awareness toward biomedical and soft-materials technologies.
UAB is an Equal Opportunity/Affirmative Action Employer committed to fostering a diverse, equitable and family-friendly environment in which all faculty and staff can excel and achieve work/life balance irrespective of race, national origin, age, genetic or family medical history, gender, faith, gender identity and expression as well as sexual orientation. UAB also encourages applications from individuals with disabilities and veterans.