NSF Awards CNMB Scientist Major Instrumentation Grant

NSF Awards CNMB Scientist Major Instrumentation Grant

National Science Foundation Awards Major Research Instrumentation Grant to CNMB Investigators Andrei Stanishevsky, (Principal Investigator), Sergey Vyazovkin (Co-PI), Ho-Wook Jun (Co-PI), Yogesh Vohra (Co-PI) and Derrick Dean (Co-PI).The proposed imaging microprobe X-ray photoelectron spectroscopy (XPS) system is designed for spatially resolved chemical analysis of solid surfaces. This tool creates a new multi-user element of the core shared

The imaging microprobe X-ray photoelectron spectroscopy (XPS) system is designed for spatially resolved chemical analysis of solid surfaces. This tool creates a new multi-user element of the core shared analytical facility in the interdisciplinary Center for Nanoscale Materials and Biointegration (CNMB) at U of Alabama at Birmingham (UAB). It serves a large team of users from CNMB, four UAB science and engineering departments, and fosters collaborations through the partnership with Alabama State U (ASU) and NSF-Materials World Network with Technical U of Lodz (Poland). XPS is critical for us due to its unique ability to discriminate between different oxidation states and chemical environments in a thin layer (<5 nm) of a material, yet capable of the depth profiling of chemical composition when using a sputtering accessory. Imaging XPS is the only tool that has a combination of features to address the challenges of microscale characterization in our projects on: (i) surface modification and functionalization of new multi-scale biomaterials; (ii) bio-active monolayers and self-assembled biomimetic

Imaging XPS is the only tool that has a combination of features to address the challenges of microscale characterization in our projects on: (i) surface modification and functionalization of new multi-scale biomaterials; (ii) bio-active monolayers and self-assembled biomimetic nanoarchitectures; (iii) novel phases formed under extreme pressures; (iv) chemistry of interfaces and thermally-induced processes in polymer and polymer-ceramic multifunctional nanocomposites; (v) surface and interface phenomena in wide band-gap semiconductor materials and structures; and (vi) nanostructured, multilayer, and gradient metal-ceramic and ceramic thin-film materials. This XPS system provides training in 3 graduate and 5 undergraduate courses with enrollment of ~135 per semester, enhances research opportunities in our interdisciplinary NSF-REU site where women and minorities account for 57% of the participants and in our partner ASU?s CREST and HBCUUP programs, and raises the awareness of surface science and engineering among K-12 students, teachers, and general public through our NSF-RET site and UAB day at McWane Science Center in Birmingham. CNMB provides necessary infrastructure and long-term support for the XPS system operation, accommodation of multiple users, and the initiation of new projects at local, national, and international levels.