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Abstract. We introduce the concept of complementary plateaued func-
tions and examine relationships between these newly defined functions
and bent functions. Results obtained in this paper contribute to the fur-
ther understanding of profound secrets of bent functions. Cryptographic
applications of these results are demonstrated by constructing highly
nonlinear correlation immune functions that possess no non-zero linear
structures.
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1 Introduction

Bent functions achieve the maximum nonlinearity and satisfy the propagation
criterion with respect to every non-zero vector. These functions, however, are
neither balanced nor correlation immune. Furthermore they exist only when the
number of variables is even. All these properties impede the direct applications of
bent functions in cryptography. They also indicate the importance of further un-
derstanding the characteristics of bent functions in the construction of Boolean
functions with cryptographically desirable properties. This extends significantly
a recent paper by Zheng and Zhang [12] where a new class of functions called
plateaued functions were introduced. In particular, (i) we introduce the concept
of complementary plateaued functions; (ii) we establish relationships between
bent and complementary plateaued functions; (iii) we show that complemen-
tary plateaued functions provide a new avenue to construct bent functions; (iv)
we prove a new characteristic property of non-quadratic bent functions by the
use of complementary plateaued functions; (v) As an application, we construct
balanced, highly nonlinear correlation immune functions that have no non-zero
linear structures.



2 Boolean Functions

Definition 1. We consider functions from V,, to GF(2) (or simply functions
on Vp ), Vi is the vector space of n tuples of elements from GF(2). Usually we
write a function f on Vi, as f(x), where x = (x1,...,2,) is the variable vector
in V. The truth table of a function f on V, is a (0,1)-sequence defined by
(f(ao), fla1),..., f(aan_1)), and the sequence of f is a (1,—1)-sequence de-
fined by ((—1)f(@0) (=1)f(e) (=1)f(@2"=1)) where ag = (0,...,0,0), a1 =
(0,...,0,1), ..., agn-1_y = (1,...,1,1). The matrix of f is a (1, —1)-matriz of
order 2" defined by M = ((—=1)/(*:®%)) where @ denotes the addition in GF(2).
f 1s said to be balanced if its truth table contains an equal number of ones and
zeros.

Given two sequences @ = (a1, -+, am) and b= (b1, -, bm), their component-
wise product is defined by @+ b = (a1b1,- -, amby). In particular, if m = 2" and
@, b are the sequences of functions f and g on V,, respectively, then @ * b is the
sequence of f @ g where @ denotes the addition in GF(2).

Let ¢ = (a1, --,an) and b = (b1,---,by) be two sequences or vectors,
the scalar product of @ and b, denoted by (d,g), is defined as the sum of the
component-wise multiplications. Tn particular, when @ and b are from V,,, (a, IN)) =
aiby @ - - - @ apby,, where the addition and multiplication are over GF(2), and
when @ and b are (1, —1)-sequences, (a, 7)) = Y L, a;b;, where the addition and
multiplication are over the reals.

An affine function f on V, is a function that takes the form of f(z1,...,z,) =
a1z1 @ -+ @ apxp @ ¢, where aj,¢c € GF(2), j = 1,2,...,n. Furthermore f is
called a linear function if ¢ = 0.

A (1, —1)-matrix A of order m is called a Hadamard matrix if AAT = mI,,,,
where AT is the transpose of A and I, is the identity matrix of order m. A
Sylvester-Hadamard matrix of order 2" denoted by H,, is generated by the
following recursive relation

Hﬁ—l Hﬁ—l

HO - 1’ Hn - [Hn—l _Hn—l

:| ,yn=1,2,....

Let £;, 0 <1¢<2"—1, be the ¢ row of H,,. It is known that ¢; is the sequence
of a linear function ¢;(z) defined by the scalar product ¢;(z) = (a;, z), where
a; is the ith vector in V,, according to the ascending alphabetical order.

The Hamming weight of a (0, 1)-sequence ¢, denoted by HW (&), is the num-
ber of ones in the sequence. Given two functions f and g on V,,, the Hamming
distance d(f,g) between them is defined as the Hamming weight of the truth
table of f(z) @ g(x).

The equality in the following lemma is called Parseval’s equation (Page 416
).

Lemma 1. Let f be a function on Vy, and £ denote the sequence of f. Then

2" =1

Z (Ea£i>2 =2

=0



where £; is the ith row of H,,, i =0,1,...,2" — 1.

Definition 2. The nonlinearity of a function f on V,, denoted by Ny, is the
minimal Hamming distance between f and all affine functions on V,, t.e., Ny =
min—y 5 on+1 d(f, i) where 1, @a, ..., pantr are all the affine functions on
Va.

The following characterizations of nonlinearity will be useful (for a proof see
for instance [5]).

Lemma 2. The nonlinearity of f on V, can be expressed by
1
Ny =27t S max (g, 6)],0 < i <2 — 1)

where € s the sequence of f and Ly, ..., lon_1 are the rows of H,, namely, the
sequences of linear functions on V,.

The nonlinearity of functions on Vj, is upper bounded by 27=1 — 237-1,
Definition 3. Let f be a function on V,. For a vector o € V,,, denote by &)
the sequence of f(x @ «). Thus £(0) is the sequence of f itself and £(0) x&(«x) is
the sequence of f(z) ® f(z ® «). Set

Ag(a) = (£(0),(a)),

the scalar product of £(0) and (o). Aj(a) is also called the auto-correlation of
f with a shift «.

We can simply write A¢(a) as A(a) if no confusion takes place.

Definition 4. Let f be a funciion on'V,,. We say that f satisfies the propagation
criterion with respect to a if f(z) ® f(z & «) is a balanced function, where
z = (2y1,...,2,) and « is a vector in V,,. Furthermore f is said to satisfy the
propagation criterion of degree k if it satisfies the propagation criterion with
respect to every non-zero vector o whose Hamming weight is not larger than k

(see [6]).

The strict avalanche criterion (SAC) [9] is the same as the propagation cri-
terion of degree one.
Obviously, A(a) = 0 if and only if f(x) @ f(2® «) is balanced, i.e., f satisfies

the propagation criterion with respect to «.

Definition 5. Let f be a function on V,,. a in V, is called a linear structure of

fif|A(a)] =27 (ie., f(x) ® f(x @ a) is a constant).

For any function f, A(ag) = 27, where aq is the zero vector on V,,. It is easy
to verify that the set of all linear structures of a function f form a linear subspace
of Vi, whose dimension is called the linearity of f. 1t is also well-known that if
f has non-zero linear structure, then there exists a nonsingular n x n matrix B



over GF(2) such that f(¢B) = g(y) ® h(z), where = (y,2), y € V},,, z € V,
g is a function on V), and g has no non-zero linear structure, and h is a linear
function on V;. Hence ¢ is equal to the linearity of f.

The following lemma is the re-statement of a relation proved in Section 2

of [2].
Lemma 3. Let f be a function on V, and £ denote the sequence of f. Then
(A(ag), A(@r), ..., Alaan_1))Hy = ((€,40)%, (€, 60)%, ... (€, £an 1))

where o s the binary representation of an nteger j, j =0,1,...,2" —1 and ¢4;
s the ith row of Hy,.

There exist a number of equivalent definitions of correlation immune func-
tions [1,3]. It is easy to verify that the following definition is equivalent to
Definition 2.1 of [1]:

Definition 6. Let f be a function on V,, and let & be ils sequence. Then f
is called a kth-order correlation immune function if and only if (€,£) = 0 for
every £, the sequence of a linear function p(xz) = (a,z) on V, constrained by

1<HW(a)<k.
For convenience sake in this paper we give the following statement.

Lemma 4. Let f be a function on V,, and let & be its sequence. Then (£, ¢;) =0,
where £; is the ith row of H,, if and only if f(z) ® (o, x) is balanced, where o
1s the binary representation of integer i, 1 =0,1,...,2" — 1.

In fact, ¢; is the sequence of linear function ¢(z) = (a;,x). This proves
Lemma 4. Due to Lemma 4 and Definition 6, we conclude

Lemma 5. Let f be a function on V, and let £ be its sequence. Then f is a
kth-order correlation immune function if and only if f(z) & (o, z) where « is
any vector in 'V,,, constrained by 1 < HW(«) < k.

Definition 7. A function f on V, is called a bent function [7] if (€,4;)% = 27
for every i =10,1,...,2" — 1, where £; is the ith row of H,.

A bent function on V,, exists only when n is even, and it achieves the maxi-
mum nonlinearity 2°=1 — 227~ From [7] we have the following:

Theorem 1. Let f be a function on V,,. The following statements are equivalent:
(i) f is bent, (i) the nonlinearity of f, Ny, satisfies Ny = 2"~1 — 23n=1 (i)
A(a) =0 for any non-zero o in 'V, (1v) the matriz of f is an Hadamard matriz.

Bent functions have following properties [7]:

Proposition 1. Let f be a bent function on V,, and { denote the sequence of f.
Then (i) the degree of f is at most %n, (ii) for any nonsingular n x n matriz B
over GF(2) and any vector 3 € V,,, g(x) = f(xB @ §) is a bent function, (iii)
for any affine function o on Vi, f @ is a bent function, (iv) 2-3"¢H, is the

sequence of a bent function.



The following is from [10] (called Theorem 18 in that paper).

Lemma 6. Let f be a function on V, (n > 2), & be the sequence of f, and p is
an integer, 2 < p < n. If (€,4;) =0 (mod 2"~P*%) where {; is the jth row of
H,, j=0,1,...,2" — 1, then the degree of f is at most p — 1.

3 Plateaued Functions

3.1 rth-order Plateaued Functions

The concept of plateaued functions was first introduced in [12]. In addition to the
concept, the same paper also studies the existence, properties and construction
methods of plateaued functions.

Notation 1. Let f be a function on'V,, and § denote the sequence of f. Set Iy =
{i|¢¢, &) #0, 0 <1< 2" —1} where ¢; is the ith row of H,, i =0,1,...,2" — 1.

We will simply write & as & when no confusion arises.

Definition 8. Let f be a function on V,, and & denote the sequence of f. If there
erists an even numberr, 0 < r < n, such that #S = 2" and each (¢, €;)? takes the
value of 2°"~" or 0 only, where {; denotes the jth row of Hp, j = 0,1,...,2" —1,
then f is called a rth-order plateaued function on V,,. f is also called a plateaued
function on Vi, if we ignore the particular order r.

Due to Parseval’s equation, the condition #& = 2" can be obtained from
the condition “each (£, ¢;)? takes the value of 22"~" or 0 only, where ¢; denotes
the jth row of H,, 7 = 0,1,...,2” — 17. For convenience sake, however, both
conditions are mentioned in Definition 8.

The following can be immediately obtained from Definition 8.

Proposition 2. Let f be a function on V,,. We conclude (i) if f is a rth-order
plateaued function then v must be even, (ii) f is an nth-order plateaued function

if and only if f is bent, (iii) f is a Oth-order plateaued function if and only if f
s affine.

The next result is a consequence of Theorem 3 of [8].

Proposition 3. A partially-bent function is a plateaued function.

However, it 1s important to note that the converse of Proposition 3 has been
shown to be false [12].



3.2 (n — 1)th-order Plateaued Functions on V,,

Following the general results on rth-order plateaued functions on V,, [12], in this
paper we examine in greater depth the properties and construction methods of
(n — 1)th-order plateaued functions on V,. These properties will be useful in
research into bent functions.

Proposition 4. Let p be a positive odd number and g be a (p — 1)th-order
plateaued function on V,. Then

(1) the nonlinearity of g, Ny, satisfies N, = 2P~1 — 23(P=1),
(ii) the degree of g is at most %(p—{— 1),
(iit) g has at most one non-zero linear structure,
(iv) for any nonsingular p x p matriz B over GF(2) and any vector § € V,,
h(y) = g(yB @ ) is also a (p— 1)th-order plateaued function, where y € V,,,
(v) for any affine function ¢ on V,, g ® ¢ is also a (p — 1)th-order plateaued
function on V).

Proof. Due to Lemmas 2 and 6, (1) and (ii) are obvious. We now prove (iii).
Applying Lemma 3 to function g, we have

(A(ﬂO)) A(ﬂl): R A(ﬁQP—l))HP = (<€a 60>2: <E; 61>2’ sy <E; 62”—1>2)

where f3; is the binary representation of an integer j, j = 0,1,...,2? — 1 and
¢; is the ¢th row of H,. Multiplying the above equality by itself, we obtain

2° 2]21:01 A%(B) = 2]2.;61(5,@1)4. Note that A(fy) = 2P and that g is a (p —

1)th-order plateaued function on V,. Hence 2P(2%P + ijp:?l A%(B;)) = 2%+ Tt

follows that Zj:l A?(B;) = 2%, This proves that g has at most one non-zero
linear structure and hence (iii) is true. (iv) and (v) are easy to verify. O

Theorem 2. Let p be a positive odd number and g be a (p—1)th-order plateaued
function on V, that has no non-zero linear structure. Then there exists a non-
singular 2P x 2P matriz B over GF(2), such that h(y) = g(yB), where y € V},,
is a (p — 1)th-order plateaued function on V, and also a lst-order correlation
immune function.

Proof. Set £2 = {B|f € V}, (£, es) = 0}, where eg is identified with e; and 3 is
the binary representation of an integer 7, 0 <7 < 2P — 1.

Since #2 = 2P~! the rank of £2, denoted rank($2), satisfies rank(§2) > p—1.
We now prove rank(§2) = p. Assume that rank(§2) = p—1. Since #£2 = 2=
is identified with a (p — 1)-dimensional linear subspace of V,,. Recall that we can
use a nonsingular affine transformation on the variables to transform a linear
subspace into any other linear subspace with the same dimension. Without loss
of the generality, we assume that {2 is composed of fg, 81, ..., Bop-1_1, wWhere



each @; is the binary representation of an integer j, 0 < j < 2P — 1. By using
Lemma 3, we have

(<€a 60>2a <€a 61)2a ct <E) 62”—1>2)HP = QP(Ag(ﬁU)) Ay(ﬁl)a R Ag(ﬁﬂ‘—l))

and hence
(0,0,...,0,20F P+l 9Pty = 2P(Ay(Ba), Ag(Br)y -+ -, Ag(Bar—1))

where the number of zeros is equal to 2°~'. By using the construction of H,, and
comparing the terms in the above equality, we find that Aj(Bg,-1) = —2P. That
18, F9p—1 18 a non-zero linear structure of g. This contradicts the assumption in the
proposition, that ¢ has no non-zero linear structure. This proves rank(£2) = p.
Hence we can choose p linearly independent vectors 7y, ...,7, from £2.

Let yi; denote the vector in V},, whose jth term is one and all other terms are
zeros, j = 1,...,p. Define a p x p matrix B over GF(2), such that v; B = y;,
i=1,...,p. Set h(y) = g(yBT), where y € V,, and B is the transpose of B.
Due to (iv) of Proposition 4, h(y) is a (p — 1)th-order plateaued function on V}.
Next we prove that h(y) is a lst-order correlation immune function.

Note that h(y) @ (uj,y) = g(¥b") @ (uj,v) = 9(2) ® (uj, 2(BT)~") where
z=yBT.

On the other hand,

(uj 2(BT)™1) = 2(BT) " 'uf = 2(B™N) ] = 2(i; BT = 29] = (z.75)

It follows that h(y) & (uj,y) = g9(z) @ (y;, 2) where z = yBT.

Note that e,, is the sequence of linear function ., = (y;,y). Since v; € £2,
(€, e4;) = 0. Due to Lemma 4, g(z) @ (y;, z) is balanced. Hence h(y) © (u;,y) is
balanced. By using Lemma 5, we have proved that h(y) is a Ist-order correlation
immune function. O

Theorem 3. Let p be a positive odd integer and g be a (p— 1)th-order plateaued
function on V,. If g has a non-zero linear structure, then there exists a non-
singular 2P x 2P matriz B over GF(2), such that g(yB) = cxq @ h(z) where
y=(21,29,...,2p), 2= (2g,...,2y,), cach ; € GF(2) and the function h is a
bent function on V,_1.

Proof. Since g has a non-zero linear structure, there exists a nonsingular 27 x
2P matrix B over GF(2), such that ¢*(y) = g(yB) = cx1 @ h(z) where y =
(z1,22,...,2p), 2= (®2,...,2,) and h is a function on V,_;. We only need to
prove that h is bent. Without loss of generality, assume that ¢ = 1. Then we
have ¢*(y) = 1 ®h(z). Let ) denote the sequence of h. Hence the sequence of g*,
denoted by &, satisfies & = (1, —7). Let e; denote the ith row of H,_;. From the
structure of Sylvester-Hadamard matrices, (e;, e;) is the ith row of H,, denoted
by £;,i=0,1,...,2°7" — 1, and (e;, —¢;) is the (2°~! + i)th row of H,, denoted
by lyp-144, i =0,1,...,2°71 — 1. Obviously

(€,6)=0,i=0,1,...,2°71 -1 (1)



Since g* is a (p — 1)th-order plateaued function on V,, (1) implies
(€, lopmryi) = 230D =01, 2771 —1 (2)

Note that (&, €sp-14;) = 2(n,€;), i = 0,1,...,2°=1 — 1. From (2), (n,e;) =
:I:Q%(P—l), i=0,1,...,27=1 — 1. This proves that h is a bent function on V,_;.
O

4 Complementary (n — 1)th-order Plateaued Functions
onV,

To explore new properties of bent functions, we propose the following new con-
cept.

Definition 9. Let p be a positive odd number and g1, g2 be two functions on
Vp. Denote the sequences of g1 and g2 by &1 and &o respectively. Then g1 and
g2 are said to be complementary (p — 1)th-order plateaued functions on V, if
they are (p — 1)th-order plateaued functions on V,, and satisfy the property that

(€1,e;) = 0 if and only if (€2,e;) 0, and (€1,¢;) # 0 if and only if (€2,¢;) = 0.
The following Lemma can be found in [11]:

Lemma 7. Let k > 2 be a positive integer and 2F = a® + b2 where a > b > 0

and both a and b are integers. Then a®> = 2% and b = 0 when k is ecven, and
a’>=b>=2""1 when n is odd.

Proposition 5. Let p be a positive odd number and g1, g be two functions on
Vp. Denote the sequences of g1 and go by & and &y respectively. Then g1 and
g2 are complementary (p — 1)th-order plateaued functions on V, if and only if
(€1,€)2 + (€2,€;)? = 2PF1 where e; is the ith row of Hy, i =0,1,...,2° — 1.

Proof. The necessity is obvious. We now prove the sufficiency. We keep using all
the notations in Definition 9. Assume that (1, ;)% + (€,¢€;)% = 2PF! | where ¢;
is the ith row of H,,2=0,1,...,27 — 1. Since p+ 1 is even, by using Lemma 7,

we conclude (£1,¢;)? = 2P or 0,4 =0,1,...,27 — 1. Similarly (¢5,¢;)? = 2°F!
or 0,7 =0,1,...,2P — 1. Tt is easy to see that g1 and g2 are complementary
(p — 1)th-order plateaued functions on V. |

Theorem 4. Let p be a positive odd number and g1, g2 be two functions on V.
Then g1 and g2 are complementary (p — 1)th-order plateaued functions on Vj, if
and only if for every non-zero vector B in 'V, Ay (B) = —A,,(8).

Proof. Applying Lemma 3 to function g1 and ga, we obtain

(Agl ([7)0) + Agz(ﬂﬂ)) A§1 (ﬁl) + Ag2(ﬁ1)a B A§1 (ﬁ2p—1) + A92(ﬁ2”—1))HP
= ({&1, 60)2 + (&2, 60)2, (51,€1>2 + (52,€1>2, o (& 62?—1)2 + (&2, 62?—1)2) (3)



where f3; is the binary representation of integer ¢ and e; is the ith row of Hp,
i=0,1,...,27 — 1.

Assume that g1 and g2 are complementary (p—1)th-order plateaued functions
on V. From (3), we have

(Agl([?)O) + Agz(ﬁ())a Agl(ﬁl) + Agz(ﬁl)a ) Agl(ﬁﬂ—l) + Agz(ﬁw—l))Hp
= (2pt! optl ot (4)

or

(Ag:(Bo) + Ay (Bo), Agi (B1) + Aga(Br), - - Agy(Bar—1) + Aga(Par-1))

=2(1,1,...,1)H,

Comparing the jth terms in the two sides of the above equality, we have Ay, (8)+
Ay, (B) = 2P+ for B =0, and A, (B) + Ay, (B) =0, for 3 #0.
Conversely, assume that A, (8) + A,,(F) =0, for § # 0. From (3), we have

(2r+10,...,0)H,
= ((€1,e0)” + (€2, €0)%, (€1, 1) + (€2, e1)”, .o, (€1, €2021)” + (€2, €2021)7)

It follows that (&1,e;)% + (€2,€;)? = 2P i = 0,1,...,2P — 1. This proves that
g1 and go are complementary (p — 1)th-order plateaued functions on V. O

By using Theorem 4, we conclude

Proposition 6. Let p be a positive odd number and g1, go be complementary
(p — 1)th-order plateaued functions on V. Then

(i) B is a non-zero linear structure of g1 if and only if 3 is a non-zero linear
structure of go,
(ii) one and only one of g1 and go is balanced.

Proof. (i) can be obtained from Theorem 4.

(ii) We keep using the notations in Definition 9. From Proposition 5, (¢1, €)% =
2PF1 if and only if (€2,e0)? = 0, and (£1,e0)? = 0 if and only if (€3, e0)? = 2PF1.
Note that eq is the all-one sequence hence (€;,eq) = 0 implies g; is balanced.
Hence one and only one of g; and g5 is balanced. O

Proposition 7. Let p be a positive odd number and g1, g» be complementary
(p—1)th-order plateaued functions on V,. For any 8,7 € Vj, set gi(y) = g1(y® )
and g5(y) = g2(y D). Then gi(y) and g5(y) are complementary (p — 1)th-order
plateaued functions on V).

Proof. Since g1, g» are complementary (p — 1)th-order plateaued functions on
Vp, from Theorem 4, for any non-zero vector o in V,,, Ay (o) = —Ay,(a). On



the other hand, it is easy to verify Ags(a) = Ay, (), where o is any vector
in V. Hence for any non-zero vector § in Vp, 4, (o) = —Ays(a). Again, by
using Theorem 4, we have proved that g1, g5 are complementary (p— 1)th-order
plateaued functions on V,. By the same reasoning, we can prove that g7 and g5
are complementary (p — 1)th-order plateaued functions on V. O

Now fix f, i.e., fix g} in Proposition 7, and let v be arbitrary. We can see
that there exist more than one function that can team up with g7 to form
complementary (p — 1)th-order plateaued functions on V,,. This shows that the
relationship of complementary (p — 1)th-order plateaued functions on V,, is not
a one-to-one correspondence.

Theorem 5. Let p be a positive odd number and &1, &2 be two (1, —1) sequences
of length 2P. Set m; = 27 3(P+1)(¢, +&)H, and s = 2~ 3(P+1) (¢, —&9)Hy,. Then
&1 and &y are the sequences of complementary (p—1)th-order plateaued functions
on V, if and only ifny and 1y are the sequences of complementary (p—1)th-order
plateaued functions on V).

Proof. Assume that &; and &5 are the sequences of complementary (p—1)th-order
plateaued functions on V, respectively. It can be verified straightforwardly that
both 71 and 7y are (1, —1) sequences. Hence both 71 and s are the sequences
of functions on V.

Furthermore we have
_ o1 L _ o)L
mHp = 27070 (5 (6 + &), ety = 22T (S — &) (5)

Note that both %(51 +¢5) and 15(51 — &) are (0,1, —1) sequences. From (5),
(m,e;) and (52, e;), where e; is the ith row of H,, ¢ =0,1,...,27 — 1, take the
value of £23(P+1) or only. On the other hand, it is easy to see that the ith
term of %(51 =+ &) is non-zero if and only if the ith term of %(51 F &) is zero.
This proves that (n1,e;) # 0 if and only if (2,¢;) = 0, also (n1,e;) = 0 if and
only if (n2,e;) #0,i=0,1,...,27 — 1. By using Proposition 5 11 and 7, are the
sequences of complementary (p — 1)th-order plateaued functions on V.

Conversely, Assume that 7, and 75 are the sequences of complementary (p —
1)th-order plateaued functions on V,,. Note that & = 2—%(1""1)(771 + 12)H, and
& = 2‘%(P+1)(771 —n2)H,. Inverse the above deduction, we have proved that &
and &, are the sequences of complementary (p — 1)th-order plateaued functions
on V,.

a

In Section 5, we will prove that the existence of complementary (n — 2)th-
order plateaued functions on V,,_1 is equivalent to the existence of bent functions
on V,.



5 Relating Bent Functions on V,, to Complementary
(n — 2)th-order Plateaued Functions on V,,_;

Lemma 8. Let n be a positive even number and f be a function on V,,. Denote
the sequence of f by & = (&1,&2), where both &1 and &5 are of length 2771, Let
&1 and &5 be the sequences of functions f1 and fo on Vp_q respectively. Then
f is bent if and only if fi and fo are complementary (n — 2)th-order plateaued
functions on Vy_1.

Proof. Obviously, EH, = ((€,40), (€, ¢1),...,({, €an_1)) where {; is the jth row
of H,,7=0,1,...,27 — 1. Hence

n—1 Hn—l
n—1 _Hn—l

@ |0 | = (e toh et tane) 0

For each j, 0 < j < 2"~!—1, comparing the jth terms in the two sides of equality
(6), also comparing the 2"~! 4 j terms in the two sides of the equality, we find

(€1,€j) + (€2, ¢5) = (&, ), (&1,e5) — (€2,¢5) = <€a£2”‘1+j> (7)
ej is the jth row of H,_1, j =0,1,...,2"71 — 1.

Assume that f is bent. From Theorem 1, |(£,4;)| = 23" and [(€, ban-145)| =
23", j=0,1,...,2""1 — 1.

Due to (7), |(§1,¢5) + (€2,¢5)] = |(&1,¢5) — (€2,¢5)] = 227, This causes
(€1,e5) = 22" and (€2,€5) = 0 otherwise (£1,¢;) = 0 and (£2,¢;) = 23", This
proves that fi and f> are complementary (n — 2)th-order plateaued functions on
Vi-1.

Conversely, assume that fi and f» are complementary (n—2)th-order plateaued
functions on V,,_1. From Proposition 5, for each i, 0 < i < 2771 — 1, (&1, ¢;)
and ({1, e;) take the value of +22" or 0 only. Furthermore (€1, ;) = 0 implies
(€2,ei) # 0, and (&1, €;) # 0 implies (€2, ;) = 0. From (7), (£,4;) = +277 and
(€ bon-14j) £ 237 j=0,1,...,2°~" = 1. Due to Theorem 1, f is bent.

a

Lemma 8 can be briefly restated as follows:

Theorem 6. Let n be a positive even number and f be a function on V,.
Then f is bent if and only if the two functions on Vp_1, f(0,22,...,2,) and
f(l,zq,...,2,), are complementary (n—2)th-order plateaued functions on V,_;.

Proof. 1t is easy to verify that f(z1,...,2,) = (1 ® z1)f(0,22,...,2,) ®
z1f(l,2a,...,20). Set fi(za,...,2n) = f(0,22,...,2,) and fo(za,...,2,) =
f(1,22,...,2,). Denote the sequences of f1 and fo by & and &y respectively.
Obviously, the sequence of f, denoted by &, satisfies & = (£1,€2). By using
Lemma 8, we have proved the theorem. O

Due to Theorem 6, the following proposition is obvious.



Proposition 8. Let n be a positive even number and f be a function on V,.
Then f s bent if and only if the two functions on V,,_1,

flzr,...,zj1,0,2j41,...,2,) and
flzr,...,zj_1, 1, &j41,. .., &) are complementary (n—2)th-order plateaued func-
tions on V,_1. j=1,... n.

The following theorem follows Theorem 6 and Proposition 7.

Theorem 7. Lei n be a positive even number and f be a function on V,. Write
= (21, ..,2,) and y = (x3,...,&,) where x; € GF(2),j = 1,...,n. Set
fi(za,...,xn) = F(O,22,...,2,) and fo(za,...,xn) = f(1,22,...,2s). Then f
is bent if and only if g(x) = (1 @ x1)fi(y D 71) ® x1f2(y D 72) is bent, where 11

and vy are any two vectors in Vp_1.

By using Theorem 5 and Lemma 8, we conclude

Theorem 8. Let & = (§1,&9) be a (1,—1) sequence of length 2™, where both &
and & are of length 27~'. Then ¢ is the sequence of a bent function if and only
if 2737 (€1 + E9)Hu_1, (&1 — €2)Hp_1) is the sequence of a bent function.

Theorems 6, 7 and 8 represent new characterisations of bent functions. In
addition, Theorems 7 and 8 provide methods of constructing new bent function
from known bent functions.

6 Non-quadratic Bent Functions

Definition 10. Let f be a function on V,, and W be an r-dimensional linear
subspace of W. From linear algebra, V,, can be divided into 2"~ disjoint cosets
of W:

Vi =UgUULU---UUgn-r_1

where Ug = W , #U; =27, 5 =0,1,...,2"7" — 1, and for any two vectors y
and B in'Vy, B and vy belong to the same coset U; of and only if &y € W. The
partition s unique if the order of the cosets is ignored. Each U; can be expressed
as U; = v; ® W where v; is a vector in V,, and v; ®W denotes {v; ® o|a € W}
however vy; is not unique. For a coset U = v @ W, define a function g on W
such that g(a) = f(y ® ) for every « € W. Then g is called the restriction of
f to coset v @ W. In particular, the restriction of f to linear subspace W s a
function h on W such that h(a) = f(a) for every a € W.

Proposition 9. Let f be a bent function on V,, and W be an arbitrary (n — 1)-
dimenstonal linear subspace. Let V,, divided into two disjoint cosets: V,, = WUU.
Then the restriction of f to linear subspace W, fw, and the restriction of f to
coset U, fu, are complementary (n — 2)th-order plateaued functions on V,_1.

Proof. In fact, W* = {(0,22,...,2,)|x2,...,2, € GF(2)} forms an (n — 1)-
dimensional linear subspace and U* = {(1, 2, ..., &p)|z2,..., 2, € GF(2)}is a



coset of W. By using a nonsingular linear transformation on the variables, we
can transform W into W* and U into U* simultaneously.. By using Theorem 6,
we have proved the Proposition. O

Proposition 9 shows that the restriction of f to any (n—1)-dimensional linear
subspace is still cryptographically strong.

We now prove the following characteristic property of quadratic bent func-
tions.

Lemma 9. Let f be a bent function on V,. Then for any (n — 1)-dimensional
linear subspace W, the restriction of f to W has a non-zero linear structure if
and only if [ 1s quadratic.

Proof. Let f be quadratic and W be an arbitrary (n — 1)-dimensional linear
subspace. Since n— 1 is odd, the restriction of f to W, denoted by g, is not bent.
Hence due to (iii) of Theorem 1, there exists a non-zero vector 3 in W, such that
g(y) ® g(y @ ) is not balanced. On the other hand, since g is also quadratic,
g(y) ® g(y @ P) is affine. It is easy to see that any non-balanced affine function
must be constant. This proves that § is a non-zero linear structure of g.

We now prove the converse: “if for any (n — 1)-dimensional linear subspace
W, the restriction of f to W has a non-zero linear structure, then f is quadratic”
by induction on the dimension n.

Let n = 2. Bent functions on V5 must be quadratic. For n = 4, from (i) of
Proposition 1, bent functions on V4 must be quadratic.

Assume that the converse is true for 4 < n < k — 2 where k is even. We now
prove the converse for n = k.

Let f be a bent function on V} such that for any (k — 1)-dimensional linear
subspace W the restriction of f to W has a non-zero linear structure.

It is easy to see that f can be expressed as f(z) = z19(y) ® h(y) where
y=(xa,...,z4), both g and h are functions on Vj_;. From Theorem 6,
f(0,29,...,2¢) = h(y) and f(1,z9,...,2%) = g(y) ® h(y) are complementary
(k — 2)th-order plateaued functions on Vj,_;.

Since {(0,za,...,2p)|2s, ..., 21 € GF(2)} forms a (k — 1)-dimensional linear
subspace, due to the assumption about f: “the restriction of f to any (k — 1)-
dimensional linear subspace has a non-zero linear structure”, f(0,zs, ..., a) =
h(y) has a non-zero linear structure. Without loss of generality, we can assume
that the vector § in Vi_1, 8 = (1,0,...,0), is the non-zero linear structure
of h(y). It is easy to see h(y) = cxa @ b(z) where ¢ is a constant in GF(2),

z = (x3,...,2) and b(z) is a function on V;_s. Without loss of generality, we
assume that ¢ = 1. From Theorem 3, b(z) is a bent function on Vj_s.
It is easy to see Ax(3) = —2*~!. From Theorem 4, 8 = (1,0,...,0) is

also a linear structure of g(y) @ h(y) and Aygn = 2~1. Hence g(y) @ h(y)
can be expressed as g(y) ® h(y) = dza @ p(z), where z = (z3,...,2;). Due to
Theorem 3, p(z) is a bent function on V;_s. Since Aygn(3) = 281, d = 0. Hence
g(y) = h(y) ® p(z) = 22 ® b(2) @ p(z) and hence

f(z) = z1(z2 @ b(2) D p(2)) © 22 D b(2) (8)



Since {(%1,0,23,...,zx)|x1, 23, ..., 21 € GF(2)} forms a (k— 1)-dimensional
linear subspace, f(z1,0, zs, ..., 1) is the restriction of f to this (k—1)-dimensional
linear subspace. Due to the assumption about f, f(z1,0,zs,...,2s) has a non-
zero linear structure, denoted by v, v € Vx_1. From (8),
fl(u) = f(21,0,23,...,2,) = 21(b(2) @ p(z)) ® b(z), where u € V;_; and
u = (1,23, 24, ....21).

There exist two cases of 7.

Case 1: v = (0, ) where g € Vi_». Since v # 0, p is non-zero. It is easy to
see f'(u) @ fllu®7) =21(b(2) D b(z © p) Dp(2) Dp(z O p)) ©b(2) ©b(z D p).

Since f'(u) @ f'(u @ ) is a constant, b(z) D b(z B p) ®p(z) Dp(z® p) =0
and b(z) @ b(z @ p) = ¢/, where ¢’ is constant. On the other hand, since b(z) is
bent and g # 0, b(z) @ b(z @ p) is balanced and hence it is not constant. This is
a contradiction. This proves that Case 1 cannot take place.

Case 2: 7 = (1,v) where v € Vj,_5 and v is not necessarily non-zero. It is easy
tosee f'(u)® flludy) =x1(b(2) Bb(zDv) D p(z) Dp(z D)) @ b(2) D p(z D v).

Since f'(u) @® f'(u® ) is a constant, b(z) D b(zdv) B p(z)dp(zdr) =0
and b(z) ® p(z @ v) = ", where ¢’ is constant, and hence b(z ® v) & p(z) = ¢”.
From (8),

f@)=z122® 21(b(2) ®b(z D V) D) Do D b(2) (9)

We now turn to the restriction of f to another (k— 1)-dimensional linear sub-
space. Write U* = {(x3...,zp)| 23,..., 25 € GF(2)} and Uy = {(x1,x2)|21, 22 €
GF(2)}. Hence U* is a (k — 2)-dimensional linear subspace and U, is a 2-
dimensional linear subspace, and V3 = (Uy,U*), where (X,Y) = {(o, )| €
X, peY}.

Let A denote an arbitrary (k — 3)-dimensional linear subspace in U*. Hence
(Us, A) is a (k — 1)-dimensional linear subspace.

Let f"(y) denote the restriction of f to (U, A), where y € (U, A). Hence
y can be expressed as y = (x1,29,v) with v = (v1,...,v5-2) € A, where
v1,...,0k—2 € GF(2) but not arbitrary because A is a proper subset of Vj_s.

From (9), f”(y) can be expressed as f’(y) = z1z2 @ 2:(b'(v) V' (v) D a) ®
z3 @ b'(v), where b'(v) denotes the restriction of b(z) to A and b”(v) denotes the
restriction of b(z @ v) to A.

From the assumption about f, f” has a non-zero linear structure v/, 4" €
(Ui, A). Write 4" = (a3, as, 7) where 7 € A. Since 4/ = (ay,as, 7) is a non-zero
linear structure of f, it is easy to verify ay = as = 0. This proves ' = (0,0, 7).
Since 4’ is non-zero, T # 0.

Hence f"(y)®f" (y@vy") = 21 (b (v)DY (v®T)DY (v) D" (vDT)) DY (v) D (vD
7). Since f"(y) ® f"(y D~') is constant, b'(v) V' (v D T) Db (v) D' (vDT) =0
and b'(v) @ b (v @ 1) is constant. Hence 7 is a non-zero linear structure of 4'(v).
This proves that for any (n — 3)-dimensional linear subspace A, the restriction
of b(z) to A, i.e., b'(v), has a non-zero linear structure. On the other hand,
since b(z) is a bent function on Vj_s5, due to the induction assumption, b(z)
is quadratic. Hence b(z) @ b(z @ v) must be affine. From (9), we have proved
f@) = z12a D 21(b(2) D b(z D v) D a) ® xs @ b(2) is quadratic when n = k. O



Due to the low algebraic degree, quadratic functions are not cryptographically
desirable, although some of them are highly nonlinear.
The following is an equivalent statement of Lemma 9.

Theorem 9. Let f be a bent function on V,. Then f is non-quadratic if and only
if there ezists an (n—1)-dimensional linear subspace W such that the restriction
of f to W, fw, has no non-zero linear structure.

Theorem 9 is an interesting characterization of non-quadratic bent functions.

7 New Constructions of Cryptographic Functions

The relationships among a bent function on V,, and complementary (n — 2)th-
order plateaued functions on V,,_1 are helpful to design cryptographic functions
from bent functions. In fact, from Theorem 6, any bent function on V,, can be
“split” into complementary (n — 2)th-order plateaued functions on V,,_1.

We prefer non-quadratic bent functions as they are useful to obtain comple-
mentary plateaued functions that have no non-zero linear structures.

Let f be a non-quadratic bent function on V,,. By using Theorem 9, we can
find an (n—1)-dimensional subspace W such that the restriction of f to W, fu,
has no non-zero linear structure. For any vector a € V,, with o € W, we have
(aeW)NW =0 and V,, = WU (a® W). From Proposition 9, the restriction
of ftoa®d W, fagw, and fi are complementary (n — 2)th-order plateaued
functions on V,_1. Due to (i) of Proposition 6, fagw has no non-zero linear
structure. Due to (ii) of Proposition 6, one and only one of fir and fagw is
balanced. From Propositions 4, we can see that both fir and fogw are highly
nonlinear.

Furthermore, by using Theorem 2, we can use a nonsingular linear trans-
formation on the variables to transform the balanced fi or fagw into another
(n—2)th-order plateaued function g on V,,_;. The resultant function is a 1st-order
correlation immune function. Obviously ¢ is still balanced and highly nonlinear,
and 1t does not have non-zero linear structure.

We note that there is a more straightforward method to construct a balanced,
highly nonlinear function on any odd dimensional linear space, by “concatenat-
ing” known bent functions. For example, let f be a bent function on V;, we can
set g(x1,...,2541) = 21 ® f(x2,...,2r41). Then g is a balanced, highly nonlin-
ear function on V41, where k 4+ 1 is odd. Let n and € denote the sequences of ¢
and f respectively. Tt is easy to see n = (£, —¢) and hence 7 is a concatenations
of & and —¢&. We call this method concatenating bent functions. A major problem
of this method is that f contains a non-zero linear structure (1,0,...,0).

In contrast, the method of “splitting” a bent function we discussed earlier
allows us to obtain functions that do not have non-zero linear structure.

8 Conclusions

We have identified relationships between bent functions and complementary
plateaued functions, and discovered a new characteristic property of bent func-



tions. Furthermore we have proved a necessary and sufficient condition of non-
quadratic bent functions. Based on the new results on bent functions, we have
proposed a new method for constructing balanced, highly nonlinear and corre-
lation immune functions that have no non-zero linear structures.
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