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Abstract

Signcryption is a new paradigm in public key cryptography� A remarkable
property of a signcryption scheme is that it ful�lls both the functions of pub�
lic key encryption and digital signature� with a cost signi�cantly smaller than
that required by signature�then�encryption� The purposes of this paper are to
demonstrate how to specify signcryption schemes on elliptic curves over �nite
�elds� and to examine the e�ciency of such schemes� Our analysis shows that
when compared with signature�then�encryption on elliptic curves� signcryp�
tion on the curves represents a ��� saving in computational cost and a �	�
saving in communication overhead�
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� INTRODUCTION

Public key cryptography discovered nearly two decades ago 
Di�e � Hellman
�
��� has revolutionized the way for people to conduct secure and authen�
ticated communications� Currently the standard approach to achieving both
message con�dentiality and authenticity is signature followed by encryption�
namely before a message is sent out� the sender of the message would sign
it using a digital signature scheme� and then encrypt the message 
and the
signature� using a private key encryption algorithm under a randomly cho�
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sen message encryption key� The random message encryption key would then
be encrypted using the recipient�s public key� We call this two�step approach
�signature�then�encryption��
Signature generation and encryption consume machine cycles� and also in�

troduce �expanded� bits to an original message� Symmetrically� a comparable
amount of computation time is generally required for signature veri�cation
and decryption� Hence the cost of a cryptographic operation on a message
is typically measured in the message expansion rate and the computational
time invested by both the sender and the recipient� With the current stan�
dard signature�then�encryption approach� the cost for delivering a message in
a secure and authenticated way is essentially the sum of the cost for digital
signature and that for encryption�
As realized both by practicinors and theorists in data security� the standard

signature�then�encryption approach� together with the fact that cryptanalytic
attacks have been advancing at a remarkable speed in recent times� is posing
an increasingly large problem in security applications where e�ciency both in
terms of computational time and communication overhead is a critical issue�
Such applications include those based on smart cards which usually employ
only less powerful CPUs than do their counterparts in desk�top or notebook
computers�
To solve the above problem� in 
Zheng �

�� 
see also 
Zheng �

��� a

new paradigm in public key cryptography� called signcryption� has been pro�
posed� Speci�cally� a signcryption scheme is a cryptographic method that
ful�lls both the functions of secure encryption and digital signature� but with
a cost smaller than that required by signature�then�encryption�
Signcryption schemes are compact and particularly suited for e�ciency�

critical applications such as smart card based systems� We have identi�ed
a large number of practical applications of signcryption� including for in�
stances 
�� secure and authenticated key establishment in a single small
data packet 
Zheng � Imai �

��� 
�� secure multicasting over the Inter�
net 
Matsuura� Zheng � Imai �

��� 
�� authenticated key recovery 
Nishioka�
Matsuura� Zheng � Imai �

��� 
�� secure ATM networks 
Gamage� Leiwo
� Zheng �

��� and 
�� secure and light weight electronic transaction pro�
tocols 
Hanaoka� Zheng � Imai �

��� We are currently in the process of
searching for other novel applications of signcryption in e�cient public key
solutions�
In 
Zheng �

��� it has been shown that ElGamal signature scheme based

on the discrete logarithm problem in �nite �elds and all its variants can be
made shorter� and these shortened signature schemes can all be used to con�
struct e�cient signcryption schemes� The aim of this paper is to complete the
description of the corresponding signcryption schemes on elliptic curves� and
to compare their e�ciency with that of signature�then�encryption on elliptic
curves�
Organization of the remainder of this paper� Section � surveys the necessary



background information on the discrete logarithm problem on elliptic curves
over �nite �elds� Section � shows how to specify a signcryption scheme on
an elliptic curve� The paper is closed by Section � where a detailed analysis
of the e�ciency of the signcryption schemes is carried out� from which we
conclude that� when compared with signature�then�encryption� elliptic curve
signcryption can save ��� in computational cost and �	� in communication
overhead�

� ELLIPTIC CURVE CRYPTOGRAPHY

The original ElGamal public key encryption and digital signature schemes
are de�ned on �nite �elds� In �
�� Neal Koblitz from the University of Wash�
ington and Victor Miller then with IBM observed that discrete logarithm on
elliptic curves over �nite �elds appeared to be intractable and hence ElGa�
mal�s encryption and signature schemes have natural counterparts on these
curves�

��� Elliptic Curve Groups over a Finite Field

Let GF 
pm� be the �nite �eld of pm elements� where p is a prime and m an
integer� an elliptic curve over GF 
pm� is de�ned as the set of solutions 
x� y��
where x� y � GF 
pm�� to a cubic equation

y� � a�xy � a�y � x� � a�x
� � a�x� a�

with a�� a�� a�� a�� a� � GF 
pm�� together with a special point O called the
point at in�nity� In cryptographic practice� we are particularly interested in

�� elliptic curves over GF 
�m� with m � ��	� and 
�� elliptic curves over
GF 
p� with p a large prime� Hence these two types of elliptic curves deserve
a closer look�
For GF 
�m�� the cubic equation for an elliptic curve takes the form of

��
�

y� � cy � x� � ax� b� with a� b� c � GF 
�m�� c �� 	 and j�variant 	
or
y� � xy � x� � ax� � b� with a� b � GF 
�m�� b �� 	 and j�variant not 	


��

And for GF 
p�� p � �� the cubic equation takes the form of

y� � x� � ax� b� with a� b � GF 
p� and �a� � ��b� �� 	 
��

An elliptic curve over GF 
pm� forms an abelian group under an addition
on the points given by the �tangent and chord method�� To be precise� this
group should be called an elliptic curve group over GF 
pm�� In this paper we
follow a common practice to call the group an elliptic curve over GF 
pm��



The addition on an elliptic curve only involves a few arithmetic operations
in GF 
pm�� and hence is e�cient� Taking an elliptic curve C on GF 
p� with
p � � as an example� the addition follows the rules speci�ed below�

�� O �O � O�
�� P �O � P for all P � 
x� y� � C� Namely� C has O as its identity element�
�� P �Q � O for all P � 
x� y� � C and Q � 
x��y�� Namely� the inverse of


x� y� is simply 
x��y��
�� Adding two distinct points � for all P � 
x�� y�� � C and Q � 
x�� y�� � C

with x� �� x�� P �Q � 
x�� y�� is de�ned by

x� � �� � x� � x�

y� � �
x� � x��� y�

where � � y��y�
x��x�

�
�� Doubling a point � for any P � 
x� y� � C with y �� 	� �P � 
x�� y�� is

de�ned by

x� � �� � �x

y� � �
x � x��� y

where � � �x��a
�y

�

Adding and doubling points on an elliptic curve C over GF 
�m� are de�ned
in a similar way�
Excluding the point at in�nity O� every point P � 
x� y� on an elliptic

curve C over GF 
pm� can be represented as 
or �compressed� to� P � 
x� �y�
where �y is a single bit�

�� if x � 	� then �y � 	�
�� if x �� 	� then �y is the parity of y when it is viewed as an integer�

An advantage of compressed representation of a point is that when a com�
pressed point is stored internally in a computer or communicated over a net�
work� it takes only one bit more than half of the bits required for storing or
transmitting its uncompressed counterpart� This advantage� however� is not
for free� recovering the y�coordinate from a compressed point involves a few
arithmetic operations in the underlying �nite �eld�



��� Elliptic Curve Discrete Logarithms

A result due to Hasse states that the order �C of an elliptic curve C over
GF 
pm�� i�e�� the number of elements in the group� satis�es the following
condition

�C � pm � �� t� with jtj � �
p
pm 
��

where t is called the trace of the elliptic curve C� or to be more precise�
the trace of the Frobenius endomorphism of C� Structurally� C is known to be
isomorphic to ZZn��ZZn� � where both n� and n� are integers� n�jn�� n�j
pm���
and ZZn denotes the modular ring of n elements�
Let G be a point on an elliptic curve C over GF 
pm�� The order of G is

the smallest integer q such that qG � O� For an integer e� the e multiple of
G� namely eG� can be readily computed by using a method similar to the
�square�and�multiply� for exponentiation in GF 
p�� The inverse problem cor�
responding to the computation of a multiple of a point is that given two points
G and P in C� one is asked to �nd an integer e such that P � eG� provided
that such an integer exists� This is known as the elliptic curve discrete loga�
rithm problem� When the order q of G contains a large prime factor� say of
size at least ����� it is believed that the elliptic curve discrete logarithm prob�
lem is infeasible to solve� All elliptic curve based cryptosystems hinge their
security on the 
purported� hardness of the elliptic curve discrete logarithm
problem�
In light of recent developments in cracking the elliptic curve discrete log�

arithm problem 
Menezes� Okamoto � Vanstone �

�� Smart �

�� Satoh �
Araki �

��� however� one should be very cautious in designing a cryptosystem
based on the elliptic curve discrete logarithm problem� In particular� it has
been shown in 
Menezes et al� �

�� that the discrete logarithm problem on
a super�singular elliptic curve is not more di�cult to solve than the discrete
logarithm problem in a �nite �eld� Super�singular elliptic curves on GF 
pm�
are curves whose trace t satis�es the condition of

t � �
p
i � pm with i � 	� �� �� �� or ��

A more recent breakthrough is dramatic indeed� Nigel Smart at HP Labs
in UK� and Takakazu Satoh and Kiyomichi Araki in Japan announced that
they have independently broken the discrete logarithm problem on anomalous
elliptic curves over GF 
p� 
Smart �

�� Satoh � Araki �

�� 
see also 
Araki�
Satoh � Miura �

���� An anomalous elliptic curves over GF 
p� is a curve
whose trace is �� i�e�� a curve that has exactly p points� In their preprint�
Satoh and Araki present an algorithm that solves the elliptic curve discrete
logarithm problem for trace � in O

log p��� steps�
Let us assume� optimistically� that the e�ectiveness of the algorithms re�

ported in 
Menezes et al� �

�� Smart �

�� Satoh � Araki �

�� is limited
to super�singular and anomalous elliptic curves� Then the fastest known al�



gorithm for the discrete logarithm problem on other elliptic curves appears
to take time in the order of O


p
pm� which grows exponentially with the

size of the elliptic curve group� In other words� on elliptic curves which are
not super�singular or with trace �� the discrete logarithm problem appears to
share a similar degree of hardness with the discrete logarithm problem in a
sub�group of comparable order modulo a large prime� This point is the origin
of signcryption schemes to be introduced in the next section�

� ELLIPTIC CURVE SIGNCRYPTION SCHEMES

As we mentioned earlier� ElGamal public key encryption and digital signature
schemes and their variants can all be extended to elliptic curves in a straight�
forward way 
see for instance 
IEEE �

���� For the sake of completeness�
Table � summarizes an elliptic curve version of the Digital Signature Stan�
dard or DSS 
National Institute of Standards and Technology �

��� together
with its shortened variants� The elliptic curve DSS will be called ECDSS� and
its two shortened versions SECDSS� and SECDSS� respectively� Note that in
the computation of r � 
vG�mod q with ECDSS� vG � K which is a point on
an elliptic curve is viewed as an integer� Similarly� in r � hash
vG�m� with
SECDSS� and SECDSS�� vG is viewed as a binary string� Also note that
instead of vG� one may involve only its x�coordinate in the computation of r�
as the y�coordinate carries essentially only one bit of information and hence
may be excluded�
Parameters for elliptic curve based signcryption schemes are summarized

in table �� and two signcryption schemes built on SECDSS� and SECDSS�
are described in Table �� These signcryption schemes are called ECSCS� and
ECSCS� respectively� Similarly to elliptic curve signature schemes described
in Table �� points on an elliptic curve� namely vPa� uPa�urG and uG�urPa�
are regarded as binary strings when involved in hashing� The bind info part
in the computation of r may contain� among other data� the public keys or
public key certi�cates of both Alice the sender and Bob the recipient�

� A COMPARISON WITH ELLIPTIC CURVE

SIGNATURE�THEN�ENCRYPTION

��� Saving in computational cost

With the signature�then�encryption based on SECDSS� or SECDSS� and
elliptic curve ElGamal encryption� the number of computations of multiples
of points is three� both for the process of signature�then�encryption and that
of decryption�then�veri�cation�
We note that the �square�and�multiply� method for fast exponentiation can



Table � Elliptic Curve DSS and Its Shortened and E�cient Variants

Signature �r� s�
on a message m

Veri�cation of
signature

Length of
signature

ECDSS�

r � �vG�mod q

s � hash�m��var
v

mod q

K � s��hash�m�G
�rPa�

where s� � �
s
mod q�

check whether
Kmod q � r

�jqj

SECDSS��

r � hash�vG�m�
s � v

r�va
mod q

K � s�Pa � rG�
check whether
hash�K�m� � r

jhash���j � jqj

SECDSS��

r � hash�vG�m�
s � v

��va�r
mod q

K � s�G� rPa�
check whether
hash�K�m� � r

jhash���j � jqj

C� an elliptic curve over GF 
pm�� either with p � ���� and m � �
or p � � and m � ��	 
public to all��
q� a large prime whose size is approximately of jpmj 
public to all��
G� a point with order q� chosen randomly from the points on C 
public to all��
hash� a one�way hash function 
public to all��
v� a number chosen uniformly at random from ��� � � � � q � ���
va� Alice�s private key� chosen uniformly at random from ��� � � � � q � ���
Pa� Alice�s public key 
Pa � vaG� a point on C��

be adapted to a �doubling�and�addition� method for the fast computation of
a multiple of a point on an elliptic curve� Namely a multiple can be obtained
in about ���jqj point additions�
Among the three multiples for decryption�then�veri�cation� two are used

in verifying a signature� More speci�cally� these two multiples are spent in
computing e�G� e�Pa for two integers e� and e�� Shamir�s technique for fast
computation of the product of multiple exponentials with the same modulo

see 
ElGamal �
��� as well as Algorithm ����� on Page ��� of 
Menezes�
van Oorschot � Vanstone �

��� can be adapted to the fast computation
of e�G � e�Pa� Thus on average� the computational cost for e�G � e�Pa is

� � ����jqj point additions� or equivalently ���� point multiples� That is�
the number of point multiples involved in decryption�then�veri�cation can be
reduced from � to ����� Consequently� the combined computational cost of
the sender and the recipient is ���� point multiples��
In contrast� with ECSCS� and ECSCS�� the number of point multiples



Table � Parameters for Elliptic Curve Signcryption

Parameters public to all�
C � an elliptic curve over GF 
pm�� either with p � ���� and m � �

or p � � and m � ��	 
public to all��
q � a large prime whose size is approximately of jpmj 
public to all��
G � a point with order q� chosen randomly from

the points on C 
public to all��
hash � a one�way hash function whose output has�

say� at least ��� bits�
KH � a keyed one�way hash function�

E�D� � the encryption and decryption algorithms of

a private key cipher�

Alice�s keys�
va � Alice�s private key� chosen uniformly at random from ��� � � � � q � ���
Pa � Alice�s public key 
Pa � vaG� a point on C��

Bob�s keys�
vb � Bob�s private key� chosen uniformly at random from ��� � � � � q � ���
Pb � Bob�s public key 
Pb � vbG� a point on C��

Table � Implementations of Signcryption on Elliptic Curves

Signcryption of m
by Alice the Sender

Unsigncryption of 
c� r� s�
by Bob the Recipient

v �R ��� � � � � q � ��

k�� k�� � hash
vPb�
c � Ek� 
m�
r � KHk�
m� bind info�
s � v

r�va
mod q

if SECDSS� is used� or
s � v

��va�r
mod q

if SECDSS� is used�


c� r� s�
�

u � svbmod q

k�� k�� � hash
uPa � urG�

if SECDSS� is used� or

k�� k�� � hash
uG� urPa�

if SECDSS� is used�
m � Dk�
c�
Accept m only if

KHk�
m� bind info� � r



is one for the process of signcryption and two for that of unsigncryption
respectively� Applying Shamir�s technique� one reduces the computational cost
of unsigncryption from � multiples to ���� on average� The total average
computational cost for signcryption is therefore ���� point multiples� This
represents a

����� ����

����
� ���

reduction in average computational cost�

��� Saving in communication overhead

To simplify our discussions� we assume that jqj 	 jpmj� Namely the order q
of G is of comparable size to pm� In addition we assume that jhash
��j �
jKH�
��j � �

�
jqj� Furthermore� we assume that a point on an elliptic curve is

represented in a compressed way�
Under these reasonable assumptions� the communication overhead mea�

sured in bits is jhash
��j � jqj � jpm � �j 	 jhash
��j � �jqj for signature�
then�encryption based on SECDSS� or SECDSS� and elliptic curve ElGamal
encryption� and jKH�
��j� jqj for the two signcryption schemes ECSCS� and
ECSCS�� This gives rise to the saving in communication overhead as follows

jhash
��j� �jqj � 
jKH�
��j� jqj�
jhash
��j� �jqj �

jqj
�

�
jqj� �jqj � �	�

In conclusion� when compared with signature�then�encryption on elliptic
curves� signcryption on the curves represents a ��� saving in computational
cost and a �	� saving in communication overhead�
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