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Abstract

Signcryption is a new paradigm in public key cryptography. A remarkable
property of a signcryption scheme is that it fulfills both the functions of pub-
lic key encryption and digital signature, with a cost significantly smaller than
that required by signature-then-encryption. The purposes of this paper are to
demonstrate how to specify signcryption schemes on elliptic curves over finite
fields, and to examine the efficiency of such schemes. Our analysis shows that
when compared with signature-then-encryption on elliptic curves, signcryp-
tion on the curves represents a 58% saving in computational cost and a 40%
saving in communication overhead.
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1 INTRODUCTION

Public key cryptography discovered nearly two decades ago (Diffie & Hellman
1976) has revolutionized the way for people to conduct secure and authen-
ticated communications. Currently the standard approach to achieving both
message confidentiality and authenticity is signature followed by encryption,
namely before a message is sent out, the sender of the message would sign
it using a digital signature scheme, and then encrypt the message (and the
signature) using a private key encryption algorithm under a randomly cho-
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sen message encryption key. The random message encryption key would then
be encrypted using the recipient’s public key. We call this two-step approach
“signature-then-encryption”.

Signature generation and encryption consume machine cycles, and also in-
troduce “expanded” bits to an original message. Symmetrically, a comparable
amount, of computation time is generally required for signature verification
and decryption. Hence the cost of a cryptographic operation on a message
is typically measured in the message expansion rate and the computational
time invested by both the sender and the recipient. With the current stan-
dard signature-then-encryption approach, the cost for delivering a message in
a secure and authenticated way is essentially the sum of the cost for digital
signature and that for encryption.

As realized both by practicinors and theorists in data security, the standard
signature-then-encryption approach, together with the fact that cryptanalytic
attacks have been advancing at a remarkable speed in recent times, is posing
an increasingly large problem in security applications where efficiency both in
terms of computational time and communication overhead is a critical issue.
Such applications include those based on smart cards which usually employ
only less powerful CPUs than do their counterparts in desk-top or notebook
computers.

To solve the above problem, in (Zheng 1997) (see also (Zheng 1998)) a
new paradigm in public key cryptography, called signcryption, has been pro-
posed. Specifically, a signcryption scheme is a cryptographic method that
fulfills both the functions of secure encryption and digital signature, but with
a cost smaller than that required by signature-then-encryption.

Signcryption schemes are compact and particularly suited for efficiency-
critical applications such as smart card based systems. We have identified
a large number of practical applications of signcryption, including for in-
stances (1) secure and authenticated key establishment in a single small
data packet (Zheng & Imai 1998), (2) secure multicasting over the Inter-
net (Matsuura, Zheng & Imai 1998), (3) authenticated key recovery (Nishioka,
Matsuura, Zheng & Imai 1997), (4) secure ATM networks (Gamage, Leiwo
& Zheng 1997), and (5) secure and light weight electronic transaction pro-
tocols (Hanaoka, Zheng & Imai 1998). We are currently in the process of
searching for other novel applications of signcryption in efficient public key
solutions.

In (Zheng 1997), it has been shown that ElGamal signature scheme based
on the discrete logarithm problem in finite fields and all its variants can be
made shorter, and these shortened signature schemes can all be used to con-
struct efficient signcryption schemes. The aim of this paper is to complete the
description of the corresponding signcryption schemes on elliptic curves, and
to compare their efficiency with that of signature-then-encryption on elliptic
curves.

Organization of the remainder of this paper: Section 2 surveys the necessary



background information on the discrete logarithm problem on elliptic curves
over finite fields. Section 3 shows how to specify a signcryption scheme on
an elliptic curve. The paper is closed by Section 4 where a detailed analysis
of the efficiency of the signcryption schemes is carried out, from which we
conclude that, when compared with signature-then-encryption, elliptic curve
signcryption can save 58% in computational cost and 40% in communication
overhead.

2 ELLIPTIC CURVE CRYPTOGRAPHY

The original ElGamal public key encryption and digital signature schemes
are defined on finite fields. In 1985 Neal Koblitz from the University of Wash-
ington and Victor Miller then with IBM observed that discrete logarithm on
elliptic curves over finite fields appeared to be intractable and hence ElGa-
mal’s encryption and signature schemes have natural counterparts on these
curves.

2.1 Elliptic Curve Groups over a Finite Field

Let GF(p™) be the finite field of p™ elements, where p is a prime and m an
integer, an elliptic curve over GF(p™) is defined as the set of solutions (z,y),
where z,y € GF(p™), to a cubic equation

y2 + a2y + azy = z° + a2x2 + a4 + ag

with a1, as,as,a4,a6 € GF(p™), together with a special point O called the
point at infinity. In cryptographic practice, we are particularly interested in
(1) elliptic curves over GF'(2™) with m > 150, and (2) elliptic curves over
GF(p) with p a large prime. Hence these two types of elliptic curves deserve
a closer look.

For GF(2™), the cubic equation for an elliptic curve takes the form of

y2+cy=2°+axr+b, witha,b,c€ GF(2™), c# 0 and j-variant 0
or
y?+xy =2° +ax® +b, with a,b € GF(2™), b # 0 and j-variant not 0

And for GF(p), p > 3, the cubic equation takes the form of

y> =2 +ar+b, with a,b € GF(p) and 4a® + 270> £ 0 (2)
An elliptic curve over GF(p™) forms an abelian group under an addition

on the points given by the “tangent and chord method”. To be precise, this

group should be called an elliptic curve group over GF (p™). In this paper we
follow a common practice to call the group an elliptic curve over GF(p™).



The addition on an elliptic curve only involves a few arithmetic operations
in GF(p™), and hence is efficient. Taking an elliptic curve C on GF(p) with
p > 3 as an example, the addition follows the rules specified below:

—

.O0+0=0.

. P+O = Pforall P=(z,y) € C. Namely, C has O as its identity element.

. P+Q=0foral P=(z,y) € C and Q = (z,—y). Namely, the inverse of
(z,y) is simply (z, —y).

. Adding two distinct points — for all P = (z1,y1) € C and Q = (z2,y2) € C
with z1 # 9, P+ Q = (z3,y3) is defined by

W N

e~

I3 = )\2—561—562

Ys = A($1—333)—y1

where \ = £2=%

5. Doubling a ﬁ&mﬁt — for any P = (z,y) € C with y # 0, 2P = (z*,y*) is
defined by

= N -2
Yy = Mz -2") -y
where \ = 3””;*“.

y

Adding and doubling points on an elliptic curve C' over GF'(2™) are defined
in a similar way.

Excluding the point at infinity O, every point P = (x,y) on an elliptic
curve C over GF(p™) can be represented as (or “compressed” to) P = (z,¢)
where ¢ is a single bit:

1. if z =0, then § = 0.
2. if  # 0, then g is the parity of y when it is viewed as an integer.

An advantage of compressed representation of a point is that when a com-
pressed point is stored internally in a computer or communicated over a net-
work, it takes only one bit more than half of the bits required for storing or
transmitting its uncompressed counterpart. This advantage, however, is not
for free: recovering the y-coordinate from a compressed point involves a few
arithmetic operations in the underlying finite field.



2.2 Elliptic Curve Discrete Logarithms

A result due to Hasse states that the order #C' of an elliptic curve C over
GF(p™), i.e., the number of elements in the group, satisfies the following
condition

#C =pm+1—t, with |t| <2/p™ (3)

where ¢t is called the trace of the elliptic curve C, or to be more precise,
the trace of the Frobenius endomorphism of C'. Structurally, C' is known to be
isomorphic to Z,,, X Z,,,, where both n; and n, are integers, ns|ny, no|(p™—1)
and Z, denotes the modular ring of n elements.

Let G be a point on an elliptic curve C' over GF(p™). The order of G is
the smallest integer ¢ such that ¢G = O. For an integer e, the e multiple of
G, namely eG, can be readily computed by using a method similar to the
“square-and-multiply” for exponentiation in GF'(p). The inverse problem cor-
responding to the computation of a multiple of a point is that given two points
G and P in C, one is asked to find an integer e such that P = eG, provided
that such an integer exists. This is known as the elliptic curve discrete loga-
rithm problem. When the order ¢ of G contains a large prime factor, say of
size at least 2160, it is believed that the elliptic curve discrete logarithm prob-
lem is infeasible to solve. All elliptic curve based cryptosystems hinge their
security on the (purported) hardness of the elliptic curve discrete logarithm
problem.

In light of recent developments in cracking the elliptic curve discrete log-
arithm problem (Menezes, Okamoto & Vanstone 1993, Smart 1997, Satoh &
Araki 1997), however, one should be very cautious in designing a cryptosystem
based on the elliptic curve discrete logarithm problem. In particular, it has
been shown in (Menezes et al. 1993) that the discrete logarithm problem on
a super-singular elliptic curve is not more difficult to solve than the discrete
logarithm problem in a finite field. Super-singular elliptic curves on GF(p™)
are curves whose trace t satisfies the condition of

t==x+/i-p™ withi=20,1,2 3, or4.

A more recent breakthrough is dramatic indeed: Nigel Smart at HP Labs
in UK, and Takakazu Satoh and Kiyomichi Araki in Japan announced that
they have independently broken the discrete logarithm problem on anomalous
elliptic curves over GF(p) (Smart 1997, Satoh & Araki 1997) (see also (Araki,
Satoh & Miura 1998)). An anomalous elliptic curves over GF(p) is a curve
whose trace is 1, i.e., a curve that has exactly p points. In their preprint,
Satoh and Araki present an algorithm that solves the elliptic curve discrete
logarithm problem for trace 1 in O((logp)?) steps.

Let us assume, optimistically, that the effectiveness of the algorithms re-
ported in (Menezes et al. 1993, Smart 1997, Satoh & Araki 1997) is limited
to super-singular and anomalous elliptic curves. Then the fastest known al-



gorithm for the discrete logarithm problem on other elliptic curves appears
to take time in the order of O(y/p™) which grows exponentially with the
size of the elliptic curve group. In other words, on elliptic curves which are
not super-singular or with trace 1, the discrete logarithm problem appears to
share a similar degree of hardness with the discrete logarithm problem in a
sub-group of comparable order modulo a large prime. This point is the origin
of signcryption schemes to be introduced in the next section.

3 ELLIPTIC CURVE SIGNCRYPTION SCHEMES

As we mentioned earlier, EIGamal public key encryption and digital signature
schemes and their variants can all be extended to elliptic curves in a straight-
forward way (see for instance (IEEE 1997)). For the sake of completeness,
Table 1 summarizes an elliptic curve version of the Digital Signature Stan-
dard or DSS (National Institute of Standards and Technology 1994), together
with its shortened variants. The elliptic curve DSS will be called ECDSS, and
its two shortened versions SECDSS1 and SECDSS2 respectively. Note that in
the computation of r = (vG)mod ¢ with ECDSS, vG = K which is a point on
an elliptic curve is viewed as an integer. Similarly, in r = hash(vG, m) with
SECDSS1 and SECDSS2, vG is viewed as a binary string. Also note that
instead of v, one may involve only its z-coordinate in the computation of r,
as the y-coordinate carries essentially only one bit of information and hence
may be excluded.

Parameters for elliptic curve based signcryption schemes are summarized
in table 2, and two signcryption schemes built on SECDSS1 and SECDSS2
are described in Table 3. These signcryption schemes are called ECSCS1 and
ECSCS2 respectively. Similarly to elliptic curve signature schemes described
in Table 1, points on an elliptic curve, namely vP,, uP, + urG and uG +urP,,
are regarded as binary strings when involved in hashing. The bind_info part
in the computation of » may contain, among other data, the public keys or
public key certificates of both Alice the sender and Bob the recipient.

4 A COMPARISON WITH ELLIPTIC CURVE
SIGNATURE-THEN-ENCRYPTION

4.1 Saving in computational cost

With the signature-then-encryption based on SECDSS1 or SECDSS2 and
elliptic curve ElGamal encryption, the number of computations of multiples
of points is three, both for the process of signature-then-encryption and that
of decryption-then-verification.

We note that the “square-and-multiply” method for fast exponentiation can



Table 1 Elliptic Curve DSS and Its Shortened and Efficient Variants

Signature (r, s) Verification of Length of
on a message m signature signature
ECDSS:
K = s'(hash(m)G
+rP,)
= d
" _ (}Zi)(%a-vaqr d where s’ = %mOd q, 2|q|
- v modq check whether
Kmodg=r
SECDSS1:
K = s(P, +rQ)
= hash
Y S’logém) check whether lhash(-)| + ||
Tt a hash(K,m) =r
SECDSS2:
_ K =s(G+rP,)
"= ha;s)h(vG, m) check whether |hash(-)| + |q|
s = TFoor mod q

hash(K,m) =r

C: an elliptic curve over GF (p™), either with p > 210 and m =1

or p=2 and m > 150 (public to all).

¢: a large prime whose size is approximately of |[p™| (public to all).

G: a point with order ¢, chosen randomly from the points on C' (public to all).
hash: a one-way hash function (public to all).

v: a number chosen uniformly at random from [1,...,q¢ — 1].

ve: Alice’s private key, chosen uniformly at random from [1,...,q — 1].

P,: Alice’s public key (P, = v,G, a point on C).

be adapted to a “doubling-and-addition” method for the fast computation of
a multiple of a point on an elliptic curve. Namely a multiple can be obtained
in about 1.5|¢| point additions.

Among the three multiples for decryption-then-verification, two are used
in verifying a signature. More specifically, these two multiples are spent in
computing e; G + es P, for two integers e; and es. Shamir’s technique for fast
computation of the product of multiple exponentials with the same modulo
(see (ElGamal 1985) as well as Algorithm 14.88 on Page 618 of (Menezes,
van Oorschot & Vanstone 1996)) can be adapted to the fast computation
of e1G + esP,. Thus on average, the computational cost for e;G + es P, is
(1 + 3/4)|q| point additions, or equivalently 1.17 point multiples. That is,
the number of point multiples involved in decryption-then-verification can be
reduced from 3 to 2.17. Consequently, the combined computational cost of
the sender and the recipient is 5.17 point multiples..

In contrast, with ECSCS1 and ECSCS2, the number of point multiples



Table 2 Parameters for Elliptic Curve Signcryption

Parameters public to all:

C — an elliptic curve over GF(p™), either with p > 210 and m =1

or p =2 and m > 150 (public to all).

g — a large prime whose size is approximately of [p™| (public to all).
G — a point with order ¢, chosen randomly from

the points on C' (public to all).
hash — a one-way hash function whose output has,

say, at least 128 bits.

KH — a keyed one-way hash function.
(E, D) — the encryption and decryption algorithms of

a private key cipher.

Alice’s keys:

ve — Alice’s private key, chosen uniformly at random from [1,...,q — 1].
P, — Alice’s public key (P, = v,G, a point on C).

Bob’s keys:

v, — Bob’s private key, chosen uniformly at random from [1,...,q — 1].
P, — Bob’s public key (P, = vpG, a point on C).

Table 3 Implementations of Signcryption on Elliptic Curves

Signcryption of m
by Alice the Sender

Unsigncryption of (c,r, s)
by Bob the Recipient

ver|l,...,q—1]
(k1,k2) = hash(vPy)

c= Ekl (m)
r = K Hy, (m, bind_injfo)
s = Hf’va mod ¢
if SECDSSI is used, or
s = H_T”ar mod ¢

if SECDSS?2 is used.

(c,r,8)

u = svpmod ¢

(k1, k2) = hash(uP, + urG)
if SECDSS1 is used, or

(k1, k2) = hash(uG + urP,)
if SECDSS2 is used.

m = Dkl (C)

Accept m only if
K Hy,(m, bind_info) =r




is one for the process of signcryption and two for that of unsigncryption
respectively. Applying Shamir’s technique, one reduces the computational cost
of unsigncryption from 2 multiples to 1.17 on average. The total average
computational cost for signcryption is therefore 2.17 point multiples. This
represents a

517 —2.17

5.17

reduction in average computational cost.

= 58%

4.2 Saving in communication overhead

To simplify our discussions, we assume that |g| & |p™|. Namely the order ¢
of G is of comparable size to p™. In addition we assume that |hash(:)| =
|KH.(-)| = %|q|. Furthermore, we assume that a point on an elliptic curve is
represented in a compressed way.

Under these reasonable assumptions, the communication overhead mea-
sured in bits is |hash(-)| + |q| + [p™ + 1| = |hash(-)| + 2|q| for signature-
then-encryption based on SECDSS1 or SECDSS2 and elliptic curve ElGamal
encryption, and |K H.(-)| + |g| for the two signcryption schemes ECSCS1 and
ECSCS2. This gives rise to the saving in communication overhead as follows

|hash()| + 2lq| — (K H.(-)| + lq]) la|

= =40%
|hash(-)| + 2lq| slal + 2l]

In conclusion, when compared with signature-then-encryption on elliptic
curves, signcryption on the curves represents a 58% saving in computational
cost and a 40% saving in communication overhead.
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