
Proceedings of the 2002 IEEE
Workshop on Information Assurance and Security

T1B2 1555 United States Military Academy, West Point, NY, 17–19 June 2002

Secure and automated software updates across organizational boundaries

Lawrence Teo, Yuliang Zheng

Abstract—The number of systems being compromised and
broken into is increasing everyday. One major reason why
this happens is because software components in these sys-
tems are not updated regularly, or not fast enough after a
security alert is issued. A major contribution of this work
is to propose a virtual network that can be used to update
systems with potentially vulnerable software in a high-speed
and secure manner across organizational boundaries. This
will significantly reduce the risk of system compromise. Two
technical challenges that we address are the security of the
network, and the diversity of different platforms in an inter-
organizational environment. The network makes heavy use
of public key infrastructure (PKI) to insure the security of
the network and XML technologies to distribute updates.
We have developed an experimental prototype, and our cur-
rent tests show favorable and promising results.

I. Introduction

As organizations around the world become more inter-
connected with one another, the amount of critical and
sensitive information being stored on their networks and
sytems is increasing rapidly. It is very common for organi-
zations to depend on this information for their day-to-day
operations. For example, a customer database ensures the
daily operations of an e-commerce site. Up-to-date infor-
mation about the status of nuclear plants can help the en-
ergy company to predict and prevent any mishaps. This
information is not confined to just large company servers
and mainframes. The proliferation of mobile and wireless
devices such as handhelds and notebook computers have
also encouraged their users to store critical information on
them for convenience.
It is therefore extremely vital that systems, networks,

and devices that store these information are configured to
be as secure as possible to reduce the likelihood of them
being compromised. The loss or theft of the information
may lead to huge financial losses, damage to critical infras-
tructure, and even loss of lives.
However, in recent years, there has been an alarming in-

crease in the amount of intrusions into such computer sys-
tems and networks. Despite the availability of advanced se-
curity technologies to systems administrators, systems and
networks are still being compromised. We believe there are
two main reasons for this. The first reason is the rapid pace
in which the attacker community can spread attacking tools

L. Teo and Y. Zheng: Laboratory of Information Integration, Secu-
rity, and Privacy (LIISP), University of North Carolina at Charlotte,
Charlotte, NC. {lcteo,yzheng}@uncc.edu

and information about system vulnerabilities. For exam-
ple, Northcutt [1] mentions that the attacker community
has very effective online mentoring programs! Attackers
frequently probe the Internet for vulnerable systems. This
leads us to the second reason. The software components
in these systems and networks that host critical informa-
tion are frequently not updated on time, rendering them
vulnerable to such attackers. There are many reasons for
this. Systems administrators may be too busy to update
the systems or keep themselves informed with the latest
security alerts. They may also be inexperienced with the
systems and not know how to patch them. It is also pos-
sible that such systems are being taken care of by average
users who are not technically skilled or aware of security is-
sues. Many of these intrusions could have been prevented,
if only systems were updated on time.

Although we have discussed two reasons why systems
are still being compromised, we wish to stress that there
are many other reasons as well. For example, poorly writ-
ten software often contain security holes. In contrast, it is
also possible that well-written Commercial Off The Shelf
(COTS) software may be improperly installed or miscon-
figured. Both cases lead to vulnerable systems.

A very visible evidence of these trends can be seen in
the everyday problem of website defacements. Although
these defacements are usually performed by intruders who
are just looking to “vandalize” websites, and not steal any
information, it does show that there are many systems on
the Internet that are vulnerable and not patched on time.
In fact, intruders sometimes offer to help the website ad-
ministrator to patch their compromised systems! There
may also be many cases where the intruder is not necessar-
ily a human being, but instead may be a program, like a
distributed denial of service (DDoS) tool, an email borne
virus, or worm. For example, the recent Code Red and
Nimda viruses targeted unpatched Microsoft IIS servers.

We believe that it is of paramount importance that sys-
tems be updated as frequently as possible, whether they
are mainframes, servers, workstations, handheld devices,
or public kiosk terminals. In this paper, we propose a se-
cure and automated software update distribution network
that can be used to update any software on any device
and platform, in order to minimize the risk of critical in-
formation being compromised. Instead of relying on the
systems administrator, our network automatically delivers

ISBN 0-7803-9814-9/$10.00 c©2002 IEEE 30

the updates to the systems whenever they are available and
patches them automatically. We view this network as a
complementary technology to other security solutions such
as firewalls and intrusion detection. This network is part of
a larger ongoing research project, which involves the devel-
opment of an Internet-scale intrusion detection infrastruc-
ture. More details of the network and this infrastructure
will be presented in the full version of this paper.

In this paper, we will first discuss the objectives and
goals of our proposed network. We then provide a back-
ground overview of other work that are related to this
project. Next, we present the architecture of our network,
and a section on security and privacy issues. This is fol-
lowed by a description of our experimental prototype and
its current state. We then discuss the tests that we have
done and our results. Following this, we suggest some pos-
sible future work and give our final comments in the con-
clusion.

II. Objectives and Design Goals

In this section, we describe our objectives, design goals,
and assumptions regarding our proposed network. Tra-
ditionally, updating systems followed a passive paradigm,
from the viewpoint of the vendor. Systems administra-
tors would download updates from the vendor, and apply
them manually. What we are proposing follows an active
paradigm. The network actively pushes these new updates
to registered systems, which are immediately updated.

Our objective is to build a secure virtual network for dis-
tributing software updates to any device on any platform
in a cross-organizational manner. “Cross-organizational”
means that the network is not be dependent on any one
organization or vendor. The network is capable of deliv-
ering software updates from any vendor who follows our
pre-defined standards.

The design goals of our network are as follows:

1. Security. Since the network involves automatically up-
dating systems with little or no user intervention, it is ex-
tremely important that the updates are not tampered with,
or modified in transit. Users should be confident that their
systems are being updated with trusted and authenticated
updates that have been audited and verified.
2. Platform independence. The diversity of platforms
and operating systems being used by organizations, com-
panies, academia, governments and individuals warrants
the need for platform independence. A main goal of this
project is to promote openness and maintain a uniform
method of updating systems, regardless of the platform.
3. Scalability. The network should be highly scalable. In
fact, it is intended for this network to be able to support a
large number of users, say, in the order of hundreds, thou-
sands, or even millions of users in the future.
4. High-speed response. As stated earlier, a major rea-
son why intrusions occur is because software is not up-

dated on time. To minimize the risk of systems being com-
promised or damaged, the network has to deliver software
updates to registered systems as soon as the updates are
available. In other words, the network has to propagate its
updates to all affected system in as high speed as possible.
5. Privacy. Since our network works with delivering soft-
ware updates, the systems registered with the network will
have to send their system configuration to the supernodes.
In such situations, it is natural for certain organizations
to be concerned about the nature of the information being
shared, and what it is being used for. One of the design
goals is to address such privacy concerns. Another issue
about privacy is that companies may not want to disclose
their participation in this network. Therefore, our network
should provide the option for them to choose whether they
want to disclose their participation or not.
6. Usability. The network has to be usable and practi-
cal. Therefore, we have adopted a practical approach in
building this network, as opposed to a theoretical, formal
approach. Our goal is to see this network be publicly avail-
able and usable in the short term.
7. Resilience. Since the network supports automatic up-
dates with minimal user intervention, it is vital that it is
resilient, robust, and tamper-resistant.

A. Assumptions

Our assumptions that govern this network are as follows.
A network of this nature relies on the existence of a trust
management framework, such as public key infrastructure
(PKI). When PKI is employed, it has to be reliable. Relia-
bility here means that the identities of the various entities
in the network can be certified with total accuracy. This
implies that the root Certificate Authority (CA) and all
CAs under it will enforce stringent procedures to verify the
identities of entities who issue certificate requests, before
deciding to issue a signed certificate to them.
In order for the PKI and our proposed network to op-

erate, there should be an underlying physical network in
place. In this project, it will be a TCP/IP network that is
capable of delivering traffic reliably. Our current prototype
uses Secure Sockets Layer (SSL) [2] and X.509 certificates
to implement the PKI for the project. SSL will be used for
authentication and encryption functions.

III. Related Work

Our network uses ideas from software update technolo-
gies, distributed intrusion detection systems, and peer-to-
peer networks. This section discusses the relevant tech-
nologies that are related to our work.

A. Software update technologies

Traditionally, software is updated by manually find-
ing and downloading them from the Internet or through
mail, and applying them by hand. As networks become

ISBN 0-7803-9814-9/$10.00 c©2002 IEEE 31

more interconnected, it became feasible to download siz-
able updates from the Internet. For example, the De-
bian GNU/Linux operating system [3] contains a power-
ful tool called apt-get that automatically searches, down-
loads, and installs any package the user specifies by name.
A novel approach to software updates can be found in the

open source BSD UNIX variants. These systems contain
a “ports tree”, a directory tree of Makefiles and system-
specific source code patches. The ports tree works by down-
loading a package in source code form from the Internet.
The integrity of the downloaded package is verified using
the SHA1 checksum in the ports tree. The source code
package is extracted and patched before being installed.
Recently, Red Hat announced a service which will up-

date customers’ software with minimal user intervention.
The Red Hat Network [4] allows subscribers to maintain a
single, secure connection to Red Hat’s servers, and pack-
ages can be automatically downloaded and updated on the
clients’ systems. This is desirable since security holes and
bugs can be patched once updates are available. Our work
differs from Red Hat’s where we emphasize on the security,
authenticity and integrity of the updates. This different
emphasis is needed because we are working across organi-
zational boundaries and not within a single organization.

B. Distributed intrusion detection systems

While our work is not a distributed intrusion detection
system (DIDS), it borrows concepts from DIDSs. The first
DIDS, aptly called Distributed Intrusion Detection System
[5], consisted of components which collect data and for-
ward them to a central monitor for analysis. While it was
very radical compared to other intrusion detection systems
(IDSs) of its day, it suffers from a single point of failure.
On the other extreme, there is an IDS called Cooper-

ating Security Managers (CSM) [6] which has components
that share equal capabilities. These components forward
collected data to one another and maintain algorithms for
identifying intrusions using a decentralized approach.
Autonomous Agents for Intrusion Detection (AAFID) [7]

is an agent-based DIDS with three types of components.
Agents perform data collection and low-level analysis. The
results are sent to transceivers, which analyze and pass its
results to monitors, the highest-level entity in the hierarchy.

C. Peer-to-peer networks

In the course of this project, we studied peer-to-peer net-
works like Gnutella and Freenet [8]. The Freenet project is
an attempt to create a totally decentralized and distributed
network to provide total user privacy, support freedom of
speech, and curb censorship. Users can run a Freenet node
in the Freenet network, which will use the resources of the
node to store other users’ files in an encrypted form. Un-
like Freenet, our network has a central authority that over-
sees the updates process and ensures the authenticity of

updates. This prevents illegitimate or malicious updates
from being introduced into the network.

D. Standardization initiatives

The Common Vulnerabilities and Exposures (CVE) [9]
project provides a common dictionary of vulnerabilities
which vendors and software developers can use as a uniform
base to describe vulnerabilities. When a new vulnerability
is discovered, a new CVE entry will be created for it. When
a vendor issues an update for a vulnerability, the update
may refer to this CVE entry, thus there is a link between
the update and the vulnerability. The software updates
designed in this project aims to be CVE-compatible.
The Linux Standard Base (LSB) [10] aims to promote

a set of standards to increase compatibility between Linux
distributions and product vendors. As Linux becomes more
popular, LSB will have greater implications in our work.
The National Institute of Standards and Technology

(NIST) is working on a PKI interoperability project [11]
which aims to bridge the different internal PKI standards
among different organizations. Their research focus is to
bridge different PKIs, which is potentially useful to address
the problem of cross-organizational software updates.

IV. Architecture

In this section, we describe the architecture of our pro-
posed software updates network. The term “network” that
is being used here does not refer to a physical network,
but rather to a virtual, logical network that operates on
top of existing networks. We will be concentrating on ex-
plaining the experimental techniques and methods we are
using to achieve our objectives and goals, although we do
intend to implement the actual network in the future. Cur-
rently, we have developed an experimental prototype that
demonstrates the core part of the architecture.
We considered different approaches in the process of de-

signing the architecture of this network. With our de-
sign goals in mind, our first design decision was to decide
whether to use a centralized or decentralized approach to
distribute our software updates. A centralized location to
distribute software updates would always keep the updates
consistent, but it suffers from the single point of failure
attack. A denial of sevice (DoS) attack on the central dis-
tribution location would render it incapable of sending out
updates, and may result in all other systems not receiving
the updates on time. Another approach would be a totally
decentralized approach, where each node is an equal peer
to another. This would solve the single point of failure
problem but it has serious drawbacks as well. Since the se-
curity, and more specifically authenticity of updates is one
of our design goals, nodes which are equal in peer will not
know if any new updates can be trusted.
We decided to adopt a few useful peer-to-peer ideas but

still maintain a hierarchical architecture in our final archi-

ISBN 0-7803-9814-9/$10.00 c©2002 IEEE 32

Supernode
Collective

A

Collective
A1

Node

Node

Node

Node

Collective
A2

Node

Node

Node

Node

Super
Node

Super
Node

Super
Node

Super
Node

Supernode
Collective

B

Collective
B2

Node

Node

Node

Node

Super
Node

Super
Node

Super
Node

Super
Node

Collective
B1

Node

Node

Node

Node

ZONE A

ZONE B

Fig. 1. The architecture of the network.

tecture. Our architecture consists of many entities, called
agents, that are equal in rank. A host that runs an agent is
called a node. Although the agents are equal in rank, they
have the ability to upgrade the nodes into supernodes. Su-
pernodes are in charge of distributing software updates to
normal nodes, thus normal nodes will have an authoritative
entity which they can trust. The following section defines
the terminologies of these entities and a few new ones.

A. Terminologies

To fully understand the architecture, several terms have
to be defined first. The following list defines the terms that
will be used to describe the network architecture.

Host. A host is the end system which uses the services
provided by the network. A host may be a workstation, a
mainframe, a server, a handheld, or a kiosk terminal.

Agent. An agent is a background daemon that runs con-
tinually on a host. Agents are distributed by supernodes.

Node. A node is a host which is running an agent.

Collective. A collective is a collection of nodes. Nodes

in a collective forward information to each other in order
to achieve resiliency. If a node goes down, the other nodes
will still have its information and operate normally.
Supernode. A supernode is a special node that provides

higher-level services to collectives. The supernode is pri-
marily responsible for delivering updates to the nodes.
Supernode collective. A supernode collective is a collec-

tion of supernodes, acting in the same way as the collective
to achieve resiliency.
Zone. A zone is an area of the network or Internet under

the authority of a supernode collective.
Update. In general, an update is a patch or a fix that can

be used to correct a hardware or software bug, whether it
is a security hole or not.
Certificate Authority (CA). A CA issues signed certifi-

cates to agents. An agent with a signed certificate is con-
sidered a trusted agent.
Repository. A repository is the storage area hosting the

updates. There may be several repositories with the up-
dates on them mirrored with one another.
The architecture of our network is shown in Figure 1.

One possible application of this hierarchy would be for an
organization to set up its own zone with a central root
CA, and have second-tier CAs and supernode collectives
in various departments. With this arrangement, organiza-
tions can set up their own independent software updates
network. Certain organizations, such those in the military
and defense, would benefit from this setup, due to their
nature and need to have a separate independent network.

B. Agents and supernodes

An agent is a background daemon that is both a client
and a server. An agent can transform a host into either a
normal node or a supernode.
Supernodes are manually set up to communicate to each

other to form a zone. Supernodes are certified by the CA
in charge of the zone. There will be one CA per zone.
All CAs in a zone are certified by root CA. Agents verify
updates using a CA certificate chain list.
When a CA or agent is compromised, its certificate will

be added to a public Certification Revocation List (CRL).
This will inform the agents that the certificates used by
those comprmomised hosts must not be trusted.

C. System Configuration

We view a system’s configuration as having five cat-
egories: meta information, hardware, operating system,
software, and services.
Meta information states what exactly the host is. For

example, meta information may indicate that the host is a
workstation or a handheld device.
Hardware information will be used when delivering up-

dates that affect hardware, such as device drivers. We also
note the processor that the host runs on, its speed, CPU

ISBN 0-7803-9814-9/$10.00 c©2002 IEEE 33

cache, memory size, and so on. Hardware information will
also be important to identify hosts with hardware bugs.
Software describes the vendor of the software installed,

their categories (for example, an email client will belong to
the category “desktop/email”), and version number.
The operating system, being an extremely crucial part of

the host, is treated separately from the software.
Services are the type of services that a host provides to

external entities (such as HTTP or SMTP).

D. Updates

To deliver software updates efficiently, we have given a
software update four different categories.
A bugfix is an update that corrects a general error in the

program. In this context, the error is not a security hole.
A security alert update corrects a security-related bug

that may lead to host compromise or a break-in. Exam-
ples of such bugs include buffer overflows, format string
vulnerabilities, race conditions, and so on.
An enhancement adds new features to a software.
Sometimes, it is not possible to provide an update to a

piece of software automatically. For example, there may
be a bug in the operating system kernel, which would re-
quire a reboot. If the host is restarted on a busy server
automatically, users may lose their work. In such cases,
and all other similar cases, an Announcement update is
used instead. The Announcement update just provides the
systems administrator with information about a potential
threat, and how to address it manually.
These four categories of software updates are not mu-

tually exclusive. For example, an update may be both a
security alert and an enhancement. Categorizing updates
this way should reflect the real world more accurately.
The network aims to be compliant to the Common Vul-

nerabilities and Exposures (CVE) [9]. The update itself
will include a list of entries specifying the CVE entries that
it is associated with. This list shows the list of vulnerabil-
ities in the CVE dictionary that the update corrects.
A typical update object has a name, package name, pack-

age version, URL, digital signature, a list of CVE entries,
and an optional section on special instructions specifying
how to run the update. The digital signature is used to
verify the authenticity and integrity of the update.

E. Update Retrieval and Application

The architecture provides two methods that can be used
by the agent to retrieve updates from the repository. The
first method is to have the network deliver the update from
the repository to the agents. In this method, the update
is retrieved by the supernode, and then sent to all ap-
propriate nodes that have matching system configurations.
The advantage of this approach is that the update can be
sent securely from the repository to the agent. However,
this is not always possible. A commercial software vendor

may place licensing restrictions on their updates, prevent-
ing them from being stored on third party repositories. A
second update retrieval method is provided to address this
issue. Since the repository cannot host the actual update,
the supernode sends only the URL and a message digest
of the update to the agent. The agent will retrieve the
update from the URL. The update’s authenticity is veri-
fied by running the message digest algorithm against the
downloaded update, to see if it matches the one provided
by the supernode. The update transfer from the vendor’s
site does not have to be secure, since the authenticity is
verified by a positive match between the message digests.

F. Logging and Recovery

There may be times when a faulty update is issued by a
vendor, and the update has been applied to various nodes.
When such a scenario happens, it would be ideal to have an
ability to “go back” to a previous state. This means that
we will have to keep backups of old packages and logs of
updates, which state which files have changed and at what
time. This information can then be used to perform the
recovery operation, which is similar to a database ROLLBACK
operation. The format and content of these logs should be
configurable by the systems administrator.

G. Response Mechanism

The administrator is given a choice on how to respond
to the receipt of updates. The first method is to have
the agent apply the update automatically. Alternatively,
the agent can be set up to email the administrator with
a notification without actually applying the update. The
third option is to simply log the receipt of the update.

V. Security and Privacy

The critical nature of this network requires it to have
strong and reliable security. This section describes the se-
curity issues associated with the network.

A. Possible Attacks

First, we provide a high level overview of possible attacks
from both outsiders and insiders, and what security mech-
anisms can be used to address them. Some of the ideas
discussed here are based on the concepts of survivability.
A possible attack from an outsider may be a DoS attack

against the agents. One way of doing this might be to flood
the agents or the nodes with traffic. Since DoS attacks are
extremely difficult to prevent, one likely way to address this
is to allow the collective to recover even though one of its
nodes is unavailable. The remaining nodes of a collective
may rebuild the ring by bypassing the affected node.
Insider attacks are arguably more dangerous than out-

sider attacks. For example, an inside attacker may attempt
to impersonate another agent. The PKI mechanisms can
be used to detect this. An insider may also attempt to

ISBN 0-7803-9814-9/$10.00 c©2002 IEEE 34

compromise the updates on a repository, and get agents to
download modified updates. Additionally, the insider may
attempt to compromise supernode agents to send the incor-
rect message digest to the agents. Agents can detect this
behavior by requesting many message digests from differ-
ent supernodes. If one of them differs from the rest, there
is a possibility that that supernode has been compromised.

B. Confidentiality

Like any other system, our network is bound to be a
potential target for abuse and attacks. For example, an
attacker may observe the transmission of data between the
supernode and the nodes. Following this, the attacker can
learn whether the organization has updated any system, or
how frequently this is done. This intelligence can then be
used to launch a more targeted attack. One approach to
prevent such traffic analysis is to anonymize the traffic be-
tween collectives and supernode collectives in a broadcast
fashion. We plan to examine this further in the future.

C. Integrity and Authentication

In order for software updates to be trusted, they need
to be verified that they are from a reliable source, and
that they have not been modified in transit. A software
update that is modified may have been illegally modified
as a Trojan horse for malicious reasons. As such, it is very
important for these updates to be verified.
There are two entities that need to be authenticated:

the supernode agent that delivered the software update,
and the update itself. There are several ways to achieve
this. One way would be to use a tool like Pretty Good
Privacy (PGP) ([12]) to discern whether the downloaded
update is from the trusted source or not. However, PGP
is not sufficient for hosts with critical information, because
PGP leaves it up to its users to decide whom they trust.
With critical information, it is not sufficient to rely on users
alone to trust and verify identities of these entities.
Another way of addressing this is to hardcode the ad-

dresses and public keys of trusted supernodes onto the
agents themselves. Thus, software updates downloaded
from supernodes can be verified with the hardcoded public
key. However, this approach is not scalable. Adding new
supernodes to a collective would require every agent regis-
tered with that collective to be updated with the new su-
pernodes’ addresses and public keys. Since we are working
with cross-organizational networks, scalability is an impor-
tant design goal. Thus, hardcoding is not an option.
Our approach is to use a public key infrastructure for

authenticating supernodes, updates, and agents. CAs can
issue certificates to these entities, upon verifying their iden-
tities using a stringent set of procedures. Another advan-
tage of using PKI is that it is highly scalable. We can hard
code the public certificate of the root CA onto the agents.
When there is a new supernode collective which is certified

by another CA, the agent can look at the certificate list
to verify whether the supernodes are trusted by the other
CA, which in turn should be trusted by the root CA. The
idea is to have a CA in every zone, all under the root CA.
To preserve the integrity of updates, it is important to

protect the tools used to apply the updates. For example,
on a Red Hat Linux system, these tools would be binaries
like rpm, a package management tool, and wget, a network
file retrieval tool. It is extremely important that these files
are kept secure so that they are not compromised. If com-
promised, an attacker may replace them with malicious
Trojan versions, thus giving the user a false sense of secu-
rity. Therefore, these binaries should be kept in a separate
secure area, such as a read-only medium. The paths to
these binaries and their message digests can be hardcoded
into the agent. Every time the agent runs them, the agent
must first check their integrity by calculating their message
digests and matching them with the hardcoded values.

D. Availability of Updates

Instead of storing updates on only one repository, up-
dates may be mirrored on several repositories to limit the
impact of DoS attacks. The contents on these repositories
are synchronized periodically to ensure consistency.

E. Privacy

Since privacy is an important issue in this network,
agents will be available to systems administrators in a way
that the administrator will have full control over the agent.
There are two methods we can use to do this. Assuming
that there is total trust between the administrator and the
agents, the agents may be distributed in binary-only form.
Since total trust is unlikely, an alternative would be to
distribute the agent in source code form. However, some-
times it may be undesirable to provide the entire package
in source code form. For example, the public certificate of
the root CA needs to be protected from modifications.

VI. Experimental Prototype

We have developed an experimental, proof-of-concept
prototype of the virtual network, which implements the
core subset of the features of the architecture. The pro-
totype was developed primarily using C++ on the Linux
platform. XML was used to represent the system configura-
tion such as the system hardware, software, and operating
system version. In addition, XML was also used as the
common format to transfer data between agents.
Although a major design goal in this project was plat-

form independence, we chose ANSI C++ over the more
obvious choice of Java because in our opinion, Java is still
not fast enough. Also, eventually we may need to use raw
sockets in this system, which Java does not allow.
To achieve confidentiality in transferring of information

between nodes, we incorporated SSL [2] using the OpenSSL

ISBN 0-7803-9814-9/$10.00 c©2002 IEEE 35

library. XML support was achieved with libxml++.
An agent is set up as a background daemon that listens

for connections. Depending on the command-line param-
eters used to load the agent, it will make the host act as
either a normal node or a supernode.

A. Normal node

Before a normal node agent can be started, there are two
important tasks that have to be performed first. First, the
node has to be certified by the CA first. This is done by
sending a certificate request to the CA, who will then sign
the request and issue an X.509 certificate to the node.
The second task is to create a secure directory to keep

essential updating binaries. A database of the message
digests for these binaries is then hardcoded into the agent.
Upon starting up, the normal node agent runs an au-

tomated check on the host to identify its system config-
uration: the operating system and its version, machine
architecture, and so on. It then proceeds to register it-
self with its assigned supernode. When it connects to the
supernode, it first requests for the supernode’s certificate.
All communications are secured using SSL. The agent then
authenticates the supernode by checking if the supernode’s
certificate is signed by the root CA. If it is, the agent sends
its system configuration (represented in XML) to the su-
pernode agent. At this point, the node’s system configura-
tion will be checked by the supernode to see if it matches
any known updates for that specific configuration. If there
are any, the node will receive an update object from the su-
pernode, which contains the name, URL, and a signature
(which may be an MD5 message digest). The node then
downloads the update from the repository using the pro-
vided URL and verifies its integrity using the MD5 message
digest. If it matches, the update is installed.
After the registration phase, the agent enters into dae-

mon mode, where it listens for any connections from su-
pernodes or other nodes. When a supernode has any new
updates, it will send them to the nodes.

B. Supernode

In this prototype, the supernode has three main roles.
The first role is to keep an up-to-date database of system-
specific updates, their signatures, and the repositories they
are stored in, which is specified using a URL. The second
role is to accept the registrations from normal node agents
and keep them in a database. The third role is to deliver
updates to the normal node agents upon matching their
system configurations and their specific updates.

VII. Results and Discussion

The prototype was tested on a 10Mbps Ethernet network
(Figure 2) with five hosts (Table I). Host A was set up as
the CA and supernode collective. We used one supernode
agent to simulate the entire supernode collective. Host E

HostC
Node

Linux 2.4.17/x86
(Red Hat 7.2)

Host A
Supernode / CA
Linux 2.4.17/x86
(Slackware 8.0)

HostE
Repository

Solaris 8.0/SPARC

Host B
Node

OpenBSD 3.0/x86

router

Host D
Node

Linux 2.4.16/x86
(Debian 3.0)

router

Fig. 2. The test network.

was set up as the repository, which was configured as a web
server to deliver updates using the HTTP protocol.

TABLE I

Hosts on the test network.

Host Role OS Architecture

A Supernode/CA Linux 2.4.17 x86
Slackware 8.0

B Normal node OpenBSD 3.0 x86
(Webserver)

C Normal node Linux 2.4.17 x86
(Desktop) Red Hat 7.2

D Normal node Linux 2.4.16 x86
(Laptop) Debian 3.0

E Repository Solaris 8.0 SPARC

First, each machine was manually arranged to have a
valid, signed certificate. Then, the CA was set up on host
A using OpenSSL tools. We then generated private and
public keypairs for hosts B, C, and D. Certificate requests
for these normal node hosts were sent to the CA on host
A. The CA then issued signed certificates which were sent
back to the various hosts emulating normal nodes.
We tested our prototype using three UNIX programs –

sudo, pine, and wu-ftpd. Hosts B (OpenBSD), C (Red Hat
Linux), and D (Debian Linux) were installed with old or
vulnerable versions of sudo, pine, and wu-ftpd respectively.
We then placed updated replacement versions of the pro-
grams in the repository on Host E. The supernode agent
on Host A was then configured with a database that maps
the operating system with its specific update. For exam-
ple, Red Hat Linux was mapped to pine. This means that

ISBN 0-7803-9814-9/$10.00 c©2002 IEEE 36

the pine version on the Red Hat machine is vulnerable and
should be replaced. The sudo and pine packages we used
are actual packages from Red Hat and Debian respectively,
while the sudo update was a custom-made update.

The supernode agent was activated on host A. It then
started listening for connections from agents. At this time,
the agent on the other hosts were activated. Each agent
automatically gathered information about its host’s system
configuration. The agent then initiated an SSL connec-
tion to the supernode agent on host A, and authenticated
and registered itself with the supernode agent. The system
configuration was then sent to the supernode agent. The
supernode agent then looked through its updates database
and matched them against the specific update packages in
the repository. Once a match was found, the update was
immediately delivered to the host, where the agent verified
its integrity and applied the update. For example, in one of
our tests, the pine email client on Host C was automatically
updated from pine 4.33 to 4.44. To achieve high speed, the
agents install the updates immediately after a verified in-
tegrity check. Table II shows the download speed (S1)
and installation speed S2 (including integrity check time)
for the updates, relative to the hosts’ CPU speed, update
method (M), and update size. The pine update applica-
tion process took 19.76s because of its large size (2.63MB)
and it was run on a slow CPU (166MHz).

TABLE II

Updates applied.

Update M CPU Size S1 S2

sudo cus- 400MHz 71.2KB 0.06s 0.06s
1.6.5 tom (Host B)
pine rpm 166MHz 2632KB 1.55s 19.76s
4.44 (Host C)
wu-ftpd dpkg 700MHz 250KB 0.24s 4.1s
2.6.1 (Host D)

VIII. Future Work

The experimental prototype only implements the core
subset of our architecture. We are currently refining and
extending the prototype as part of our ongoing large-scale
intrusion detection infrastructure project. Future plans in-
clude porting and testing the network on more platforms
in a larger test environment to examine performance is-
sues with network latency, optimized protocol design, and
topology issues. Emerging technologies, such as newer PKI
implementations and IPv6, are being investigated.

Another interesting issue to look at is low-level updates.
In this paper, software updates have been referred to as
application updates. An interesting challenge would be to
reconfigure the OS kernel dynamically without interfering
with users’ tasks. One solution is to notify all users of a

reboot and issue a process standby (similar to a laptop’s
standby mode) before performing the reconfiguration.
One more important task is in the area of standardiza-

tion. We need to define the stringent procedures that CAs
have to enforce in order to verify the identity of an agent’s
user. We also need to define standards for organizations
to tune their updates so that they can be used on our
network. There are certain issues that we cannot address
though. For example, commercial software developers may
have restrictive licenses that do not allow their updates to
be placed on an independent network. Also, if a commer-
cial vendor takes a long time to release its updates follow-
ing a security alert, we will have to wait until the update
is released before it can be placed in the repository.

IX. Conclusion

One major reason why systems are compromised is be-
cause they are not updated on time. In this paper, we
described a network that can be used to distribute soft-
ware updates to systems in a secure and automated manner
across organizations. We have developed an experimental
prototype that shows favorable and promising results. We
are currently refining and extending the prototype as part
of our future large-scale intrusion detection infrastructure.

Acknowledgments

The authors would like to thank the anonymous review-
ers for their comments and suggestions.

References

[1] S. Northcutt and J. Novak, Network Intrusion Detection: An
Analyst’s Handbook. New Riders Publishing, 2nd ed., 2000.

[2] A. O. Freier, P. Karlton, and P. C. Kocher, “The SSL proto-
col version 3.0.” http://www.netscape.com/eng/ssl3/, Novem-
ber 1996.

[3] “Debian GNU/Linux.” http://www.debian.org/.
[4] “Red Hat Network.” https://rhn.redhat.com/.
[5] S. R. Snapp, J. Brentano, G. V. Dias, T. L. Goan, L. T.

Heberlein, C. L. Ho, K. N. Levitt, B. Mukherjee, S. E. Smaha,
T. Grance, D. M. Teal, and D. Mansur, “DIDS (distributed
intrusion detection system) - motivation, architecture, and an
early prototype.,” in Proceedings of the 14th National Computer
Security Conference, pp. 167–176, October 1991.

[6] G. White, E. Fisch, and U. Pooch, “Cooperating security man-
agers: A peer-based intrusion detection system,” IEEE Network,
vol. 10, pp. 20–23, January/February 1996.

[7] J. S. Balasubramaniyan, J. O. G. Fernandez, D. Isacoff, E. Spaf-
ford, and D. Zamboni, “An architecture for intrusion detection
using autonomous agents,” Tech. Rep. 98/05, COAST Labora-
tory, Purdue University, May 1998.

[8] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong, “Freenet:
A distributed anonymous information storage and retrieval sys-
tem,” Designing Privacy Enhancing Technologies: Intl. Work-
shop on Design Issues in Anonymity and Unobservability, LNCS
2009, 2001.

[9] The MITRE Corporation, “Common Vulnerabilities and Expo-
sures (CVE).” http://cve.mitre.org/.

[10] “Linux Standard Base.” http://www.linuxbase.org/.
[11] W. T. Polk and N. E. Hastings, “Bridge certification

authorities: Connecting B2B public key infrastructures.”
http://csrc.nist.gov/pki/documents/B2B-article.pdf.

[12] P. Zimmerman, PGP User’s Guide. MIT Press, 1994.

ISBN 0-7803-9814-9/$10.00 c©2002 IEEE 37

