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1 Introduction

This paper surveys recent progress on the construction of provably secure

one-way hash functions, under gradually weakened assumptions.

One-way hash functions have many cryptographic applications. In digi-

tal signatures, they are used to compress long input strings prior to actual

signing procedures. This usually greatly improves the overall efficiency of

a signature scheme. They are also used to detect un-authorized modifica-

tions to important messages by such as malicious users or computer viruses.

Another novel application of (provably secure) one-way hash functions, due

to Naor and Yung [NY89], is that they can be used to construct (provably

secure) digital signature schemes.

There are roughly two kinds of one-way hash functions: universal one-

way hash functions (UOHs) and collision intractable hash functions (CIHs).

The main property of the former is that given an initial-string x, it is com-

putationally difficult to find a different string y that collides with x. And

the main property of the latter is that it is computationally difficult to find

a pair x 6= y of strings such that x collides with y. Note that a CIH is also a

UOH.

Two fundamental problems concerned with one-way hash functions are:

1. Constructing UOHs and

2. Constructing CIHs

1



both under the assumption of the existence of one-way functions.

Note that the assumption can not be weakened further, since a UOH or a

CIH itself is a one-way function. The first problem has recently been solved

by Rompel, while the second problem remains an interesting challenge.

The rest of the paper is organized as follows. In Section 2, we survey

progress recently obtained on the construction of one-way hash functions

(UOHs and CIHs) under gradually weakened assumptions. In Section 3, we

pose the open problem on the construction of CIHs. In References we include

papers that are closely related to the subject of provably secure one-way

hash functions. Finally in Appendix, we give formal definitions for one-way

functions, universal hash functions, UOHs and CIHs etc.

2 History

2.1 Reference [Dam87]

This is the first paper that formally treats one-way hash functions. In par-

ticular, it gives a formal definition for CIH, one of the aforementioned two

kinds of one-way functions. It also presents a method for constructing CIHs

from claw free pairs of permutations , whose existence implies that of one-way

permutations and hence that of one-way functions.

2.2 Reference [Dam89]

It presents two ways (a serial one and a parallel one) of compressing arbi-

trarily long input strings into fixed length output strings, given a CIH that

compresses input strings into output ones that are only one bit shorter than

the input ones.

2.3 Reference [NY89]

This is the first paper that introduces UOHs. It gives a formal definition

for UOHs (with respect to polynomial time generated initial strings), and

constructs UOHs from one-way one-to-one functions (also called one-way
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injections). Naor and Yung use universal hash functions [CW79] [WC81] in

an essential way. All later constructions of UOHs [ZMI90b] [ZMI90c] [DY90]

[Rom90], except that of [ZMI90a], heavily depend upon this idea.

Another nice result of [NY89] is that it presents a method for transforming

any UOH into a digital signature scheme that is secure against existential

forgery under adaptive chosen message attack.

2.4 Reference [ZMI90a]

This paper presents a method for constructing UOHs from any one-way per-

mutations, whose (simutaneously) hard bits have been identified. The con-

struction has two interesting features. One is that it does not apply universal

hash functions, and hence is extremely compact, in comparison with most of

the currently known constructions. And the other is that ideas behind the

construction can be used to design practical one-way hash functions.

The paper also presents a method for constructing CIHs under the as-

sumption of the existence of distinction-intractable permutations. However

the assumption is stronger than that of claw free pairs of permutations.

2.5 References [ZMI90b] [ZMI90c]

Definitions for various versions of UOHs and CIHs are given, including as

a special case the definition given in [NY89]. It is proved that UOHs with

respect to initial-strings chosen uniformly at random can be transformed into

UOHs with respect to initial-strings chosen arbitrarily . As an application of

the transformation result, it is shown that UOHs with respect to initial-

strings chosen arbitrarily can be constructed under a weaker assumption,

the existence of one-way quasi-injections.

Also the two papers initiate the investigation of relationships among the

various versions of one-way hash functions, and prove that some versions are

strictly included in others by explicitly constructing hash functions that are

one-way in the sense of the former but not in the sense of the latter.
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2.6 Reference [DY90]

It constructs UOHs from one-way functions having the property that given

an element in the range of the function, it is computationally feasible to give

a good estimate of the size of the pre-image of the element. Note that one-way

quasi-injections [ZMI90b] and one-way regular functions [DY90] are special

cases of such kinds of one-way functions.

Several definitions, which are seemingly different but actually equivalent,

for CIHs are also given.

2.7 Reference [Rom90]

It finally solves the first problem mentioned in Introduction, i.e., constructing

UOHs under the sole assumption of the existence of one-way functions. This

result simutaneously solves a long standing open problem — constructing

digital signature schemes that are secure against existential forgery under

adaptive chosen message attack, under the aforementioned assumption.

3 An Open Problem

Compared with UOHs, little progress on the construction of CIHs has been

made since the publication of [Dam87]. In fact, the first construction for

CIHs given in [Dam87], which assumes the existence of claw free pairs of

permutations, is currently also the best construction in the literature. So it

is natural to pose the following problem:

Construct CIHs under the assumption of

the existence of one-way functions.
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4 Appendix

4.1 Preliminaries

The set of all positive integers is denoted by N. Let Σ = {0, 1} be the

alphabet we consider. For n ∈ N, denote by Σn the set of all strings over

Σ with length n, by Σ∗ that of all finite length strings including the empty

string, denoted by λ, over Σ, and by Σ+ the set Σ∗−{λ}. The concatenation

of two strings x, y is denoted by x ¦ y, or simply by xy if no confusion arises.

When x, y ∈ Σn, the bit-wise mod2 addition, also called the exclusive-or

(XOR), of x and y is denoted by x⊕ y. The length of a string x is denoted

by |x|, and the number of elements in a set S is denoted by ]S.

Let ` be a monotone increasing function from N to N, and f a (total)

function from D to R, where D =
⋃

n Dn, Dn ⊆ Σn, and R =
⋃

n Rn, Rn ⊆
Σ`(n). D is called the domain, and R the range of f . In this paper it is

assumed, unless otherwise specified, that Dn = Σn and Rn = Σ`(n). Denote

by fn the restriction of f on Σn. We are concerned only with the case

when the range of fn is Σ`(n), i.e., fn is a function from Σn to Σ`(n). f is an

injection if each fn is a one-to-one function, and is a permutation if each fn is

a one-to-one and onto function. f is (deterministic/probabilistic) polynomial

time computable if there is a (deterministic/probabilistic) polynomial time

algorithm (Turing machine) computing f(x) for all x ∈ D. The composition

of two functions f and g is defined as f ◦ g(x) = f(g(x)). In particular, the

i-fold composition of f is denoted by f (i).

A (probability) ensemble E with length `(n) is a family of probability

distributions {En|En : Σ`(n) → [0, 1], n ∈ N}. The uniform ensemble U with

length `(n) is the family of uniform probability distributions Un, where each

Un is defined as Un(x) = 1/2`(n) for all x ∈ Σ`(n). By x ∈E Σ`(n) we mean

that x is randomly chosen from Σ`(n) according to En, and in particular, by

x∈RS we mean that x is chosen from the set S uniformly at random. E is

samplable if there is a (probabilistic) algorithm M that on input n outputs

an x ∈E Σ`(n), and polynomially samplable if furthermore, the running time

of M is polynomially bounded.
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4.2 One-Way Functions

Let ` be a polynomial. A statistical test is a probabilistic polynomial time

algorithm T that, on input a string x, outputs a bit 0/1. Let E1 and E2

be ensembles both with length `(n). E1 and E2 are called indistinguishable

from each other if for each statistical test T , for each polynomial Q, for all

sufficiently large n, |Pr{T (x1) = 1} − Pr{T (x2) = 1}| < 1/Q(n), where

x1 ∈E1 Σ`(n), x2 ∈E2 Σ`(n). A polynomially samplable ensemble E is pseudo-

random if it is indistinguishable from the uniform ensemble U with the same

length.

Now we further assume that ` is a polynomial with `(n) > n. A string

generator extending n-bit input into `(n)-bit output strings is a deterministic

polynomial time computable function g : D → R where D =
⋃

n Σn and

R =
⋃

n Σ`(n). g will be denoted also by g = {gn | n ∈ N}. Let gn(U) be the

probability distribution defined by the random variable gn(x) where x∈RΣn,

and let g(U) = {gn(U) | n ∈ N}. Clearly, g(U) is polynomially samplable.

The following definition can be found in [Yao82] (see also [BM84], [GGM86]

and [ILL89]).

Definition 1 g = {gn | n ∈ N} is a (cryptographically secure) pseudo-

random string generator (PSG) if g(U) is pseudo-random.

One-way function is the basis of most of modern cryptographic functions

and protocols [IL89]. The following definition is from [ILL89].

Definition 2 Let f : D → R, where D =
⋃

n Σn and R =
⋃

n Σ`(n), be a

polynomial time computable function, and let E be an ensemble with length

n. We say that

1. f is one-way with respect to E if for each probabilistic polynomial time

algorithm M , for each polynomial Q and for all sufficiently large n,

Pr{fn(x) = fn(M(fn(x)))} < 1/Q(n), when x ∈E Dn.

2. f is one-way if it is one-way with respect to the uniform ensemble U

with length n.
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We note that a function f is one-way (with respect to the uniform en-

semble U with length n) iff f is one-way with respect to all pseudo-random

ensembles with the same length.

Next we introduce the concept of (simultaneously) hard bits.

Definition 3 Assume that f : D → R is a one-way function, where D =⋃
n Σn and R =

⋃
n Σ`(n). Also assume that i1, i2, . . . , it are functions from

N to N, with 1 ≤ ij(n) ≤ n for each 1 ≤ j ≤ t. Denote by E1
n and E2

n the

probability distributions defined by the random variables xit(n) · · · xi2(n)xi1(n) ¦
f(x) and rt · · · r2r1 ¦ f(x) respectively, where x∈RΣn, xij(n) is the ij(n)-th bit

of x and rj∈RΣ. Let E1 = {E1
n | n ∈ N} and E2 = {E2

n | n ∈ N}. We say

that

1. i1(n) is a hard bit of f if for each probabilistic polynomial time al-

gorithm M , for each polynomial Q and for all sufficiently large n,

Pr{M(fn(x)) = x′i1(n)} < 1/2 + 1/Q(n), where x∈RΣn and x′i1(n) is

the i1(n)-th bit of an x′ ∈ Σn satisfying f(x) = f(x′).

2. i1(n), i2(n), . . . , it(n) are simultaneously hard bits of f if E1 and E2

are indistinguishable from each other.

4.3 One-Way Hash Functions

There are basically two kinds of one-way hash functions: universal one-way

hash functions and collision-intractable hash functions (or shortly UOHs and

CIHs, respectively). In [Mer89] the former is called weakly and the latter

strongly , one-way hash functions respectively. Naor and Yung gave a formal

definition for UOH [NY89], and Damg̊ard gave for CIH [Dam89].

Let ` and m be polynomials with `(n) > m(n), H be a family of functions

defined by H =
⋃

n Hn where Hn is a (possibly multi-)set of functions from

Σ`(n) to Σm(n). Call H a hash function compressing `(n)-bit input into m(n)-

bit output strings. For two strings x, y ∈ Σ`(n) with x 6= y, we say that x

and y collide under h ∈ Hn, or (x, y) is a collision pair for h, if h(x) = h(y).

H is polynomial time computable if there is a polynomial (in n) time

algorithm computing all h ∈ H, and accessible if there is a probabilistic
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polynomial time algorithm that on input n ∈ N outputs uniformly at ran-

dom a description of h ∈ Hn. All hash functions considered here are both

polynomial time computable and accessible.

4.3.1 Universal Hash Functions

Universal hash functions , first introduced in [CW79], play essential roles

in many recent key results in cryptography [H90] [ILL89] [Rom90] and in

theoretical computer science.

Definition 4 Let k be a fixed positive integer, and H a hash function com-

pressing `(n)-bit input into m(n)-bit output strings. H is a (strong) universalk
hash function if for all n, for all k (distinct) strings x1, x2, . . . , xk ∈ Σ`(n)

and all k strings y1, y2, . . . , yk ∈ Σm(n), there are ]Hn/2
km(n) functions in Hn

that map x1 to y1, x2 to y2, . . ., xk to yk.

Definition 5 Let H be a (strong) universalk hash function compressing `(n)-

bit input into m(n)-bit output strings. H has the collision accessibility prop-

erty if for all n, for all 1 ≤ j ≤ k and all j strings y1, y2, . . . , yj ∈ Σm(n),

it is possible in probabilistic polynomial time to uniformly sample from H ′
n,

where H ′
n is the collection of all functions in Hn that map x1 to y1, x2 to y2,

. . ., xj to yj, for some x1, x2, . . . , xj ∈ Σ`(n).

4.3.2 UOHs

Let H be a hash function compressing `(n)-bit input into n-bit output strings,

and E an ensemble with length `(n). The definition for UOH is best described

as a three-party game. (See also Fig.1.) The three parties are S (an initial-

string supplier), G (a hash function instance generator) and F (a collision-

string finder). S is an oracle whose power is un-limited, and both G and F

are probabilistic polynomial time algorithms. The first move is taken by S,

who outputs an initial-string x ∈E Σ`(n) and sends it to both G and F . The

second move is taken by G, who chooses, independently of x, an h∈RHn and

sends it to F . The third and also final (null) move is taken by F , who on

input x ∈ Σ`(n) and h ∈ Hn outputs either “?” (I don’t know) or a string
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y ∈ Σ`(n) such that x 6= y and h(x) = h(y). F wins a game iff his/her output

is not equal to “?”. Informally, H is a universal one-way hash function with

respect to E if for any collision-string finder F , the probability that F wins

a game is negligible. More precisely:

Definition 6 Let H be a hash function compressing `(n)-bit input into n-

bit output strings, P a collection of ensembles with length `(n), and F a

collision-string finder. H is a universal one-way hash function with respect

to P , denoted by UOH/P , if for each E ∈ P , for each F , for each polynomial

Q, and for all sufficiently large n, Pr{F (x, h) 6=?} < 1/Q(n), where x and

h are independently chosen from Σ`(n) and Hn according to En and to the

uniform distribution over Hn respectively, and the probability Pr{F (x, h) 6=?}
is computed over Σ`(n), Hn and the sample space of all finite strings of coin

flips that F could have tossed.

4.3.3 CIHs

The following definition for CIH corresponds to collision free function family

given in [Dam87]. Let A, a collision-pair finder , be a probabilistic polynomial

time algorithm that on input h ∈ Hn outputs either “?” or a pair of strings

x, y ∈ Σ`(n) with x 6= y and h(x) = h(y).

Definition 7 H is called a collision-intractable hash function (CIH) if for

each A, for each polynomial Q, and for all sufficiently large n, Pr{A(h) 6=
?} < 1/Q(n), where h∈RHn, and the probability Pr{A(h) 6=?} is computed

over Hn and the sample space of all finite strings of coin flips that A could

have tossed.

The definition for CIH can also be considered as a two-party game as is

shown in Fig.2.
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