
Preprint No. 93-2

New Solutions to the Problem
of Access Control in a Hierarchy 1

Yuliang Zheng
The Centre for Computer Security Research

Department of Computer Science
University of Wollongong

Wollongong, NSW 2522, Australia

Thomas Hardjono
ATR Communications Research Laboratories

2-2 Hikaridai, Seika-Cho, Soraku-gun
Kyoto 619-02, Japan

Jennifer Seberry
The Centre for Computer Security Research

Department of Computer Science
University of Wollongong

Wollongong, NSW 2522, Australia

Abstract

The access control problem in a hierarchical organization consists of the manage-
ment of information among a number of users who are divided into different security
classes according to their suitability in accessing the information. Within the scope of
cryptography the problem can be reduced to generating a cryptographic key for each
security class in such a way that the key of a security class can be used to derive the
keys of all lower security classes. This paper presents a new approach to solving the
problem, based on pseudo-random function families, universal hash function families
and in particular, sibling intractable function families. The approach is illustrated by
two types of solutions. The first type of solution allows keys of lower security classes
to be obtained indirectly from that of higher security classes through the calculation
of the keys of all intermediate security classes, while the second type of solution allows
keys of lower security classes to be obtained directly from that of higher security classes
without involving other security classes. A formal definition of security for key genera-
tion schemes is introduced and the security of the proposed schemes is proven. Issues
in key management are also addressed and several possible polices are suggested. The
proposed solutions have theoretical significance in that their security relies only on the
existence of any one-way function, and they also have practical applications in that they
can be easily incorporated into existing information systems.

Categories and Subject Descriptors: D.4.6 [Operating Systems]: Security and
Protection — Access controls; Cryptographic controls; Information flow controls; H.2.0
[Database Management]: General — Security, integrity and protection. K.6.5 [Man-
agement of Computing and Information Systems]: Security and Protection — Au-
thentication; Insurance;

1This work was supported in part by Telecom Australia under the contract number 7027 and by the Aus-
tralian Research Council (ARC) under the reference numbers A48830241, A49130102, A9030136, A49131885
and A49232172. A substantial part of the second author’s work was completed when he was at the Centre
for Computer Security Research.

1



General Terms: Algorithms, Security.
Additional Key Words and Phrases: Cryptography, Information Security, One-Way

Hash Function, Sibling Intractable Function Family.

1 Introduction

Controlling access to information stored in computer systems has been a topic of interest
among computer researchers for over two decades. Various techniques and mechanisms have
been suggested, among which are those based on cryptography. The simplest cryptography-
based solution to control access to plaintext information in a computer system is to encipher
it using a cryptosystem. A key is chosen as a parameter of the cryptosystem which then
transforms the plaintext into a corresponding ciphertext. The decipherment of the ciphertext
can be done using the same or a different (but related) key. The ability of a user to access
the information is then expressed in terms of his or her having or knowing the deciphering
key.

From this basic idea of controlling access by the encipherment of the required plaintext
other problems have been posed by researchers in the field of cryptography and computer
security. One important problem which derives from necessities in the real world is that of
the organization and maintenance of keys in a hierarchical manner. Hence, the hierarchical
access control problem, or the access control problem in a hierarchy, poses a question as
to how users in an organization can access information in a computer system securely in
a hierarchical manner, where users placed higher in the hierarchy can access information
belonging to others lower down in the hierarchy.

1.1 The Hierarchical Access Control Problem

Using the notations found in [2] a more precise description of the problem is the following.
The hierarchical access control problem consists of the management of sensitive information
among a number of users in a computer system who are classified according to their suitabil-
ity in accessing the information. The users of the hierarchy G are divided into P (n) security
classes N1, N2, . . . , NP (n) and the relation >= partially orders the set S = {N1, N2, . . . , NP (n)}
of security classes, where P is a polynomial and n is an integer called security parameter .

The hierarchy G is thus determined by S and >=, and in the partially ordered set (poset)
S the notation Ni

>= Nj means that the security clearance of the users in class Ni is higher
than that of the users in class Nj . Hence in the hierarchy the users in Ni may have access
to information held by users in Nj or classified at the security level Nj .

The hierarchy of the poset itself can be viewed as a Hasse diagram where classes in S
are represented as nodes in a directed graph. Nodes corresponding to the highest security
level are located on the top of the graph, and are called maximal nodes. A maximal node
Ni has the property that there is no other node Nj ∈ S such that Nj

>= Ni and Nj 6= Ni.
Given two nodes Ni and Nj , if Ni

>= Nj (i 6= j) then Ni is called an ancestor of Nj , and if
there is no other node Nk ∈ S with Ni

>= Nk
>= Nj then Ni is a parent of Nj , and Nj is a

child of Ni. If Ni is an ancestor of Nj , we say that Nj is is a descendant of Ni.
In the following discussions we will use the term security class and node interchangeably,

and the term desc(T ) where T ⊂ S is used to denote the descendants of T . The subset T
induces a sub-poset that consists of the set Θ(T ) and the partial order relation >=, where
Θ(T ) consists of both the nodes in T and the nodes which are descendants of nodes in T .
That is, Θ(T ) = T ∪ desc(T ).

2



Within the scope of cryptography the problem of access control in a hierarchy G can
be reduced to that of generating a cryptographic key Ki for each node (security class) Ni

in such a way that for any nodes Ni and Nj , the node Ni is able to derive from Ki the key
Kj of Nj iff Ni

>= Nj .

1.2 Relationship with Previous Work

The hierarchical access control problem was first addressed in the context of cryptography
by Akl and Taylor in [1, 2]. They suggested a solution to the problem based on the Rivest-
Shamir-Adleman (RSA) cryptosystem [12]. The heart of the solution was the suitable
selection of exponents such that the key of a child node could be easily derived from the
key of its parent. This solution was improved further by MacKinnon, Taylor, Meijer and
Akl [9] in the form of an optimal algorithm for selecting the suitable exponents.

However, one remaining problem with the key generation scheme in [2] was the difficulty
in adding new nodes (security classes) to the hierarchy. More specifically, when a new node
Nj is to be added as a child of node Ni (Ni

>= Nj) then new keys must also be generated
for all the ancestor nodes of Ni who by definition have access to Nj . Another problem with
the solution of Akl and Taylor was that its security was based on a particular cryptographic
assumption, that is the (supposed) infeasibility of breaking the RSA cryptosystem. Fur-
thermore, it made heavy use of the underlying algebraic properties of the crypto-function.
In fact, these problems are common to many subsequently proposed solutions such as those
in [4, 6, 11].

A key generation scheme for the special case of a tree-like hierarchy was suggested by
Sandhu [14]. This solution was based on the use of a different one-way function to generate
the key of each child of a node in the hierarchy. The selection of the one-way function for
a child node is based on the name or identity of that child. In this way, the addition of a
new child node Nj to an existing node Ni (Ni

>= Nj) necessitates only the selection of an
identity IDj of node Nj and a one-way function fIDj . The key Kj for that new node Nj is
then a function of the key Ki of its parent node. Unfortunately, Sandhu did not give any
suggestion for the general case of a poset.

In this paper we show a number of solutions to the access control problem in a general
hierarchy based on the use of pseudo-random function families, universal hash function
families, and in particular, on the use of sibling intractable function families (SIFF) which
was first introduced by Zheng, Hardjono and Pieprzyk in [16]. Note that both pseudo-
random function families and sibling intractable function families can be constructed from
one-way functions (see Sections 2.1 and 2.3). The solutions are in the same spirit as that
given by Sandhu [14] in that each node has an identity or name and a single key. There
are two types of solutions which will be presented, the first for indirect access to nodes and
the second for direct access to nodes. The first type follows the same approach by previous
authors in that access to a node further down in the hierarchy requires the traversal of the
intermediate nodes, while the second type represents an improvement on this approach.
Access to a node in the hierarchy can be done directly without the need to involve other
nodes.

The organization of this paper is as follows. Section 2 presents a brief review of one-way
functions, pseudo-random function families, universal hash function families and sibling
intractable function families. Section 3 makes use of the material reviewed in Section 2
and presents the key generation schemes for a hierarchy. In Section 4 we will discuss some
issues related to the management and maintenance of keys in the hierarchy in the context

3



of sibling intractable function families. Finally, Section 5 ends with some conclusions and
remarks.

2 Background in Cryptography

Since the time of the initial solution based on cryptography given by Akl and Taylor in [2],
research in cryptography has advanced considerably, particularly in the theoretical areas.
The work in this paper is built upon some of these important theoretical results, in particular
on pseudo-random function families. A formal definition of this concept, together with a
definition of one-way functions will be reviewed in Sections 2.1. This is followed by the
definition of universal hash function families in Section 2.2. Section 2.3 reviews the definition
and construction of sibling intractable function families (SIFF) which will be an important
primitive of our solutions to the access control problem in a hierarchy.

2.1 One-Way Functions and Pseudo-Random Function Families

Denote by IN the set of all positive integers, n the security parameter, Σ the alphabet {0, 1}
and ]S the number of elements in a set S. By x ∈R S we mean that x is chosen randomly
and uniformly from the set S. The composition of two functions f and g is defined as
f ◦ g(x) = f(g(x)). Throughout the paper ` and m will be used to denote polynomials over
IN. The formal definition of one-way functions is presented in the following.

Definition 1 Let f : D → R be a polynomial time computable function, where D =⋃
n∈IN Σ`(n) and R =

⋃
n∈IN Σm(n). f is a one-way function if for each probabilistic polyno-

mial time algorithm M , for each polynomial Q and for all sufficiently large n, Pr{fn(x) =
fn(M(fn(x)))} < 1/Q(n), where x ∈R Dn and fn denotes the restriction of f on Σ`(n).

Let F =
⋃

n∈IN Fn be an infinite family of functions, where Fn = {f |f : Σ`(n) → Σm(n)}.
We call F a function family mapping `(n)-bit input to m(n)-bit output strings. F is
polynomial time computable if there is a polynomial time algorithm (in n) computing all
f ∈ F , and samplable if there is a probabilistic polynomial time algorithm that on input
n ∈ IN outputs uniformly at random a description of f ∈ Fn.

Next, we review the definition of pseudo-random functions [5] which will be applied in
Section 3. Intuitively, F =

⋃
n∈IN Fn is a pseudo-random function family if to a probabilistic

polynomial time algorithm, the output of a function f chosen randomly and uniformly from
Fn, whose description is unknown to the algorithm, appears to be totally uncorrelated to the
input of f , even if the algorithm can choose input for f . The formal definition is described
in terms of (uniform) statistical tests for functions. A (uniform) statistical test for functions
is a probabilistic polynomial time algorithm A that, given n as input and access to an oracle
Of for a function f : Σ`(n) → Σm(n), outputs a bit 0 or 1. A can query the oracle only by
writing on a special tape some y ∈ Σ`(n) and will read the oracle answer f(y) on a separate
answer-tape. The oracle prints its answer in one step.

Definition 2 Let F =
⋃

n∈IN Fn be an infinite family of functions, where Fn = {f |f :
Σ`(n) → Σm(n)}. Assume that F is both polynomial time computable and samplable. F is a
pseudo-random function family iff for any statistical test A, for any polynomial Q, and for
all sufficiently large n,

|pf
n − pr

n| < 1/Q(n),

4



where pf
n denotes the probability that A outputs 1 on input n and access to an oracle Of

for f ∈R Fn and pr
n the probability that A outputs 1 on input n and access to an oracle Or

for a function r chosen randomly and uniformly from the set of all functions from Σ`(n) to
Σm(n). The probabilities are computed over all the possible choices of f , r and the internal
coin tosses of A.

In [5], it has been shown that pseudo-random function families can be constructed from
any pseudo-random string generator. By the result of [8, 7], the existence of any one-way
function is sufficient for the construction of pseudo-random function families.

2.2 Universal Hash Function Families

Universal hash function families, which were first introduced in [3] and further developed
in [15], have played an essential role in many recent major results in cryptography and
theoretical computer science (see for example [7, 8, 13]). Let U =

⋃
n∈IN Un be a family of

functions mapping `(n)-bit input into m(n)-bit output strings. For two strings x, y ∈ Σ`(n)

with x 6= y, we say that x and y collide with each other under u ∈ Un or x and y are siblings
under u ∈ Un, if u(x) = u(y).

Definition 3 Let U =
⋃

n∈IN Un be a family of functions that is polynomial time com-
putable, samplable and maps `(n)-bit input into m(n)-bit output strings. Let k be a fixed
positive integer. U is a (strong) k-universal hash function family if for all n, for all k
(distinct) strings x1, x2, . . . , xk ∈ Σ`(n) and all k strings y1, y2, . . . , yk ∈ Σm(n), there are
]Un/2km(n) functions in Un that map x1 to y1, x2 to y2, . . ., xk to yk.

The following definition of the collision accessibility property is presented due to its
importance and useful role in universal hash function families, and later in the definition
and construction of sibling intractable function families.

Definition 4 Let U =
⋃

n∈IN Un be a family of functions that is polynomial time com-
putable, samplable and maps `(n)-bit input into m(n)-bit output strings. Let k be a fixed
positive integer. U has the collision accessibility property if for all n and for all 1 <= j <= k,
given any set X = {x1, x2, . . . , xj} of j initial strings in Σ`(n), it is possible in probabilistic
polynomial time to select randomly and uniformly functions from UX

n , where UX
n ⊂ Un is

the set of all functions in Un that map x1, x2, . . ., and xj to the same strings in Σm(n).

Strong k-universal hash function families with the collision accessibility property can be
obtained from polynomials over finite fields [3, 15]. We denote by Pn the collection of all
polynomials over GF (2`(n)) with degree less than k. That is,

Pn = {a0 + a1x + · · ·+ ak−1x
k−1|a0, a1, . . . , ak−1 ∈ GF (2`(n))}.

For each p ∈ Pn, let up be the function obtained from p by chopping the first `(n)−m(n)
bits of the output of p whenever `(n) >= m(n), or by appending a fixed m(n)−`(n)-bit string
to the output of p whenever `(n) < m(n). Let Un = {up|p ∈ Pn}, and U =

⋃
n∈IN Un. Then

U is a strong k-universal hash function family, which maps `(n)-bit input into m(n)-bit
output strings and has the collision accessibility property.

5



2.3 Sibling Intractable Function Families

The notion of the sibling intractable function family was first introduced by Zheng et al.
in [16]. In this section we will provide a definition of the sibling intractable function family
and explain briefly some aspects relevant to the current work. The reader is directed to [16]
for a more comprehensive explanation of the sibling intractable function family.

Let H =
⋃

n∈IN Hn, where Hn = {h|h : Σ`(n) → Σm(n)}, be an infinite family of functions
that is polynomial time computable, samplable and has the collision accessibility property.
Also let k be a fixed integer, X = {x1, x2, . . . , xk} a set of k initial strings in Σ`(n) and h a
function in Hn that maps x1, x2, . . . , xk to the same string. Let F , called a sibling finder,
be a probabilistic polynomial time algorithm that on input X and h, outputs either “?”
(“I cannot find”) or a string x′ ∈ Σ`(n) such that x′ 6∈ X and h(x′) = h(x1) = h(x2) =
· · · = h(xk). Informally, H is a (k, 1)-sibling intractable function family, or (k, 1)-SIFF for
short, if for any sibling finder F , the probability that F outputs an x′ is negligible. In other
words, H is a (k, 1)-SIFF if it is infeasible for any probabilistic polynomial time algorithm
to find a string x′ so that x′ collides with the strings x1, x2, . . . , xk, which all collide with
one another under h. More precisely:

Definition 5 Let H be a family of functions that is polynomial time computable, samplable,
has the collision accessibility property and maps `(n)-bit input into m(n)-bit output strings.
Let X = {x1, x2, . . . , xk} be any set of k initial strings. H is a (k, 1)-sibling intractable
function family, or simply (k, 1)-SIFF, if for each sibling finder F , for each polynomial Q,
and for all sufficiently large n,

Pr{F (X, h) 6=?} < 1/Q(n),

where h is chosen randomly and uniformly from HX
n ⊂ Hn, the set of all functions in Hn that

map x1, x2, . . ., and xk to the same strings in Σm(n), and the probability Pr{F (X, h) 6=?}
is computed over HX

n and the sample space of all finite strings of coin flips that F could
have tossed.

In [16], an explicit construction of SIFF from any one-way function was given. The con-
struction begins with the universal one-way hash function family introduced in [10], which
can be constructed from any one-way function [13], and gives a method for transforming
any universal one-way hash function family into a (2s−1, 1)-SIFF for any s = O(log n). The
transformation method is presented here for completeness: Let `, m′ and m be polynomials
with m′(n) − m(n) = O(log n). Let k = 2m′(n)−m(n) − 1. Assume that H ′ =

⋃
n∈IN H ′

n

is a (1, 1)-SIFF mapping `(n)-bit input to m′(n)-bit output strings, and U =
⋃

n∈IN Un a
(k + 1)-universal hash function family that has the collision accessibility property and maps
m′(n)-bit input to m(n)-bit output strings. Let

Hn = {u ◦ h′|h′ ∈ H ′
n, u ∈ Un},

and let H =
⋃

n∈IN Hn. Then H is a (k, 1)-SIFF mapping `(n)-bit input into m(n)-bit
output strings.

The significance of a SIFF which distinguishes it from a universal hash function family
is precisely its sibling intractable property. Informally, consider the case when a collection
of input strings are to be mapped to the same output string under a function which is an
instance of a SIFF. The word sibling in this case refers specifically to the collection of input
strings to that instance of SIFF. Hence, one input string is said to be a sibling of another

6



input string, both of which belong to the collection. The sibling intractable property ensures
that the knowledge of several input strings from the collection will not allow the discovery
of one or more siblings of those input strings. The sibling intractable property represents
a new concept in cryptography, one that will be used to provide a simple solution to the
problem of access control in a hierarchy.

3 Key Generation Schemes for a Hierarchy

The solution to the problem of access control in a hierarchy based on cryptographic tech-
niques can be expressed in terms of providing a cryptographic key generation and man-
agement scheme which would allow easy access to information classified at nodes and easy
maintenance of keys associated with the nodes in the case of addition or deletion of nodes
from the hierarchy.

From the previous work by other authors we can summarize the following points con-
cerning the keys in a hierarchy:

1. The generation of a key for a node is based on the assumption that the illegal key
re-calculation by unauthorized users is equivalent to solving an intractable problem.
This notion was realized in [2] by the use of encipherment procedures which rely on
the infeasibility of factorization (more specifically the RSA cryptosystem) and in [14]
by the use of one-way functions. Note that the work in [14] treated only the special
case of tree structures.

2. There is a relationship between the key assigned to a node and those assigned to
its children which is established through the key generation scheme being employed.
In [2] this relationship was realized in the selection of exponents of a key to satisfy
certain criterion which mathematically allowed the key of a child node to be derived
from the key of its parent, while in [14] the relationship was established through the
use of one-way functions selected on the basis of the name (identity) of the child node.

In this section we will discuss two types of key generation schemes. The first type
allows nodes high in the hierarchy (having high security classification) to access indirectly
information in nodes lower down in the hierarchy (having lower security classification).
The second type allows nodes of high security classification to access directly information
in nodes of lower security classification. One important assumption regarding the key
generation schemes is that a trusted party or the maximal node(s) must perform securely
all the tasks associated with the key generation schemes. This includes the determination of
certain security parameters and functions, and selection and distribution of keys. However,
before proceeding with a description of our key generation schemes it would be useful to
define the notion of security in the context of access control in a hierarchy.

3.1 The Definition of Security

Recall that desc(T ) for T ⊂ S denotes the descendants of the nodes in T , and recall that T
induces a sub-poset which consists of the set Θ(T ) and the partial order relation >=, where
Θ(T ) = T ∪ desc(T ).

Informally, a key generation scheme is said to be secure if it is computationally infeasible
for users in a subset T of S to find (individually or by collaboration) the key Ki of a node
Ni not in Θ(T ). In a formal definition to be stated below, the computational power of

7



nodes in a hierarchy (organization) is assumed to be bounded by probabilistic polynomial
time. As in most standard formal definitions for security, our definition is also presented in
terms of asymptotic behavior. In other words, we consider the asymptotic performance of
a key generation scheme, when the number of nodes in a hierarchy increases as the security
parameter n. The formal definition is as follows.

Definition 6 Let G be a hierarchy with P (n) nodes. Denote by S the set of the P (n)
nodes. A key generation scheme for a hierarchy is secure if for any T ⊂ S, for any node
Ni 6∈ Θ(T ), for any polynomial Q and for all sufficiently large n, the probability that the
nodes in T are able to find by collaboration together the key Ki of the node Ni is less than
1/Q(n).

3.2 Key Generation for Indirect Access to Nodes

In the same manner as Sandhu [14], our first key generation scheme begins with the selection
of a name or identity IDj for each node Nj in the hierarchy and we assume that every IDj

can be described by an `(n)-bit string, where ` is a polynomial. Next, we let F =
⋃

n∈IN Fn

be a pseudo-random function family, where Fn = {fK |fK : Σ`(n) → Σn,K ∈ Σn} and each
function fK ∈ Fn is specified by an n-bit string K. In addition, let U =

⋃
n∈IN Un be a

k-universal hash function family that maps n-bit input to n-bit output strings. The integer
k is assumed to be larger than the total number of parents of any node in the hierarchy.

Scheme 1 A secure scheme for indirect node access. Firstly keys for maximal nodes are
generated, which is done by simply selecting random strings of length n as their keys.
For the remaining nodes, there are two methods to generate the keys. The first method
is applied to nodes which have only a single parent node, while the second method is
used for nodes which have more than one parent node.

1. Nodes with one parent
Given a node Nj with its parent Ni which has already been assigned a key Ki,
the key to be assigned to Nj is the n-bit string

Kj = fKi(IDj) (1)

2. Nodes with two or more parents
Given a node Nj with all its p (p <= k) parents Ni1 , Ni2 , . . ., Nip having been
assigned keys Ki1 , Ki2 , . . ., Kip , the key Kj for Nj is chosen as a random string
Kj ∈R Σn.
From Un an instance (function) uj is chosen randomly and uniformly such that
fKi1

(IDj), fKi2
(IDj), . . ., fKip

(IDj) are mapped to Kj . That is,

uj(fKi1
(IDj)) = uj(fKi2

(IDj)) = · · · = uj(fKip
(IDj)) = Kj (2)

The function uj is then made public together with the fact that it is associated
with node Nj .

Now we prove that this scheme based on a pseudo-random function family and a uni-
versal hash function family is secure.

Theorem 1 Scheme 1 is secure.

8



Proof. Assume for contradiction that there is an infinite subset IN′ of IN and a polynomial
Q, such that for each n ∈ IN′ there is a subset T ⊂ S which can find with probability at
least 1/Q(n) the key Ki of a node Ni 6∈ Θ(T ). Since obtaining Ki means obtaining the keys
of all the descendants of Ni, there are only two situations to be considered when T fails to
find the key of any parent of Ni. These two cases are:

Case-1 Ni is an ancestor of some node(s) in Θ(T ).

Case-2 Ni is not the ancestor of any node in Θ(T ).

Note that since T contains only polynomially many nodes and the computational power of
nodes is bounded by probabilistic polynomial time, the whole computational activities of
T during the finding of Ki can be simulated by a probabilistic polynomial time algorithm.
Thus, Case-1 implies that there is an probabilistic polynomial time algorithm that can invert
with probability at least 1/Q(n) the pseudo-random function family for all n ∈ IN′, while
Case-2 implies that there is an probabilistic polynomial time algorithm that can predict
with probability at least 1/Q(n) the output of the pseudo-random function family, also for
all n ∈ IN′. These are contradictions. ut

3.3 Key Generation for Direct Access to Nodes

In the scheme presented by Akl and Taylor in [2] and in its subsequent improvements the
key for a node was related only to the key of its parent. This is also true in the case of
the key generation scheme for indirect access to nodes presented in Section 3.2. However,
one important impracticality stems precisely from this limited relationship between a node
and its parent(s). A user at a node, which by definition has access to information stored at
all its descendant nodes, must traverse (and thus compute the keys of) all the intermediate
nodes between his or her node and the desired (non-child) descendant node at which the
information he or she wishes to access is stored. This may prove highly impractical in many
situations.

In order to remedy this impracticality it would be desirable for a user at a node to have
the ability to access information at any descendants of his or her current node in a minimum
number of steps. This can be achieved by improving the previous key generation scheme as
will be shown in the following.

Let U =
⋃

n∈IN Un be a k-universal hash function family that maps n-bit input to n-bit
output strings. Here k is assumed to be greater than the total number of ancestors of any
node in the hierarchy. In addition, let H =

⋃
n∈IN Hn be a (k, 1)-SIFF mapping n-bit input

to n-bit output strings. As in Scheme 1, assume that F =
⋃

n∈IN Fn is a pseudo-random
function family, where Fn = {fK |fK : Σ`(n) → Σn,K ∈ Σn} and each function fK ∈ Fn

is specified by an n-bit string K. We present three possible key generation schemes which
allow direct access to information at descendants nodes. The three key generation schemes
for direct access to nodes consist of two general phases, the first is common to all three key
generation schemes, while the second is unique to each scheme. These two phases are:

• The selection of n-bit keys uniformly and randomly for each node in the structure.

• The establishment of relationships or “links” among nodes in the structure.

Assume that the set of nodes Ni1 , Ni2 , . . ., Nip are the p immediate parents of a node Nj .
Assume further that the m nodes Nip+1 , Nip+2 , . . ., Nip+m are the other ancestors of Nj . Note

9



that p+m <= k. The first phase simply requires that the keys Ki1 , . . . ,Kip ,Kip+1 , . . . , Kip+m

be chosen uniformly and randomly for the corresponding nodes. Of more interest is the
second phase in which relationships (or “links”) between nodes are established. The links
to be created are not only between a given node and its parents, but also between it and each
of its (non-parent) ancestors. Based on universal hash function families, sibling intractable
function families and pseudo-random function families the three key generation schemes for
the second phase are as follows.

Scheme 2 A secure scheme for direct node access. Choose uniformly and randomly from
Un an instance uj such that:

uj(fKi1
(IDj)) = uj(fKi2

(IDj)) = · · · = uj(fKip
(IDj)) =

uj(fKip+1
(IDj)) = uj(fKip+2

(IDj)) = · · · = uj(fKip+m
(IDj)) = Kj (3)

The function uj is made public together with the fact that it is associated with node
Nj .

Like Scheme 1, Scheme 2 is also secure. Note that both schemes rely on the use of pseudo-
random function families and universal one way hash function families. As in Scheme 1, it is
computationally infeasible for a user at a node to obtain the key of any non-descendants of
that node. If the user can find the key of one of his or her ancestors then the user is able to
invert the pseudo-random function family. On the other hand, if the user is able to obtain
the key of a node which is neither an ancestor nor a descendant of that user’s node then he
or she is also able to predict the result of the pseudo-random function family. Hence, these
two actions are contradictory to the definition of pseudo-random function families. Thus
we have the following theorem.

Theorem 2 Scheme 2 is secure.

Scheme 3 A more secure scheme for direct node access. Choose uniformly and randomly
from Hn an instance hj such that:

hj(fKi1
(IDj)) = hj(fKi2

(IDj)) = · · · = hj(fKip
(IDj)) =

hj(fKip+1
(IDj)) = hj(fKip+2

(IDj)) = · · · = hj(fKip+m
(IDj)) = Kj (4)

The instance hj of the (k, 1)-SIFF hj is made public together with the fact that it is
associated with node Nj .

Here, instead of a universal one-way hash function family, a sibling intractable function
family is employed. By a similar argument to that for Scheme 2, we have the next theorem.

Theorem 3 Scheme 3 is secure.

Note that a universal hash function family is used in Scheme 2. In general a universal
hash function family is not one-way. Let Ni, Nj and Nk be three nodes in a hierarchy,
where both Nj and Nk are ancestors of Ni, but neither is Nj an ancestor of Nk nor is Nk an
ancestor of Nj . Although it is provably infeasible for Nj to obtain the key Kk of Nk, it is
easy for Nj to obtain fKk

(IDi). This may prove to be a problem in certain circumstances,
where the ability to obtain fKk

(IDi) may represent a kind of privilege of Nk which should
not be available to any non-ancestor of Nk.

10



This problem does not exist in Scheme 3. Therefore Scheme 3 represents an improvement
in security over both Scheme 1 and Scheme 2. The argument necessary is similar to the
previous two schemes. The ability of a user at a node to calculate the key of another non-
descendant or non-ancestor node is equivalent to predicting outputs of a pseudo-random
function family, and thus represents a contradiction to the definition of pseudo-random
function families. Furthermore, if a user is able to obtain fKi(IDj) of an ancestor node Ni,
then this represents an ability to invert or to find a collision string for the sibling intractable
function family, both cases of which have a negligible probability of occurring. If Ni is not
an ancestor of the user then the user has the ability to predict the outputs of a pseudo-
random function family, something that was concluded to be a contradiction. Thus we have
shown that indeed Scheme 3 has higher security than Scheme 2.

Scheme 4 A pragmatic scheme for direct node access. Choose uniformly and randomly
from Hn an instance hj such that:

hj(Ki1) = hj(Ki2) = · · · = hj(Kip) =
hj(Kip+1) = hj(Kip+2) = · · · = hj(Kip+m) = Kj (5)

The instance hj of the (k, 1)-SIFF is made public together with the fact that it is
associated with node Nj .

The security level attained in Scheme 4 is difficult to be shown for the following reason.
Unlike in the previous schemes, in Scheme 4 the key of a node is used directly as input
to the instances of SIFF that are associated with the descendants of that node. This
direct application of the node’s key results in the difficulty in measuring the amount of
information concerning that node that is obtainable by its descendants in the case when
these descendants are collaborating against that node. As a consequence, this difficulty in
measuring the obtainable information has led to difficulty in providing a formal proof of the
security of this scheme. However, this scheme represents an improvement from the previous
three schemes in terms of practicalities since only a sibling intractable function family is
employed without the use of a pseudo-random function family. Thus, key generation and
access to nodes is comparatively faster than in the previous three schemes.

By using any one of these last three key generations schemes the m (m+p <= k) ancestor
nodes Nip+1 , Nip+2 , . . ., Nip+m of node Nj have access directly to node Nj . This is shown in
a simplified manner in Figure 1 where the broken lines indicates direct paths from a node
to its descendants.

Note that in all the schemes presented in this paper all nodes are assumed to be assigned
a (k, 1)-SIFF or a k-universal hash function family where k is assumed to be larger than
the number of parents of any node in the indirect access schemes, and to be larger than
the number of ancestors of any node in the direct access schemes. This uniform size of k
simplifies the description of the instances of SIFF or the universal hash function family, but
it may require more computer memory for their maintenance. Furthermore, this uniformity
may represent an unwise usage of computer resources since the number of ancestors of a
node located at a higher level in the hierarchy is small. Hence, an alternative strategy
would be to use instances of a (ki, 1)-SIFF or a ki-universal hash function family for node
Ni where ki is the precise number of parents in the indirect access schemes, and the precise
number of ancestors in the direct access schemes.

11



Figure 1: Direct access to nodes by ancestors

4 Issues in Key Management Policies

From the description of the key generating schemes for direct access to nodes it is evident
that any non-parent ancestor of a node may have direct access to that node, expressed in
terms of the inclusion of that ancestor’s key in the key generation for the node. However,
further implications arise. The key generation schemes for direct access to a node can
be tailored to allow any other node in the hierarchy to access that node. In one sense
this apparent freedom in providing access to nodes seems contradictory to the notion of a
hierarchy with partial order on its nodes, and hence we feel some attention must be given
to possible policies that should be adopted in the management and maintenance of the keys
of the nodes in the hierarchy.

With the freedom attained in “linking” one node to another through the direct access key
generation schemes a number of issues concerning the addition and deletion of nodes, and the
granting and removal of access rights to a node must be addressed. In the following sections
these issues will be considered and some points are suggested concerning the maintenance of
the keys. Recall that access by a user at a node to information at another node is expressed
in terms of the “links” from the user’s node to the information node. Hence a link from
node Ni to node Nj means that users at node Ni have access to information at node Nj .

4.1 Periodic Key Updates

As have been pointed out by a number of authors working in the expanding area of cryptog-
raphy the problem of key management includes the issue of updates of the keys of the users.
The need to have periodic key updates does not necessarily reflect the quality or security
of the cryptosystem being employed. Rather, it is a precautionary measure against the
failures on the part of the human users who may have accidentally or otherwise disclosed
the key of a node to other unauthorized users.

12



The issue of periodic key updates for the hierarchy becomes important in our solution to
the access control problem due to the freedom it provides in linking nodes to one another.
We perceive that the establishment of new links between nodes and the removal of existing
links is best done during the time of the periodic key update of every node. Similarly, the
movement of users from one node (security class) to another requires that the migrating
users not have unlawful access to their previous nodes. Hence the migration of users should
occur also during the periodic key updates.

4.2 Temporary Key Updates

In reality often the establishment and removal of links between nodes may have to be done
in the time between the periodic key updates. This requirement usually has the effect of
a large number of key changes due to a change of one key of a node located higher in
the hierarchy. More specifically, the tight relationship between a node and its descendants
results in the need to modify the keys of all the descendants of that node if the key of that
node was updated. This disadvantage occurs in all the previous solutions by other authors
due to the key generation procedure for a node which involves some parameters belonging
to the node’s parents. Hence, it is thought that a policy must govern the changes to the
keys in the hierarchy.

Such a policy should take into consideration the total number of nodes that will be
affected by the temporary key update. Thus, for example, if only 10 percent of all the
nodes will be affected then the temporary update can be carried out. However, if more than
50 percent of all the nodes will be affected by the temporary update due to links between
nodes, then it should be postponed until the next periodic update or the next periodic
update can be advanced forward in time to the present moment. The policy should also
consider the life time of the temporary key update. Those that will be undone before the
next periodic key update may be deferred until such time.

In the following we will discuss four broad kinds of temporary key updates that may
arise in a hierarchy. It is assumed that the updates are temporary in that they will be
undone before or during the next periodic key update. Alternatively they can be left to
be made permanent in the next periodic update. With respect to the discussions in the
following sections concerning the maintenance of keys we assume that Scheme 3 for direct
access to nodes (described in Section 3.3) will be employed.

4.2.1 The Addition of Nodes

The addition of a new node to a hierarchy is a natural occurrence that is to be expected.
In general there are two cases of the addition of nodes which can be considered. The first
case involves the addition of a new node as a child of an existing node. This new node has
no descendants of its own. The second is when the new node is to be “inserted” between a
node and its parent.

The first case is simply solved by generating for it a new key using Scheme 3 described
in Section 3.3. This also means that a new instance of SIFF must be assigned to the new
node.

The second case requires that the new node be assigned a new key and an instance of
SIFF, similar to the first case. However, in addition, links must be created between the new
node and its adopted descendants. In this situation the keys of the descendant nodes need
not be replaced or updated. Instead, a new instance of SIFF for each of these descendant

13



nodes must be selected that would map to the existing key of that node all the previous
input strings plus the new key from the new node.

4.2.2 The Deletion of Nodes

The deletion of a node is trivial if the node is a leaf node. However, if the deleted node is
positioned internally in the hierarchy then all the descendants of the deleted node become
the descendants of the parent(s) of the deleted node.

Recall that in the key generation schemes for direct access to nodes any ancestor of a
node has the ability to access information in that node in one step. Thus, the deletion of
a node does not require any action to be taken to the other nodes in the hierarchy unless
users from the deleted node are to be migrated (or re-classified) to other nodes.

However, one important difficulty exists in the case of the deletion of nodes, namely
the ex-member problem. Informally, the ex-member problem arises from users who have
migrated to another node and who have retained a copy of the key from their previous (not
necessarily deleted) node, thus having unlawful access to the descendants of that previous
node. The most straightforward solution to this ex-member problem would be the selection
of new keys and new instances of SIFF for all the descendants of the (previous or deleted)
node and for the other nodes accessible from it through the links emanating from it. In this
way the illegal copies of the key of the node is rendered useless.

Another possible solution relies on the ability to maintain the key of a node as a secret
from the users in the hierarchy. The key can be made simultaneously secret and usable by
employing tamper-proof devices such as smartcards. However, such an approach is beyond
the scope of this paper.

4.2.3 The Addition of Links

The granting of permission to users at one node to access information at another (previously
restricted) node is also a realistic requirement in a hierarchy. The granting of access to a
node can be viewed as providing a link from a source node to a sink node which may reside
in different sub-posets in the hierarchy. One important point about the addition of a link
from a source node Ni to a sink node Nj is the accessibility of the descendants of the
sink node by the source node. By definition, if a source node has access to a given sink
node, then it should also have access to the descendants of the sink node and all the other
non-descendant nodes which have links from the sink node. What remains, however, is the
question of how the establishment of a link from the source node to all the descendants of
the sink node can be achieved economically.

One approach that is immediately clear is to simply establish links from the source node
to every individual descendant node of the sink node, regardless of the required computing
resource. This can be achieved by selecting uniformly and randomly a new instance of SIFF
for each of these affected descendant nodes. The new instance of SIFF must take as input
the existing input strings and the string corresponding to the link. The keys of each of these
nodes may or may not be updated depending on the availability of computing resources.
The effort in establishing all these links is rewarded in that the access to each of the sink’s
descendant nodes by the source node requires only a single step. However, this approach
will require much computing resource and thus should only be pursued when the number
of the affected nodes is small.

An alternative approach is to allow the source node Ni to access the descendants of the

14



sink node Nj in two steps. That is, the source node must pass through the sink node before
it can proceed to access any of the descendants of the sink node. Thus, only the instance of
SIFF hj associated with the sink node Nj need to be replaced in order to create a link from
the source node Ni. The source node Ni must then establish the key Kj of the sink node
Nj before using the key to access any of the descendants of the sink node. This approach
can be used even in the case when the number of the affected nodes is large.

In the creation of links from a source node to a sink node one important criteria must
be satisfied, namely that the position of the source node in the hierarchy must be higher
than that of the sink node. This criteria should be observed by the trusted party which
performs the selection of keys and instances of SIFF for the nodes in the hierarchy. This
criteria ensures that the hierarchy remains what is was defined to be.

4.2.4 The Deletion of Links

The realization of the denial of access of a user in a source node to information at a sink
node can only take the form of the selection of a new key and a new instance of SIFF for
the sink node. However, the policy that is employed must determine whether the deletion
of a link to a sink node necessitates the deletion of the links from the source node to all
descendants of the sink node. If that is the case, then such a deletion of a link to a sink
node will require the selection of new keys and new instances of SIFF for all the descendants
of the sink node and for other nodes accessible from the sink node and its descendants. If
such a deletion affects too many nodes, it is more advantageous to postpone it until the
time of the next periodic key update of the hierarchy.

In dealing with the deletion of links there is a concept which needs to be made clear
in the key management policy, namely that of the “minimum” shape of the hierarchy. In
other words, the policy must ensure that a node is not completely severed from its parent(s),
which would then be equivalent to the deletion of that node. Hence the deletion of links
must be guarded so as not to result in the deletion of a node, and that each node must be
linked to at least one parent.

5 Conclusion

In this paper we have presented new solutions to the problem of access control in a hierarchy
which are based on cryptography. The concepts in cryptography that are necessary for
the solutions have been presented, and they include one-way functions, pseudo-random
function families and universal hash function families. In addition, the new concept of sibling
intractable function families was briefly reviewed due to its importance to the proposed
solutions.

The solutions to the problem of access control in a hierarchy took the form of key
generation schemes for the nodes or security classes in the hierarchy. Each node in the
hierarchy is assigned a key and an instance of a universal hash function family or of a
sibling intractable function family. Using the key, a user at a node (security class) can
access information stored at another node (security class) lower down in the hierarchy.
Access to nodes can be be indirect, as is the case with previous solutions to the problem,
or it can be direct, which represents an improvement by the proposed solutions over the
previous solutions. The security of the key generation schemes was examined based on a
formal definition of security in the context of access control in a hierarchy.

15



Some issues concerning the management of the keys of the nodes were also discussed.
These concentrated mainly on the addition and deletion of nodes and links between nodes
in the hierarchy. The work in this paper represents a new approach in pursuit of solutions
to the problem of access control in a hierarchy, and it serves also as an illustration of the
importance of the new concept of the sibling intractable function family.

References

[1] Akl, S. G., and Taylor, P. D. Cryptographic solution to a multilevel security
problem. In Advances in Cryptology - CRYPTO’82 (Santa Barbara, August 1982),
D. Chaum, R. L. Rivest, and A. T. Sherman, Eds., Plenum Press, NY, pp. 237–250.

[2] Akl, S. G., and Taylor, P. D. Cryptographic solution to a problem of access
control in a hierarchy. ACM Transactions on Computer Systems 1, 3 (1983), 239–248.

[3] Carter, L., and Wegman, M. N. Universal classes of hash functions. Journal of
Computer and System Sciences 18 (1979), 143–154.

[4] Chick, G. C., and Tavares, S. E. Flexible access control with master keys. In
Advances in Cryptology - CRYPTO’89 (Berlin, New York, Tokyo, 1990), G. Brassard,
Ed., vol. 435 of Lecture Notes in Computer Science, Springer-Verlag, pp. 316–322.

[5] Goldreich, O., Goldwasser, S., and Micali, S. How to construct random func-
tions. Journal of ACM 33, 4 (1986), 792–807.

[6] Harn, L., and Lin, H.-Y. A cryptographic key generation scheme for multi-level
data security. Computer & Security 9, 6 (1990), 539–546.

[7] Håstad, J. Pseudo-random generation under uniform assumptions. In Proceedings of
the 22-nd ACM Symposium on Theory of Computing (1990), pp. 395–404.

[8] Impagliazzo, R., Levin, L., and Luby, M. Pseudo-random generation from one-
way functions. In Proceedings of the 21-st ACM Symposium on Theory of Computing
(1989), pp. 12–24.

[9] MacKinnon, S. J., Taylor, P. D., Meijer, H., and Akl, S. G. An optimal
algorithm for assigning cryptographic keys to access control in a hierarchy. IEEE
Transactions on Computers C-34, 9 (1985), 797–802.

[10] Naor, M., and Yung, M. Universal one-way hash functions and their cryptographic
applications. In Proceedings of the 21-st ACM Symposium on Theory of Computing
(1989), pp. 33–43.

[11] Ohta, K., Okamoto, T., and Koyama, K. Membership authentication for hierar-
chical multigroup using the extended Fiat-Shamir scheme. In Advances in Cryptology
- EUROCRYPT’90 (Berlin, New York, Tokyo, 1991), I. B. Damg̊ard, Ed., vol. 473 of
Lecture Notes in Computer Science, Springer-Verlag, pp. 446–457.

[12] Rivest, R. L., Shamir, A., and Adleman, L. M. A method for obtaining digital
signatures and public-key cryptosystems. Communications of the ACM 21, 2 (1978),
120–128.

16



[13] Rompel, J. One-way functions are necessary and sufficient for secure signatures. In
Proceedings of the 22-nd ACM Symposium on Theory of Computing (1990), pp. 387–
394.

[14] Sandhu, R. S. Cryptographic implementation of a tree hierarchy for access control.
Information Processing Letters 27, 2 (1988), 95–98.

[15] Wegman, M. N., and Carter, L. New hash functions and their use in authentication
and set equality. Journal of Computer and System Sciences 22 (1981), 265–279.

[16] Zheng, Y., Hardjono, T., and Pieprzyk, J. Sibling intractable function families
and their applications. In Advances in Cryptology - ASIACRYPT’91 (Berlin, New
York, Tokyo, 1993), H. Imai, R. L. Rivest, and T. Matsumoto, Eds., vol. 739 of Lecture
Notes in Computer Science, Springer-Verlag, pp. 124–138.

17


