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Abstract

The XOR Lemma states that a mapping is regular or balanced if and only if all the linear com-
binations of the component functions of the mapping are balanced Boolean functions. The main
contribution of this paper is to extend the XOR Lemma to more general cases where a mapping may
not be necessarily regular. The extended XOR Lemma has applications in the design of substitution
boxes or S-boxes used in secret key ciphers. It also has applications in the design of stream ciphers
as well as one-way hash functions. Of independent interest is a new concept introduced in this paper
that relates the regularity of a mapping to subspaces.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Let F(x1,...,xx) = (fi(x1, ..., Xk)s .., fm(x1, ..., xx)) be amapping fron¥; to V,,,
where each; € GF(2), eachf; is a function withn variables and/; is the vector space
of ktuples of elements frord F(2). F is said to baegularif F goes through all vectors in
Vin, €ach 2 times, wherx goes through all vectors W, once. Obviouslyk > m must
hold for a regular mapping. The XOR Lemmatates thaF is regular if and only if every
non-zero linear combination of, .. ., f,, is balanced. The XOR Lemma is expressed in
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terms of independence of random variable$2i8]. It also appears as Corollary 7.39 of
[4]. Note that every permutation dr is regular. An application of the XOR Lemma is to
determine the strict regularity of a given cryptographic mapping by examining whether the
linear combinations of its component functions are biased.

In practice, however, there is a need to study more general case$ugwot necessarily
regular. In this work, we introduce a concept that a mapjsnggular with respect to a
subspaceand show that for any given mappifgfrom V; to V,, there exists a subspa®é
such thatP is regular with respect t@/. This allows us to look beyond regular mappings
by establishing &eneralized XOR Lemmahe Generalized XOR Lemma can handle not
only regular mappings but also those that are not strictly regular.

A major application of the Generalized XOR Lemma is the design of the so-called
substitution-box or S-boxes employed in a block cipher. In many ciphers, S-boxes are
the only non-linear operation it employs. Therefore, these mappings are the most critical
component of the ciphers. In order to ensure that the ciphers are not vulnerable to attacks
that exploit statistical imbalance within the ciphers, S-boxes used in the ciphers must be
regular or very close to regular. But there are some cases where we cannot hope for the strict
regularity. One typical example is S-boxes that have more output bits than input bits. Such
“expanding” S-boxes are used, for example, in the Cast-128 cipher which is an Internet
standard1]. Clearly, such expanding S-boxes ad regular; therefore we need a way for
discussing somewhat weaker regularity. This is where we can use our generalized regular-
ity and Generalized XOR Lemma. Further applications of the Generalized XOR Lemma
include the design and analysis of other security tools such as one-way hash functions and
stream cipherfbs] both of which rely on good (regular or slightly biased) non-linear S-boxes
for their security.

2. Generalized regularity

We now define formally the notion of generalized regularity. We generalize the regularity
notion by relaxing its condition, which allows us to consider mappings with more output
bits than input bits, i.e., those mappings fréinto V,,, with k < m.

Let W be anl-dimensional linear subspace vf,. From linear algebray,, can be parti-
tioned into 2!~ parts:

Vim =IoUII1 U---Ullom-_q, Wherellp =W, (1)

such that for any & j <2"' — 1,8,y € II; ifand only if f @ y € W. Itis known that
;=2,j=0,1,...,2""! Eachll; is called acosetof W. It should be noted that for a
fixedW, the partition () is unique if the order of the cosets is ignored.

Next we introduce the concept of a mapping regular with respect to a subspace.

Definition 1. LetP be a mapping fron¥ to V,,,, andWbe an-dimensional linear subspace
of V,, (0<I< min{k, m}) ands; be zero or a positive integer,= 0,1, ..., om=l _ 1,
satisfyingso + s1 + - - - 4+ som—1_; = 287!, We say thaP is regular with respect to W and
(50 51, - - ., Som—i_4) if for each fixedj, 0< j <2~/ — 1 and each vector e II; (defined
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in (1)), we have #x| P(2) =y, o € Vi} = sj. When the choice ofso, s1, . . ., Son-i_1) iS
not important, we simply say th&is regular with respect to W

Though trivial, two extreme cases need to be mentioned here.

Lemma 2. (i) Any regular mapping fronV, to V,, is a mapping regular with respect to
W =V,.

(i) For any given mapping P frori, to V,,, there exists a subspace WWf such that
P is regular with respect to W

Proof. (i) If we setl = m, i.e., W = V,, in Definition 1, then any regular mapping froir,
to V,, is a mapping regular with respect® = V,, andsg = 2. Clearly we havé >m
in this case.

(i) Let/ = 0, i.e.,W = {0}. ThenP is regular with respect tt/ = {0}. O

In general, from Definitior, we know thaP is unbiased for all the vectors in each fixed
cosetl] ;. We give an example to explain DefinitidnLetm = k + 2 and! = k in Defini-
tion 1. Let P be a mapping fronV to V.2 such thatP(as, ..., ar) = (1,0, a1, ..., a).
LetW be ak-dimensional subspace suchWis= {(0, 0, x1, ... x;)| eachy; € GF(2)}. Set
IIg =W, II1 ={(0, 1, x1,...x)| eachx; € GF(2)}, I, = {(1,0, x1, ... x)| eachx; e
GF(2)}, I3 ={(1,1,x1,...x)| eachx; € GF(2)}. Hence Vi o = [IpUII; UII, U I3
wherell; N II; = ¢, wheref denotes the empty set, jf # i. Note thatP (V) = 1>
whereP (Vi) = {P(x)| o« € Vi}. SinceP takes all vectors i, once, but not any vector in
o U I11 U I13, Pis a regular mapping with respect\and(so, s1, s2, s3), wheresg = 0,
s1 = 0,52 = 1 ands3 = 0. ObviouslyP is unbiased for all the vectors in any fixéd;.

The following theorem indicates the existence of a mapping fvpo V,,,, thatis regular
with respect to a given subspadkof V,,,.

Theorem 3. Let m and k be two positive intege¥d be an I-dimensional linear subspace
of V,,, and integersy, s1, ..., som—i_y Satisfys; >0, =0,1, ..., 2=t _1andsg+s1+
-+ somi_q = 2K71. Then there exists a mapping frov to V,,, that is regular with
respect to W andso, s1, . . ., Son—1_1).

Proof. Let R = {j|s; #0, j =0,1,...,2"! — 1} and writeR = {j1, ..., j;}. Hence
sjp + - +sj, =251 We chooseu;, € Ij,, ..., u; € II,, where each]; has been
defined in the partitionl). Divide V; into t disjoint subsetsV, = S1 U --- U §; such that
S;N'S; = ¥ wheneverj # i and #, = 5,2, ..., #S, = s5;,2. Divide eachs, into 2
i . .

disjoint subsetss, = Sﬁl) U-.--u Sf,z) such thatSf/) N SL(,’) = ¥ wheneverj # i and

! !
#Sl(,l) = #SLEZ) = -~-#SL£2) =sj,. Write Il ;, = {yf,l), ...,yi,z)}. Define a mapping, from
Vi to V,,, such that for each, 1<u <r and for each, 1<i <2, P(S;) = {yf,’)}, where
P(X) = {P(x)|x € X}. HenceP is a mapping fromV; to V,,, that is regular with respect
toWand(so, 51, ..., Som-1_1).

A functionis a mapping fron¥; to G F(2) (or simply a function ori/;). Thetruth table
of a functionf on V; is a(0, 1)-sequence defined gy (00), f(21), . .., f(2x_1)), and the
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sequencef f is a (1, —1)-sequence defined by—1)/ @0 (—1)f @ (—1)/ -0y,
Leta = (a1, ..., ax) andb = (b1, ..., by) be the sequences of functiohendg on
Vi, respectively. Thecalar productof & andb, denoted by(a, b), is defined asa, b) =
aib1 @ --- @ axby, where the addition and multiplication are over the reals.affine
functionf on V; is a function that takes the form ¢f(x1, ..., xx) = a1x1®D - - - D arxy D c,
whereaj,c € GF(2), j =1, 2, ..., k. Furthermoref is called ainear function if c = 0.

A (1, —1)-matrix N of orderk is called aHadamardmatrix if NNT = kI, whereNT is
the transpose dfl and; is the identity matrix of ordek. A Sylvester—Hadamard matrix of
order Z, denoted byH,, is generated by the following recursive relation
Hy—1 Hi-1

Ho=1. Hi = |:Hk—1 —Hi_1

] k=1212,....

Let ¢;, 0<i <2 — 1, be theith row of Hy. It is known that¢; is the sequence of a linear
function @; (x) defined by the scalar produgt (x) = (o, x), whereo; is theith vector in

Vi according to the ascending alphabetical order.Hamming weighof a (0, 1)-sequence

¢, denoted byH W (&), is the number of ones in the sequence. Given two functfoasdg

on V;, theHamming distancé ( f, g) between them is defined as the Hamming weight of
the truth table off (x) ® g(x), wherex = (x1, ..., x¢).

Let P(y) be a mapping fronvy to V,,,, wherey € V. Write P(y) = (p1(3),s- -, pmn(y)),
where eaclhp;(y) is a function onV,. We are concerned with all the linear combinations of
p1(y), ..., pm(y), denoted byjo(y), q1(), . . ., g2n—1(y), whereg; (y) = @,_1 cupu(y)
and(ci, ..., ¢y) is the binary representation of an integef =0, 1, ..., 2" — 1.

Let R; denote the sequence @f(y),i = 0,1,...,2" — 1. Define a 2 x 2 (1, —1)
matrix B* as follows:

Ry
B* = : = [ho, h1, ..., ho_4],

Rom_1

whereR; is theith row andh; is thejth column of B*. One can verify that eadh; is the
sequence of a linear function d4),, i.e., a column of,,,.

Let Lo, L1, ..., Lon_1 be the row vectors, from the top to the bottomHf,. Assume
that LT appears in matris* k; times as a column aB*. Using the same argument as that
in the Appendix of 7], we know that

({Ro. Ro), (Ro, R1), ..., (Ro, Ron_1)) = (ko. k1, ..., kon_1)Hp, (2

holds evenforthe case bt m ork < m.Note thatl ; is the sequence of alinear function on
Vin W j(x) = (7;, x), wherey; isthe binary representation ofintegef = 0, 1, ..., 2" —1.
Hence, from the definition of;, k; is also the number of times th&(y) goes through
7 € Vim. Sincego(y) is the zero function oy, R is the all-one sequence. Heng®, R;)
is equal to the sum of the componentsRin As a result, we havérg, R;) = 0 if and only
if ¢; is balanced.

Let W be anl-dimensional linear subspace 6f,. From linear algebra, there exists an
(m — I)-dimensional linear subspace 4f,, denoted byw*, such that each € V,, can be
uniquely expressed as= @ u, whereff € W andu € W*. W* is called acomplementary
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subspac®f Win V,,. Furthermore leW* be composed gig = 0, u1, . ... iom—1_1 Where
eachu; € W*. Then

Vm = (,uo @ W) U (,u_']_ @ W) J---u (Mszl_l 69 W), (3)

wherep @ W = {u@yly € Wi, (u; @ W) N (w; ® W) = ¢ forall j # i. It should be
noted thatWw* is not unique except for the special cases wh&re= vV, and W = {0}.
However, since the partitiorl) is unique, B) is identical to () except for the order of
the cosets.

The following theorem is callethe Generalized XOR Lemma

Theorem 4. Let P(y) = (p1(y), ..., pm(y)) be a mapping fronV; to V,, where each
p;(y) is a function onV;, and W be an |-dimensional linear subspacelyf, where
[< min{k, m}.

(i) If P(y) is regular with respect to When for any complementaiy* subset of W in
Vin, and any(bl, cooby) € Vy with (b1, ....bw) ¢ w, blpl()’) b---b bmpm(y)
is balanced

(i) If there exists a complementary subB&t of W inV,,, such that for anybs, ..., by,) €
Vin With (b1, ..., by) & W*, bip1(y) & --- @ by, pwm(y) is balanced then P(y) is
regular with respect to W

Proof. Firstwe consider the special casé¥f= {(0,...,0,c1,...,¢) 1 (O,...,0,c1, ...,
c) € VpyandW* = {(d1,...,du-1,0,...,0 | (d1,...,dn_,0,...,0 € V,}. Note
that eachy € V,,, can be uniquely expressed-as (d1, ..., dy—1,c1, ..., ). Set

j=u2 4+v, 0<,j<2" —1,0<u<2" ! —1,0<v<2 — 1. (4)

Hence(ds, ..., d,—;) is the binary representation ofand(cy, . . ., ¢;) is the binary repre-
sentation ofv.

Since H,, = H,,_; x H;, where x is the Kronecker produc{6], the jth row L; of
H,, can be expressed ds; = e, x £y, i.e.,L; = (aoly, arly, ..., am-1_1£y), Where
ey = (ap, a1, ..., amm-1_1) is theuth row of H,,_; and?, is thevth row of H;.

Comparing thg terms in the two sides of equalit2), we obtain(Ro, R;) = (K, L;),
whereK = (ko, k1, ..., kon_1). RewriteK asK = (Ko, K1, ..., Kon-i_1) WherekK; =
(kjots Kigig1s - kjgipoi_1),i = 0,1,...,2"~ — 1. Hence

on-l_q
(Ro.Rj) = Y ai(Ki.ty), wheree, = (ao, a1.....dm-1_y). (5)
i=0

whereu andv are defined in4).
Suppose thaP (y) is regular with respect tWV. Then there exist integers, s1, .. .,
Som-i_q, Suchthas; >0,i =0,1,...,2" ' —1,s0+s51+ - +smi_g = 27, andP(y)

is regular with respect t@V and (so, s1, ..., son-i_1). Hencek; = s;(1,..., 1), where
i=01,...,2""-1.
Consideryj =(d,....,dn_i1,c1,...,C1), whereyj is the binary representation of integer

jandy; ¢ W*. Note thaty; ¢ W* implies(c1,...,¢) # (0,...,0) and hences # O,
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wherev is defined in 4). Hence?, is (1, —1) balanced. Sinc&; = s;(1,...,1),i =
0,1,...,2"1—1,wehavgk;, ¢,) =0fori =0,1,...,2" 1 —1andv # 0. From ),
{Ro, R -) = 0. This meansq] is balanced, wherg; = dlpl(y) @D Ddy—ipm-i(y) ®
c1Pm—141(Y) © - -+ @ cipm(y) With (d1, ..., dm—i, c1, ..., c1) = 7; ¢ W*. By using a
non-singular Iinear transform on the variables, we can change the special taaadW *
to any general case. This proves (i) of the theorem.

Conversely, let us assume that for every= (da, ..., dm-1, €1, ..., 1), Wherey is the
blnary representation of an mtege&mdyj ¢ W*, q; is balanced, Wherej = dlpl(y) &)

- @ dp1Pm—1(Y) ® C1pm—141(Y) ® - - ® c1pm (). Write j = u2’ + v wherej, u andv
are defined in4). Hence(d;, .. ., dm_l) is the binary representation afand(cy, ..., ¢)
is the binary representation of

Note thaty g W* ifand only if (c1,...,¢) # (0, ...,0), andv # 0. The balance of
g; implies that(Ro, ;) =0.Hence from!ﬁ) we have

o=l

> ai(K;i, £,) =0, wheree, = (ag, a1, ..., dom—i_1). (6)
i=0

Sinceu (or ¢,, a row of H,,_;) can be arbitrary wheneverQu <2"~! — 1, from 6), we
conclude((Ko, £y), (K1, €y), ..., (Komit_1, L)) Hp_; = (0,0,...,0,v=1,...,2 —1,
from which we havek;, ¢,) =0, wherev =1,...,2/ —1,i =0,1,..., 2"/ - 1.

We fixi with 0<i <2"~! — 1. Note that bothK;, £,) = 0 and(¢g, £,) = 0 hold forv =

., 2l — 1. RecallH; is a Hadamard matrix. Hend¢; = s, £o must hold for an integer

si withs; >0.Recalllg = (1, ..., 1).Hencek; = s;(1, ..., D) andso+s1+- - -+som—1_1 =
2¢=!. By using a non-singular linear transform on the variables, one can show that part
(i) of the theorem also hold more genek&lland W*. This completes the proof for the
theorem. [

It should be noted that Theoretwill be trivial whenP is regular with respect t = {0},
as in this case we haw¥* = V,,. Another fact is that the XOR Lemma is a special case
of Theoremd. In fact, by lettingk >m and! = m in Theoremd, we haveW = V,, and
W* = {0} and Theorend becomes the XOR Lemma.

Acknowledgements

The authors would like to thank the reviewers for their comments and suggestions that
helped improve the presentation of this paper.

References

[1] C. Adams, The cast-128 encryption algorithm, Request for Comments RFC 2144, |IETF, 1997.

[2] C.H. Bennett, G. Brassard, J.M. Robert, Privacy amplification by public discussion, SIAM J. Comput. 17
(1988) 210-229.

[3] B.Chor, O. Goldreich, J. &tad, J. Friedman, S. Rudich, R. Smolensky, The bit extraction probleresitient
functions, IEEE Symp. Found. Comput. Sci. 26 (1985) 396-407.



Y. Zheng, X.M. Zhang / Theoretical Computer Science 329 (2004) 331-337 337

[4] R. Lidl, H. Niederreiter, Finite Fields, Encyclopedia of Mathematics and lts Applications, Cambridge
University Press, Cambridge, 1983.

[5] A. Menezes, P. Oorschot, S. Vanstone, Handbook of Applied Cryptology, CRC Press Inc., Boca Raton, 1997.

[6] R. Yarlagadda, J.E. Hershey, Analysis and synthesis of bent sequences, IEE Proc. (Part E) 136 (1989) 112—
123.

[7] X.M. Zhang, Y. Zheng, H. Imai, Relating differential distribution tables to other properties of substitution
boxes, Designs, Codes Cryptogr. 19 (2000) 45-63.



	The Generalized XOR Lemma
	Introduction
	Generalized regularity
	Acknowledgements
	References


