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Abstract

Nonlinear characteristics of (Boolean) functions is one of the important issues both in the
design and cryptanalysis of (private key) ciphers or encryption algorithms. This paper studies
nonlinear properties of functions from three di�erent but closely related perspectives: maximal
odd weighting subspaces, restrictions to cosets, and hypergraphs, all associated with a function.
Main contributions of this work include (1) by using a duality property of a function, we
have obtained several results that are related to lower bounds on nonlinearity as well as on the
number of terms, of the function, (2) we show that the restriction of a function on a coset has
a signi�cant impact on cryptographic properties of the function, (3) we identify relationships
between the nonlinearity of a function and the distribution of terms in the algebraic normal form
of the function, (4) we prove that cycles of odd length in the terms, as well as quadratic terms,
in the algebraic normal form of a function play an important role in determining the nonlinearity
of the function. We hope that these results contribute to the study of new cryptanalytic attacks
on ciphers, and more importantly, of counter-measures against such attacks. c© 1999 Elsevier
Science B.V. All rights reserved.
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1. Motivation of this Research

In his pioneering work on the theory of secrecy systems [10], Shannon suggested the
concept of a “product cipher” which employs a concatenation of several di�erent types
of basic transformations. Most modern ciphers, including the data encryption standard
(DES) [7], have been designed by following Shannon’s suggestion.
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A core component of these ciphers is the so-called substitution boxes or S-boxes
each of which is mathematically identical to a tuple of nonlinear (Boolean) func-
tions on GF(2). Recent progress in cryptanalysis, especially the discovery of linear
attacks [5], has highlighted the signi�cance of research into nonlinear characteristics
of functions. Well-known indicators that forecast nonlinear characteristics of a function
include nonlinearity (or the minimum distance to the a�ne functions), avalanche e�ect,
algebraic degree, resilience, and correlation immunity to mention a few. While some
indicators, such as nonlinearity and avalanche e�ect, have received extensive studies,
many others are yet to be addressed.
Study of these indicators may lead to the discovery of new cryptanalytic attacks,

and more importantly, shed light on the design of new ciphers that are secure against
an even wider range of possible cryptanalytic attacks.
This paper studies nonlinear properties of functions from three di�erent but closely

related perspectives: maximal odd weighting subspaces, restrictions to cosets, and hy-
pergraphs, all associated with a function. Main contributions of this work include (1)
by using a duality property of a function, we have obtained several results that are re-
lated to lower bounds on nonlinear, as well as on the number of terms, of the function,
(2) we identify relationships between the nonlinearity of a function and the distribu-
tion of terms in the algebraic normal form of the function, (3) we prove that cycles
of odd length in the terms, as well as quadratic terms, in the algebraic normal form
of a function play an important role in determining the nonlinearity of the function.
The remainder of this paper is organized as follows. Section 2 presents basic mathe-

matical background, especially duality properties of a function, which is needed in the
understanding of results to be presented in other parts of the paper. Section 3 studies
maximal odd weighting subspaces and their applications in determining the nonlinear-
ity and the number of terms of a function. This is followed by Section 4 where we
investigate how the restriction of a function to a coset is connected to the nonlinearity
of the original function. In Section 5, we study nonlinearity properties of a function
by the use of graph theory. We show that each function corresponds to a unique hy-
pergraph, which allows us to prove a few bounds on the nonlinearity of the function.
The paper is closed by a few remarks in Section 6.
Part of the results presented in this paper were reported at the 1997 International

Conference on Information and Communications Security (ICICS’97), Beijing, and the
1998 IEEE International Symposium on Information Theory (ISIT’98), Boston.

2. Preliminaries

We consider functions from Vn to GF(2) (or simply functions on Vn), Vn is the
vector space of n tuples of elements from GF(2). The truth table of a function f
on Vn is a (0,1)-sequence de�ned by (f(�0); f(�1); : : : ; f(�2n−1)), and the sequence
of f is a (1;−1)-sequence de�ned by ((−1)f(�0); (−1)f(�1); : : : ; (−1)f(�2n−1)), where
�0 = (0; : : : ; 0; 0); �1 = (0; : : : ; 0; 1); : : : ; �2n−1−1 = (1; : : : ; 1; 1). The matrix of f is a
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(1;−1)-matrix of order 2n de�ned by M =((−1)f(�i⊕�j)) where ⊕ denotes the ad-
dition in GF(2). f is said to be balanced if its truth table contains an equal number
of ones and zeros.
Given two sequences ã=(a1; : : : ; am) and b̃=(b1; : : : ; bm), their component-wise

product is de�ned by ã ∗ b̃=(a1b1; : : : ; ambm). In particular, if m=2n and ã; b̃ are
the sequences of functions on Vn respectively, then ã ∗ b̃ is the sequence of f ⊕ g.
Let ã=(a1; : : : ; am) and b̃=(b1; : : : ; bm) be two vectors (or sequences), the scalar

product of ã and b̃, denoted by 〈ã; b̃〉, is de�ned as the sum of the componentwise
multiplications. In particular, when ã and b̃ are from Vm, 〈ã; b̃〉= a1b1 ⊕ · · · ⊕ ambm,
where the addition and multiplication are over GF(2), and when ã and b̃ are (1;−1)-
sequences, 〈ã; b̃〉= ∑m

i= 1 aibi, where the addition and multiplication are over the reals.
A (1;−1)-matrix H of order m is called a Hadamard matrix if HH t =mIm, where H t

is the transpose of H and Im is the identity matrix of order m. A Sylvester–Hadamard
matrix of order 2n, denoted by Hn, is generated by the following recursive relation

H0 = 1; Hn=
[
Hn−1 Hn−1
Hn−1 −Hn−1

]
; n=1; 2; : : : :

Let li, 06i62n − 1, be the i row of Hn. By Lemma 2 of [9], li is the sequence of a
linear function ’i(x) de�ned by the scalar product ’i(x)= 〈�i; x〉, where �i is the ith
vector in Vn according to the ascending alphabetical order.
An a�ne function f on Vn is a function that takes the form of f(x1; : : : ; xn)= a1x1⊕

· · · ⊕ anxn ⊕ c, where aj; c ∈ GF(2); j=1; 2; : : : ; n. Furthermore f is called a linear
function if c=0.

De�nition 1. The Hamming weight of a (0; 1)-sequence � is the number of ones in
the sequence. Given two functions f and g on Vn, the Hamming distance d(f; g)
between them is de�ned as the Hamming weight of the truth table of f(x) ⊕ g(x),
where x=(x1; : : : ; xn). The nonlinearity of f, denoted by Nf, is the minimal Hamming
distance between f and all a�ne functions on Vn, i.e., Nf = mini= 1;2; :::;2n+1 d(f;’i)
where ’1, ’2; : : : ; ’2n+1 are all the a�ne functions on Vn.

The following characterization of nonlinearity will be used in this paper (for a proof
see for instance [6, 9]):

Nf =2n−1 − 1
2 max{|〈�; li〉|; 06i62n − 1}; (1)

where � is the sequence of f and l0; : : : ; l2n−1 are the rows of Hn, namely, the sequences
of linear functions on Vn.

Notation 2. (b1; : : : ; bn)4(a1; : : : ; an) means that (b1; : : : ; bn) is covered by (a1; : : : ; an),
namely if bj =1 then aj =1. In addition, (b1; : : : ; bn)≺ (a1; : : : ; an) means that
(b1; : : : ; bn) is properly covered by (a1; : : : ; an); namely (b1; : : : ; bn)4(a1; : : : ; an) and
(b1; : : : ; bn) 6= (a1; : : : ; an).



210 Y. Zheng et al. / Theoretical Computer Science 226 (1999) 207–223

De�nition 2. A function f on Vn can be uniquely represented by a polynomial on
GF(2) whose degree is at most n. Namely;

f(x1; : : : ; xn)=
⊕
�∈Vn

g(a1; : : : ; an)x
a1
1 · · · xann ; (2)

where �=(a1; : : : ; an); and g is also a function on Vn. The polynomial representation
of f is called the algebraic normal form of the function and each xa11 · · · xann is called
a term the algebraic in normal form of f. The algebraic degree; or simply degree; of
f; denoted by deg(f); is de�ned as the number of variables in the longest term of f;
i.e.;

deg(f)= max{the Hamming weight of(a1; : : : ; an) | g(a1; : : : ; an)= 1}:
The function g de�ned in the algebraic normal form (2) is called the M�obius transform
of f.

Notation 4. Let W be a subspace of Vn. Denote the dimension of W by dim(W ).

Notation 5. Let X be a set. The cardinal number of X; i.e., the number of elements
in X; is denoted by #X .

A proof for the following result is provided, as we feel that understanding the proof
would be helpful in studying other issues that are more directly related to cryptography.

Theorem 3. Let f be a function on Vn. Let �; �∈Vn �=(1; : : : ; 1; 0; : : : ; 0) where only
the �rst s components are one; and �=(0; : : : ; 0; 1; : : : ; 1; 0; : : : ; 0) where only the (s+
1)th; : : : ; the (s + t)th components are one. Then the number of terms of the form
x1 · · · xsxi1 · · · xit′ where s+16i1¡ · · ·¡it′6s+ t; that appear in the algebraic normal
form of f; is even if

⊕
4� f(⊕�)= 0; and the number is odd if

⊕
4� f(⊕�)= 1.

Proof. Consider a term

�(x)= xj1 · · · xjs′ xi1 · · · xit′ (3)

in f, where x=(x1; : : : ; xn); 16j1¡ · · ·¡js′6s and s + 16i1¡ · · ·¡it′6s + t. For
s′¡s, there are an even number of vectors  in Vn such that 4� and �( ⊕ �)= 1.
Hence

⊕
4�

�(⊕ �)= 0: (4)

For s′= s, there is only one vector in Vn, = �, such that �(⊕ �)= 1. Hence
⊕
4�

�(⊕ �)= 1: (5)

Now consider a term

!(x)= xj1 · · · xjk (6)
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in f, where x=(x1; : : : ; xn), 16j1¡ · · ·¡jk , and jk¿s + t. From (6) with jk¿s + t,
and the structures of � and �,

!(⊕ �)= 0 (7)

for each 4�. Denote the set of terms given in (3) by �1 if s′¡s, and by �2 if s′= s.
And denote the set of terms given in (6) by 
. Then we can write f

f=
⊕
�∈�1

� ⊕ ⊕
�∈�2

� ⊕ ⊕
!∈


!:

From (4), (5) and (7), we have

⊕
4�

f(⊕ �)=
⊕
4�

⊕
�∈�2

�(⊕ �): (8)

The proof is completed by noting that
⊕

4� f( ⊕ �)= 0 implies that #�2 is even,
while

⊕
4� f(⊕ �)= 1 implies that #�2 is odd.

Set �=0 in Theorem 3 and reorder the variables, we obtain a result well known to
coding theorists (see [4, p. 372])

Corollary 7. Let f be a function on Vn and �=(a1; : : : ; an) be a vector in Vn. Then
the term xa11 · · · xann appears in f if and only if

⊕
4� f()= 1.

With the above two results, it is not hard to verify the correctness of the following
lemma:

Lemma 8. Let f and g be function on Vn. Then the following four statements are
equivalent:
(i) f(�)=

⊕
�4� g(�) for every vector � ∈ Vn;

(ii) g(�)=
⊕

�4� f(�) for every vector � ∈ Vn;
(iii) f(x1; : : : ; xn)=

⊕
�∈Vn g(a1; : : : ; an)x

a1
1 · · · xann where �=(a1; : : : ; an);

(iv) g(x1; : : : ; xn)=
⊕

�∈Vn f(a1; : : : ; an)x
a1
1 · · · xann where �=(a1; : : : ; an).

3. Maximal odd weighting subspaces with applications

The focus of this section is on maximal odd weighting subspace to be de�ned in the
following. We show the usefulness of this simple concept by proving two interesting
results, one is on a lower bound on the nonlinearity of a function, and the other is on
a lower bound on the number of terms in the algebraic normal form of a function.

De�nition 9. Let f be a function on Vn and W be an s-dimensional subspace of Vn.
The restriction of f to W , denoted by fW , is a function on W de�ned by fW (�)=f(�)
for every �∈W .
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De�nition 10. Let f be a function on Vn. A subspace U of Vn is called a maximal odd
weighting subspace of f if the Hamming weight of fU is odd, while the Hamming
weight of fU ′ is even for every subspace U ′ of Vn with U ′ ⊃U .

A maximal odd weighting subspace of a function is not necessarily a subspace with
the maximum dimension, even if the Hamming weight of the restrictions of f to the
subspace is odd. This is best explained with the following example.

Example 11. Let

f(x1; x2; x3; x4)= x1x2x3 ⊕ x1x2x4 ⊕ x3x4 ⊕ x3

be a function on V4, whose truth table is 0010001000100100. The eight vectors

(0000); (0001); (0100); (0101); (1000); (1001); (1100); (1101)

form a three-dimensional subspace, say W , such that the Hamming weight of fW , is one
(odd), where fW is de�ned in De�nition 9. Since f has an even Hamming weight, the
three-dimensional subspace W is a maximal odd weighting subspace of f. However,
the four vectors (0000); (0001); (0010) and (0011) form a two-dimensional subspace,
say U , such that the Hamming weight of fW is one (odd). There are three-dimensional
subspaces containing U :

U ′= {(0000); (0001); (0010); (0011); (0100); (0101); (0110); (0111)}
U ′′= {(0000); (0001); (0010); (0011); (1000); (1001); (1010); (1011)}
U ′′′= {(0000); (0001); (0010); (0011); (1100); (1101); (1110); (1111)}

We note that the Hamming weights of fU ′ , fU ′′ and fU ′′′ are all two (even). We also
note that the four-dimensional subspace containing U is V4 itself and the Hamming
weight of f is four (even). Hence both W and U are maximal odd weighting subspaces
of f.

As will be shown in the forthcoming subsections, the concept of maximal odd
weighting subspace of a function plays an important role, primarily due to the fact
that the dimension of a subspace is relevant to the structure of the function.

3.1. A Lower bound on nonlinearity

In this subsection we show how the dimension of a maximal odd weighting subspace
of a function is connected to the lower bound on the nonlinearity of the function.

De�nition 12. Let f be a function on Vn, xj1 · · · xjt and xi1 · · · xis be two terms in the
algebra normal form of function f. xj1 · · · xjt is said to be covered by xi1 · · · xis if
{ j1; : : : ; jt} is a subset of {i1; : : : ; is}, and xj1 · · · xjt is said to be properly covered by
xi1 · · · xis if { j1; : : : ; jt} is a proper subset of {i1; : : : ; is}.
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Theorem 13. Let f be a function on Vn and U be a maximal odd weighting subspace
of f. If dim(U )= s then the Hamming weight of f is at least 2n−s.

Proof. Let U be an s-dimensional subspace of Vn. Then Vn is the union of 2n−s disjoint
cosets of U

Vn=�0 ∪�1 ∪ · · · ∪�2n−s−1; (9)

where
(i) �0 =U ,
(ii) for any �; �∈Vn, �; � belong to the same class, say �j, if and only if � ⊕

�∈�0 =U . From (i) and (ii), it follows that
(iii) �j ∩�i= ∅ for j 6= i, where ∅ denotes the empty set.
Note that each �j can be expressed as �j = �j⊕U for a �j ∈Vn, where �j⊕U = {�j⊕
� | �∈U}. And let Nj =#{� | � ∈ �j; f(�)= 1}, where �j is de�ned in (9), j=0; 1; : : : ;
2s−1. Since �0 =U; N0 is odd. Note that �0 ∪ �j is a (s + 1)-dimensional subspace
of Vn, j=1; : : : ; 2n−s − 1.
Since �0 =U is a maximal odd weighting subspace of f, the Hamming weight of

the restriction of f to �0 ∪�j is even. In other words, N0 + Nj is even. This proves
that each Nj is odd, j=1; : : : ; 2n−s − 1. Hence N0 +N1 + · · ·+N2n−s−1¿2n−s, namely,
the Hamming weight of f is at least 2n−s.

Theorem 14. Let f be a function on Vn and U be a maximal odd weighting subspace
of f. Let dim(U )= s (s¿2). Then the nonlinearity Nf of f satis�es Nf¿2n−s.

Proof. Let ’ be any a�ne function on Vn. Let W be any subspace of dimension
at least two. Note that the Hamming weight of ’W is even. Hence the Hamming
weight of (f ⊕ ’)W is odd if and only if the Hamming weight of fW is odd. This
proves that U is also a maximal odd weighting subspace of f ⊕ �. According to
Theorem 13, the Hamming weight of f⊕ ’ is at least 2n−s. As the Hamming weight
of f ⊕ ’ determines d(f;’), the theorem is proved.

Theorem 15. Let t¿2. If xj1 · · · xjt is a term in a function f on Vn and it is not
properly covered (see De�nition 12) by any other term in the same function, then
the nonlinearity Nf of f satis�es Nf¿2n−t .

Proof. Write �=(a1; : : : ; an) where aj =1 for j∈{ j1; : : : ; jt} and aj =0 for
j =∈{ j1; : : : ; jt}. Set

U = { | 4�}:

Obviously U is a t-dimensional subspace of Vn. Since xj1 · · · xjt is a term in f on Vn,
by using Corollary 7,

⊕
4� f()= 1 or

⊕
∈U f()= 1, i.e., the Hamming weight of

fU is odd.



214 Y. Zheng et al. / Theoretical Computer Science 226 (1999) 207–223

We now prove that U is a maximal odd weighting subspace of f. Assume that U is
not a maximal odd weighting subspace of f. Then there is an s-dimensional subspace
of Vn, say W , such that U is a proper subset of W , i.e., s¿t and the Hamming weight
of fW is odd (

⊕
∈W f()= 1). Since U is a proper subspace of W , we can express

W as a union of 2s−t disjoint cosets of U

W =U ∪ (�1 ⊕ U ) ∪ · · · ∪ (�2s−t−1 ⊕ U ); (10)

where each �4� , and �⊕ �=(1; : : : ; 1). Since both the Hamming weights of fU and
fW are odd, there is a coset, say �k ⊕ U , 16k62s−t − 1, such that the Hamming
weight of f�k⊕U is even, i.e.,

⊕
4�

f(�k ⊕ )= 0: (11)

Applying Theorem 3 to (11), there are an even number of terms covering xj1 · · · xjt .
Since the term xj1 · · · xjt itself appears in f, there is another term properly covering
xj1 · · · xjt . This contradicts the condition in the theorem, namely the term xj1 · · · xjt is not
properly covered by any other term in f. The contradiction indicates that U is a max-
imal odd weighting subspace of f. By noting Theorem 14, the proof is completed.

Example 16. Let

f(x1; : : : ; x10) = x1x2x3x4x5x6x7 ⊕ x3x4x5x6x7x8x9 ⊕ x7x8x9x10 ⊕
x4x6x8x10 ⊕ x1x5x9 ⊕ x2x4 ⊕ x6

be a function on V10. The term x1x5x9 is not properly covered by any other term in f.
By using Corollary 15, the nonlinearity Nf of f satis�es Nf¿210−3 = 27.

Example 17. Let

f(x1; : : : ; x10) = x1x2x3x4x5x6x7 ⊕ x3x4x5x6x7x8x9 ⊕ x7x8x9x10 ⊕
x4x6x8x10 ⊕ x1x3x5 ⊕ x2x8 ⊕ x1 ⊕ x2

be a function on V10. The term x2x8 is not properly covered by any other term in f.
Thus, the nonlinearity Nf of f satis�es Nf¿210−2 = 28.

We note that the lower bound in Theorem 14 is tight.

Corollary 18. For any n and any s with 26s6n, there is a function on Vn; say
f, together with an s-dimensional subspace, say U , such that U is a maximal odd
weighting subspace of f and the nonlinearity Nf of f satis�es Nf =2n−s.

Proof. Let g be a function on Vs, de�ned as g(�)= 1 if and only if �=0. Set
f(z; y)= g(y), a function on Vn, where z∈Vn−s and y∈Vs. Since the Hamming weight
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of f is 2n−s (s¿2); d(f; h)¿2n−s where h is any a�ne function on Vn and the equal-
ity holds if h is the zero function on Vn. Hence the nonlinearity Nf of f satis�es
Nf =2n−s. On the other hand, set

U = {(0; : : : ; 0; b1; : : : ; bs) | bj ∈GF(2)};
where the number of zeros is n− s.
We now verify that the s-dimensional subspace U is a maximal odd weighting

subspace of f. Let W be a k-dimensional subspace of Vn such that U is a prefer
subspace of W . We can express W as a union of 2k−s disjoint cosets of U

W =U ∪ (�1 ⊕ U ) ∪ · · · ∪ (�2k−s−1 ⊕ U ):

Since U is a subspace, we can choose each �j as a vector of the form (c1; : : : ; cn−s; 0;
: : : ; 0). From the construction of f, the Hamming weight of f�j⊕U is odd (one). Hence
the Hamming weight of fW is even. This proves that U is a maximal odd weighting
subspace of f.

Finally we note that Theorem 14 cannot be further improved by extending s to s=1,
as the condition of s¿2 in the proof of the theorem cannot be removed. For example,
let f be a function on Vn, whose truth table is given as follows

0110011010011001:

It is easy to verify that (0000) and (0001) form a maximal 1-dimensional subspace,
denoted by U . Theorem 14 is not applicable due to the fact that dim(U )= 1. In fact,
f is a linear function, hence its nonlinearity is 0. Nevertheless, Theorem 13 can be
applied, which tells us that the Hamming weight of f must be at least 24−1 = 8.

3.2. A lower bound on the number of terms

In the design of a cipher, a designer generally prefers a function that has a large
number of terms in its algebraic normal form to one that has few, although the former
may require more circuitry than the latter in hardware implementation. A good example
is S-boxes employed in DES all of which appear to contain a large number of terms. In
what follows we show that maximal odd weighting subspaces can be used in bounding
from below the number of terms of a function.

Theorem 19. Let f be a function on Vn such that f(�)= 1 for a vector �∈Vn; and
f(�)= 0 for every vector � with � ≺ �; where ≺ is de�ned as in Notation 1. Then
f has at least 2n−t terms; where t denotes the Hamming weight of �.

Proof. First we note that Theorem 13 can be equivalently stated as follows:
Let f be a function on Vn and g be the M�obius transform of f de�ned in (2). Let

g(�)= 1 for a vector �∈Vn, and g(�)= 0 for every vector � with � ≺ �, where ≺ is
de�ned in Notation 1. Then the Hamming weight of f is at least 2n−t .
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The equivalence between (iii) and (iv) in Lemma 8 allows us to interchange f and
g in the above statement. Thus we have the following.
Let f be a function on Vn and g be de�ned in (2). Let f(�)= 1 for a vector �∈Vn,

and f(�)= 0 for every vector � with � ≺ �. Then the Hamming weight of g is at
least 2n−t . This completes the proof.

Applying Theorem 19, it is not hard to verify

Corollary 20. Let f be a function on Vn such that f(�)= 0 for a vector �∈Vn; and
f(�)= 1 for every vector � with � ≺ �; where ≺ is de�ned as in Notation 1. Then
f has at least
(i) 2n−s − 1 terms if f(0)= 0;
(ii) 2n−s + 1 terms if f(0)= 1;
where s denotes the Hamming weight of �.

Example 21. Let f be a function on V6, whose truth table is given as follows:

10001101111100100011010011001000

01111100011001101001011010001010:

Note that the value of f(001011) is one, while the values of

f(001111); f(011011); f(011111); f(101011);
f(101111); f(111011); f(111111)

are all zero. Applying Theorem 19 to the vector (001011), we conclude that f has at
least 26−3 = 8 terms.

Example 22. Let f be a function on V6, whose truth table is given as follows:

10001101111100110011010111011001

01111101011101111001011110011010:

Note that f(000011) assumes the value zero, while

f(000111); f(001011); f(001111); f(010011);
f(010111); f(011011); f(011111); f(100011);
f(100111); f(101011); f(101111); f(110011);
f(110111); f(111011); f(111111)

all assume the value one. Applying (ii) of Corollary 20 to the vector (000011), we
can see that f has at least 26−2 + 1=17 terms.

The lower bounds on the number of terms given by Theorem 19 and Corollary 20
are tight, due to Corollary 18 and Lemma 8.
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4. Restrictions of a function

Restricting a function is another approach that can be used in studying the properties
of the function. In this section we investigate restriction of a function to a coset which is
a set of vectors induced by a subspace. We show a relationship between the nonlinearity
of a function and that of the restriction of the function to a coset. Using this relationship
we further obtain a number of results that relate nonlinearity to the number of terms
in the algebraic normal form of the function. First we introduce the following lemma
which is a special case of Lemma 3 in [1] with G=Vn; r=2 and k = n.

Lemma 23. Let f be a function on Vn (n¿2). If f satis�es the property that for
every (n−1)-dimensional subspace; say W; the Hamming weight of fW is even; where
fW is de�ned in De�nition 9, then the Hamming weight of f is also even.

The next de�nition is more general than De�nition 9.

De�nition 24. Let f be a function on Vn and U be an s-dimensional subspace of Vn.
The restriction of f to a coset �j = �j ⊕U; j=0; 1; : : : ; 2n−s − 1; denoted by f�j ; is a
function on U; and it is de�ned by f�j (�)=f(�j ⊕ �) for every �∈U .

4.1. Nonlinearity of the restriction of a function to a coset

Theorem 25. Let f be a function on Vn; W be a p-dimensional subspace of Vn and
� be a coset of W . Then

max{|〈; ej〉|; 06j62p−1}6max{|〈�; lj〉|; 06j62n−1};
where  is the sequence of f�; � is the sequence of f; ej is the jth row of the 2pth-
order Sylvester–Hadamard matrix Hp; li is the ith row of the 2nth-order Sylvester–
Hadamard matrix Hn; and �i is the sequence of f.

Proof. We �rst prove the theorem for the case of �=W . Set q= n−p. We now
prove the theorem by induction on q. When q=0, the theorem is obviously true. Now
assume that the theorem is true for 06q6k − 1. Consider the case when q= k. Let
U be an (n − 1)-dimensional subspace of Vn such that W is a subspace of U . Let li
denote the ith row of the 2n−1th-order Sylvester–Hadamard matrix Hn−1. Also let � to
denote the sequence of fU . Now applying the same assumption to W and U , we have

max{|〈; ej〉|; 06j62p−1}6max{|〈�; lj〉|; 06j62n−1 − 1}:
Again, by using the assumption,

max{|〈�; lj〉|; 06j62n−1 − 1}6max{|〈�; lj〉|; 06j62n − 1}:
The proof for the particular case of �=W is done. To complete the proof for the
theorem, we note that the above discussions also hold for a function g satisfying
f(x)= g(x ⊕ �), where � is any �xed vector in Vn.
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Applying the above theorem, we obtain the following two interesting results:

Corollary 26. Let f be a function on Vn; W be a p-dimensional subspace of Vn; �
be a coset of W; and f� be the restriction of f to �. Then the nonlinearity of f
and the nonlinearity of f� are related by

Nf − Nf�62
n−1 − 2p−1:

Corollary 27. Let f be a function on Vn; W be a p-dimensional subspace of Vn; and
� be a coset of W . If the restriction of f to �; f�; is an a�ne function; then the
nonlinearity Nf of f satis�es

Nf62n−1 − 2p−1:
4.2. Relating nonlinearity to terms in algebraic normal form

The following result is an application of Corollary 27.

Theorem 28. Let f be a function on Vn and J be a subset of {1; : : : ; n} such that f
does not contain any term xj1 : : : xjt where j1; : : : ; jt ∈ J . Then the nonlinearity Nf of
f satis�es

Nf62n−1 − 2s−1;
where s=#J .

Proof. Let U = {(a1; : : : ; an) | aj =0 if j =∈ J}. It is clear that U is an s-dimensional
subspace of Vn. Write

f(x1; : : : ; xn)=
⊕
�∈Vn

g(a1; : : : ; an)x
a1
1 : : : xann ;

where �=(a1; : : : ; an) and g is also a function on Vn. From the property of f and J ,
we have g(�)= 0 for all �∈U . By using Lemma 8, f(�)=

⊕
�4� g(�). Hence f(�)

= 0 for all �∈U . That is, fU =0. By using Corollary 27, we have proved that
Nf62n−1 − 2s−1.

Example 29. Consider a function on V6; f= x1 ⊕ x3x4 ⊕ x1x2x3 ⊕ x2x3x4 ⊕ x3x4x5 ⊕
x4x5x6. J = {2; 3; 5; 6} satis�es the condition mentioned in Theorem 28. Hence Nf625−
23 = 24. Note that the nonlinearity of a function on V6 is upper bounded by 25−22 = 28.

The following statement can be viewed as an improvement on Theorem 28.

Theorem 30. Let f be a function on Vn and J be a subset of {1; : : : ; n} such that f
does not contain any term xj1 : : : xjt where t¿1 and j1; : : : ; jt ∈ J . Then the nonlinearity
Nf of f satis�es

Nf62n−1 − 2s−1;
where s=#J .
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Proof. Write f=f∗ ⊕  where  is an a�ne function and f∗ has no a�ne term.
Note that Nf∗ =Nf. By Theorem 28, we have Nf∗62n−1 − 2s−1.

Example 31. Consider a function on V10,

f(x1; : : : ; x10) = x1x2x3x4x5x6x7 ⊕ x2x3x4x5x6x7x8 ⊕ x6x7x8x9

⊕ x7x8x9x10 ⊕ x2x3x10 ⊕ x4x8 ⊕ x1 ⊕ x3:

J = {1; 3; 4; 5; 6; 7; 9; 10} satis�es the condition mentioned in Theorem 30. Hence Nf

629 − 27 = 384. Note that the nonlinearity of a function on V10 is upper bounded by
29 − 24 = 496.

The next two statements can be obtained from Theorems 28 and 30, respectively, by
setting J = {1; : : : ; n} − P.
• Statement 1. Let f be a function on Vn and P be a subset of {1; : : : ; n} such that
for any term xj1 : : : xjt in f, {j1; : : : ; jt}∩P 6= ∅ holds, where ∅ denotes the empty
set. Then the nonlinearity Nf of f satis�es

Nf62n−1 − 2n−p−1;

where p=#P.
• Statement 2. Let f be a function on Vn and P be a subset of {1; : : : ; n} such that
for any term xj1 : : : xjt with t¿1 in f, {j1; : : : ; jt}∩P 6= ∅ holds, where ∅ denotes
the empty set. Then the nonlinearity Nf of f satis�es

Nf62n−1 − 2n−p−1;

where p=#P.
Note that bent functions on Vn have nonlinearity 2n−1 − 2(1=2)n−1. By using
Theorem 30 we conclude:

Corollary 32. Let f be a function on Vn satisfying Nf¿2n−1−2s−1. Then f contains
at least n− s nona�ne terms. In particular, if f is bent, then it contains at least 12n
nona�ne terms.

Proof. Let f contain exactly q non-a�ne terms. Suppose that q¡n − s. From each
nona�ne term, we choose arbitrarily a single variable and collect those single variables
together to form a set P. Obviously P satis�es the condition in Statement 2 and #P6q.
Hence we have Nf62n−1 − 2n−#P−162n−1 − 2n−q−1¡2n−1 − 2s−1. This contradicts
the condition that Nf¿2n−1 − 2s−1.

5. Hypergraph of a Boolean function

5.1. K�onig property

Let X = {x1; : : : ; xn} be a �nite set. Set == {E1; : : : ; Em}, where each Ej is a subset
of X . The hypergraph, denoted by �, is the pair �=(X;=).



220 Y. Zheng et al. / Theoretical Computer Science 226 (1999) 207–223

Each xj is called a vertex, each Ej is called an edge, n and m are called the order
and the size of �, respectively. If #Ej = 1 for a j then the vertex in Ej is called an
isolated vertex.
A sequence x1E1x2E2 · · · xpEp x1 is called a cycle of length p, where p¿1, all the

Ej and xj, 16j6p, are distinct, and xj; xj+1 ∈Ej, j = 1; : : : ; p.
A subset of X , say S, is a stable set of �, if Ej 6⊆ S; j = 1; : : : ; m. The maximum

cardinality of a stable set is called the stability number of �, denoted by �(�).
A subset of X , say Y , is a transversal of �, if Y ∩Ej 6= ∅; j = 1; : : : ; m. The minimum

cardinality of a transversal is called the transversal number of �, denoted by �(�).
A subset of =, say B= {Ej1 ; : : : ; Ejq}, is a matching of �, if Ejt ∩Ejs = ∅, for t 6= s.

The maximum number of edges in a matching is called the matching number of �,
denoted by �(�).
The following equality and inequality can be found in [3, p. 405]:

�(�) + �(�)= n (12)

and

�(�)6�(�): (13)

� is said to satisfy the K�onig property if the equality in (13) holds. The following
lemma can be deduced from Theorem 3.5 of [3], established by Berge and Las Vergnas
in 1970.

Lemma 33. If a hypergraph � has no cycle with odd length, then � satis�es the
K�onig property.

De�nition 34. For any function on Vn, say f, we can de�ne the hypergraph of f,
denoted by �(f), by the following rule: Let X = {x1; : : : ; xn}. A subset of X , Ej =
{xj1 ; : : : ; xjt} is referred to as an edge of �(f) if and only if xj1 · · · xjt is a term of f.
Denote the stability number of �(f) by �(f), transversal number of �(f) by �(f)
and matching number of �(f) by �(f).

5.2. Applications to nonlinearity

Corollary 35. Let f be a function on Vn. Write f = f∗ ⊕  , where  is an a�ne
function and f∗ has no a�ne term. Let �(f∗) denote the stability number of �(f∗).
Then

Nf62n−1 − 2�(f∗)−1

or equivalently

�(f∗)61 + log2(2n−1 − Nf):

In particular, if f is a bent function, then �(f∗)6 1
2n and �(f∗)¿ 1

2n.
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To prove the corollary, we note that Nf∗ =Nf. Then applying Theorem 30, we have
Nf∗62n−1 − 2�(f∗)−1.
Next we introduce a key result of this section.

Theorem 36. Let f be a bent function on Vn. Then (the algebraic normal form of)
f contains precisely 1

2n disjoint quadratic terms if �(f) contains no cycle of odd
length. Equivalently, �(f) must contain a cycle of odd length if f contains less than
1
2n disjoint quadratic terms.

Proof. Write f=f∗ ⊕  where  is an a�ne function and f∗ has no a�ne term.
If �(f) contains no cycle of odd length, then �(f∗) too contains no cycle of odd
length. By using Lemma 33, we have �(f∗)= �(f∗). From Corollary 35, �(f∗)¿ 1

2n.
Hence there exists a matching B of �(f∗). Without loss of generality, let B=
{E1; : : : ; E�}, where each Ej is an edge of �(f∗); �= �(f∗)= �(f∗)¿ 1

2n and Ej ∩
Ei= ∅, for j 6= i. Note that

#E1 + · · ·+ #E�=#(E1 ∪ · · · ∪ E�)6n: (14)

On the other hand, since �(f∗) has no isolated vertex, each Ej has at least two
elements. Hence

#E1 + · · ·+ #E�¿2�¿n: (15)

Comparing (15) with (14), we have

#E1 + · · ·+ #E�= n: (16)

Note that (16) with �¿ 1
2n holds if and only if �= 1

2n and #Ej =2; j = 1; : : : ; �= 1
2n.

This proves that f∗ contains 1
2n disjoint quadratic terms, and so does f.

Theorem 37. Let f be a function on Vn; whose nonlinearity Nf satis�es

Nf¿2n−1 − 2(2=3)n−t−1;

where t is real with 16t6 1
6n. Then f contains at least 3t disjoint quadratic terms if

�(f) contains no cycle of odd length. Equivalently, �(f) contains at least one cycle
of odd length if f contains less than 3t disjoint quadratic terms.

Proof. Write f=f∗ ⊕  where  is an a�ne function and f∗ has no a�ne term.
If �(f) contains no cycle of odd length, then �(f∗) too contains no cycle of odd
length. Recall that Nf =Nf∗ . By using Lemma 33, �(f∗)= �(f∗). From Corollary 35,
�(f∗)¿n−( 23n−t)= 1

3n+t. Hence there exists a matching B of �(f∗). Again, without
loss of generality, we can assume that B= {E1; : : : ; E�}, where each Ej is an edge of
�(f∗), �= �(f∗)= �(f∗)¿ 1

3n+ t and Ej ∩Ei= ∅, for j 6= i.
Note that

#E1 + · · ·+ #E�=#(E1 ∪ · · · ∪ E�)6n: (17)
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Let there be k sets Ej, where Ej ⊆B with #Ej =2. Then

#(E1 + · · ·+ E�)¿2k + 3(�− k)¿2k + 3(13n+ t − k): (18)

Comparing (17) and (18), we have k¿3t.

Corollary 38. Let f be a function on Vn; whose nonlinearity Nf satis�es

Nf¿2n−1 − 2(2=3)n−1:
Then f contains at least one quadratic term if �(f) contains no cycle of odd length.
That is, �(f) must contain a cycle of odd length if f contains no quadratic term.

Proof. Since Nf¿2n−1 − 2(2=3)n−1, there exists a real number t, 0¡t6 1
6n, such that

Nf¿2n−1 − 2(2=3)n−t−1¿2n−1 − 2(2=3)n−1. By using Theorem 37, the proof is
completed.

Theorems 36, 37 and Corollary 38 show that the existence of a cycle of odd length
in � or of quadratic terms in f plays an important role in highly nonlinear functions.
It should be pointed out that the existence of 1

2n disjoint quadratic terms and the
existence of a cycle of odd length in �(f) are not mutually exclusive. This can be
demonstrated by the following example.

Example 39. It is known that there exist four types of bent functions on V6 each of
which is not equivalent to other three by any linear transformation on the variables [8]:
(i) f1(x1; : : : ; x6)= x1 x4 ⊕ x2 x5 ⊕ x3 x6,
(ii) f2(x1; : : : ; x6)= x1 x2 x3 ⊕ x1x4 ⊕ x2 x5 ⊕ x3 x6,
(iii) f3(x1; : : : ; x6)= x1x2 x3 ⊕ x2 x4 x5 ⊕ x1x2 ⊕ x1x4 ⊕ x2 x6 ⊕ x3 x5 ⊕ x4 x5,
(iv) f4(x1; : : : ; x6)= x1 x2 x3 ⊕ x2 x4 x5 ⊕ x3 x4 x6 ⊕ x1 x4 ⊕ x2 x6 ⊕ x3 x4 ⊕ x3x5 ⊕ x3 x6 ⊕

x4 x5 ⊕ x4 x6.

f1 and f2: Obviously, neither �(f1) nor �(f2) contains a cycle of odd length. Both
f1 and f2 contain three disjoint quadratic terms: x1 x4; x2 x5; x3 x6.

f3: Let Ej be the jth term, j=1; : : : ; 7, where the order is from left to right in the alge-
braic normal form of f3. �(f3) contains a cycle of length 5: x4E7x5E6x3E1x2E3x1E4x4.
In addition, f3 contains three disjoint quadratic terms: x1 x4; x2 x6; x3 x5.

f4: Let Ej be the jth term, j=1; : : : ; 10, where the order is from the left to the right in
the algebraic normal form of f4. �(f4) contains a cycle of length 3: x3E1x2E2x4E3x3.
It also contains three disjoint quadratic terms: x1 x4; x2 x6; x3 x5.

6. Future work

Results in this paper show that maximal odd weight subspaces, restrictions to a coset,
terms in the algebraic normal form and hypergraphs of a function are useful tools
in the study of cryptographic properties, especially the nonlinearity, of the function.
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A possible future research topic is to investigate whether these tools can be used in the
study of the algebraic degree of a function. Another topic is to explore these indicators
in analyzing the security of ciphers used in the real world, and the design of functions
that would strengthen a cipher against various attacks.
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