Security Characterisation and Intégrity Assurance for
Component-Based Software

Jun Han and Yuliang Zheng
School of Network Computing
Monash University, McMahons Road
Frankston, Vic 3199, Australia
e-mails: {jhan,yzheng }@monash.edu.au

Abstract

Software systems are increasingly assembled from com-
ponents that are developed by and purchased from third
parties, for technical and economic gains. In such com-
ponent based software development, the functionality and
quality-of-service attributes of the software components
should be clearly and adequately specified (or packaged)
through their interfaces, so that the characteristics of the
systems assembled from the components can be analysed
relative to the system requirements. In this paper, we con-
sider one particular quality-of-service attribute, i.e., secu-
rity, and outline an approach to (1) specifying the security
characteristics of software components and (2) analysing
the security properties of component-based systems in terms
of their component characteristics and system architectures.
The approach is partially based on the Common Criteria
for Information Technology Security Evaluation (ISO/IEC
International Standarad 15408). In addition, we also intro-
duce our work on ensuring the integrity of software compo-
nents as part of the infrastructural support for component
based software engineering.

1. Introduction

Component based software engineering (CBSE) has re-
cently attracted tremendous attention from both the sofi-
ware industry and the research community. It has been
widely recognised that more and more software systems are
being built by assembling existing and new components. In
Web-based systems, for example, the software components
may even be distributed over the Internet and dynamically
assembled into target systems. It has been shown that CBSE
not only delivers technical benefits for the development of
large scale systems, but also has positive impact on the man-
agement and structuring of projects and organisations [1].

0-7695-0903-7/00 $10.00 © 2000 IEEE

Proceedings of the 36th Annual Simulation Symposium (ANSS’03)
1080-241X/03 $17.00 © 2003 IEEE

61

A key to the success of CBSE is its ability to use software
components that are often developed by and purchased from
third parties. In such a scenario, it is the norm that the com-
ponents are delivered in binary form and their source code
and design information are not available to the system de-
velopers. As such, the software components should be ad-
equately specified or packaged through their interfaces, to
facilitate proper usage.

In general, the interface specification or packaging of a
software component should involve the syntactic and se-
mantic specification of its functional interface and the spec-
ification of its quality-of-service attributes, such as security,
reliability and performance. Support for syntactic interface
specification has been well studied in the form of interface
definition languages (IDLs), e.g., those from the three ma-
jor industry leaders: Sun’s JavaBeans, Microsoft’s COM
components, and CORBA components. While having made
CBSE practical, these industrial standards generally do not
support semantic interface specification. To achieve com-
ponent (re)use with confidence, precise semantic specifica-
tion of component interfaces is necessary. Semantic speci-
fications of individual interface operations have been advo-
cated in object oriented programming languages like Eiffel
[9] and CBSE approaches like Catalysis [3], in the form of
pre-/post-conditions. Additional semantic constraints about
how the interface elements of a component depend on each
other and how the component is to interact with other com-
ponents should also be specified [4].

In [4], we have proposed a framework for defining in-
terfaces of software components. This framework not only
deals with the syntactic and semantic specification of com-
ponent interface, but also allows the specification of non-
functional quality-of-service (QoS) attributes (code named
illities [10]) of components. In the context of building sys-
tems from existing components, the characterisation of the
components’ illities and their impact on the assembled sys-
tems are particularly important because the components are

YF]',F.

COMPUTER

SOCIETY

I-Constraints
Semantics

Configurations

Signature

Qualities

attributes

operations

events

Figure 1. Aspects of component interface specification

usually provided as blackboxes.

For a particular non-functional property or QoS attribute,
we need to address two issues: (1) how to characterise that
specific property for a given component, and (2) how to
analyse the component’s impact on the enclosing system
in a given context of use (i.e., in the context of a system
architecture). A related issue is whether the characterisa-
tion of the non-functional property will change in differ-
ent contexts of use. The interface definition of component
illity characterisation is dependent on the specific charac-
terisation models developed. In this paper, we investigate
the security aspect of software components and its impact
on system composition, and outline an approach to the de-
velopment of a security characterisation model for software
components and component-based systems. Furthermore,
we also identify the need for ensuring the integrity of soft-
ware components.

In the next section, we give a brief overview of our gen-
eral framework for the characterisation of software compo-
nents. In section 3, we present our approach to security
characterisation of software components and component-
based systems, which is partially based on the Common
Criteria for Information Technology Security Evaluation
(ISOUEC International Standard 15408) [2]. In section 4,
we introduce our work on ensuring the integrity of software
components as part of the infrastructural support for com-

ponent based software engineering. Finally we conclude in -

section 5.

2. A framework for software component char-
acterisation

As argued in the previous section, proper characterisa-
tion of software components is essential to their effective
management and use in the context of component based
software engineering. While there have been industrial
and experimental projects that build systems from (exist-
ing) components, the approaches taken are ad hoc and

Proceedings of the 36th Annual Simulation Symposium (ANSS’03)
1080-241X/03 $17.00 © 2003 IEEE

62

heavily rely on the specifics of the systems and compo-
nents concerned. That is, component-based system devel-
opment is still very much in its infancy, and there are no
proven systematic approaches to follow. Characterisation of
components through comprehensive interface definition is a
step towards such systematic approaches and their enabling
technologies. In this section, we present an overview of our
framework for comprehensive component interface charac-
terisation, which provides a basis for the development, man-
agement and use of components.

As shown in Figure 1, our framework for component in-
terface specification addresses the following aspects: signa-
ture (syntax), configuration (structure), behaviour (seman-
tics), interaction (protocols or constraints), and quality.

At the bottom level of the interface specification, there is
the signature of the component, which forms the basis for
the component’s interaction with the outside world and in-
cludes all the necessary mechanisms or elements for such
interaction i.e., attributes, operations and events. The next
level up is about the structural organisation of the interface
in terms of the component’s roles in given contexts of use,
i.e., configurations. As such, the component interface may
have different configurations depending on the use contexts,
each configuration may consist of a number of ports refiect-
ing the roles that the component plays relative to neighbour-
ing components, and a port uses a number of interface ¢le-
ments that belong to the signature.

The third level of the interface specification concerns the
semantics of the individual signature elements, capturing
their precise behaviour. For example, the semantics of an
operation may be specified using a pre- and post-conditions
pair. At the fourthlevel are the interaction constraints defin-
ing the interaction protocols of the component. These con-
straints provide explicit guidance about how to interact with
the component. Observing these constraints is necessary to
avoid exceptions, errors and unpredictable behaviour and to
ensure the proper use of the component in a given context.

The fifth aspect of the interface specification is about the

YF]',F.

COMPUTER
SOCIETY

COMPONENT compl {
SIGNATURE
PROVIDES {

attributes (signature & semantics)

operations

events

constraints
}i

REQUIRES {

(signature & semantics)
(signature & semantics)

attributes (signature & semantics)

operations
events
constraints
}i
CONSTRAINTS {
constraints
}i
}i
CONFIGURATION configl {
PORT portl {
selected attributes,
constraints
}i

PORT port2 {

(signature & semantics)
(signature & semantics)

operations & events

selected attributes, operations & events

constraints
¥
CONSTRAINTS {
constraints
}i
}i

CONFIGURATION config2 { ... };

)i

QUALITIES ({

}i

Figure 2. Layout of component interface specification

characterisation of the component’s non-functional or qual-
ity properties, such as those regarding performance, relia-
bility and security. The non-functional properties occupy a
special place in this component interface structure, and may
have dependency relationships with other aspects of the in-
terface. In general, each of the quality attributes requires its
own model of characterisation and corresponding specifica-
tion scheme in the interface.

The interface signature and behavioural semantics define
the overall functional capability of the component, which
should be conformed to by any use of the component. The
interface configurations and interaction constraints concern
the proper use of the component in perceived application
contexts. The quality properties provide the basis for as-
sessing the suitability or usability of the component (rel-

Proceedings of the 36th Annual Simulation Symposium (ANSS’03)
1080-241X/03 $17.00 © 2003 IEEE

63

ative to given application contexts). In general, the inter-
face specification of a software component takes the format
shown in Figure 2. Note that the interaction constraints are
specified in their localised contexts as necessary.

Further details about the framework can be found in
[4, 51, especially about interface signature, interface config-
uration and interaction constraints. In the next section, we
consider security as one of the quality atributes in the con-
text of this framework, and outline an approach to security
characterisation for software components and component-
based systems.

YF]',F.

COMPUTER

SOCIETY

3. An approach to security characterisation

Security is an important aspect of software systems, es-
pecially for distributed security-sensitive systems. When
we assemble systems from existing components, it is vital
that we must be clear about the security characteristics of
these components and their impact on the target systems. In
order to provide such security-related information for com-
ponents and component-based systems, a model for their
security characterisation is required to augment our frame-
work for component interface definition.

Security of information technology products and sys-
tems. Over the years, there has been much effort in evalu-
ating Information Technology (IT) security, i.e., the security
properties of IT products and systems, including hardware,
software and firmware. There have been the Trusted Com-
puter System Evaluation Criteria (TCSEC) developed in the
United States, the Information Technology Security Evalu-
ation Criteria (ITSEC) developed by the European Com-
mission, the Canadian Trusted Computer Product Evalua-
tion Criteria (CTCPEC), and the Federal Criteria for Infor-
mation Technology Security (FC) from the United States.
Since the early 1990s, the sponsoring organisations of the
above standards under the coordination of ISO have been
working together to align their criteria and create a single
international standard of IT security evaluation criteria for
general use in the global IT market. The result is the cur-
rent ISO/IEC International Standard 15408, Common Cri-
teria for Information Technology Security Evaluation, ver-
sion 2.1 — commonly referenced as the Common Criteria or
simply CC, approved in December 1999 [2].

Given the ever-increasing wide-spread use and trade of
IT products, IT security concerns are not only for the highly
security-sensitive IT products. In fact, any IT products ac-
quired from the market place present certain security risks,
although with different levels of sensitivity. To use the ac-
quired IT products with confidence, their security properties
must be measured and made explicit. The Common Criteria
represent a coordinated effort addressing this issue.

In component based software engineering, the security
issue becomes more prevalent. Many components of a tar-
get software system to be assembled may be acquired from
or delegated to third parties. The security properties of each
component will be part of and impact on the target system’s
security. In such a scenario, we must know the security
characteristics of the components to be able to evaluate the
assembled system. Another equally important aspect that
impacts on the target system’s security is the system archi-
tecture that connects the components in a specific manner.
In addressing the issue of security characterisation of soft-
ware components and component-based systems, we pro-
pose to

1. identify and measure the security characteristics of a
software component through the use, adaptation and
formalisation of the Common Criteria, and

2. analyse and evaluate the security properties of a com-
posed system in terms of the characteristics of its com-
ponents and its system architecture.

The Common Criteria identify the various security require-
ments for IT products and systems, and provide a good start-
ing point for characterising software components, i.e., with
the components being regarded as IT products/systems.
However, the Common Criteria do not directly address sys-
tem composition, and therefore much investigation is re-
quired to evaluate a composed system based on the com-
ponent characteristics and the system architecture.

Security characteristics of software components. Since
a software component can be regarded as an IT product or
system, it is natural to use the Common Criteria in assess-
ing its security properties. The Common Criteria provide
a framework for evaluating IT systems, and enumerate the
specific security requirements for such systems. The se-
curity requirements are divided into two categories: secu-
rity functional requirements and security assurance require-
ments. The security functional requirements describe the
desired security behaviour or functions expected of an IT
system to counter threats in the system’s operating environ-
ment. These requirements are classified according to the
security issues they address, and with varied levels of se-
curity strength. They include requirements in the following
classes: security audit, communication, cryptographic sup-
port, user data protection, identification and authentication,
security management, privacy, protection of system security
functions (security meta-data), resource utilisation, system
access, and trusted path/channels.

The security assurance requirements mainly concern the
development and operating process of the IT system, with
the view that a more defined and rigorous process deliv-
ers higher confidence in the system’s security behaviour
and operation. These requirements are classified according
to the process issues they address, and with varied levels
of security strength. The process issues include: life cy-
cle support, configuration management, development, tests,
vulnerability assessment, guidance documents, delivery and
operation, and assurance maintenance. The Common Cri-
teria have also identified seven evaluation assurance levels
by including assurance requirements of appropriate strength
into each of these levels.

For a particular IT system, its functional and assurance
security requirements are usually specified in a security tar-
get document by selecting and instantiating the relevant re-
quirements with particular security strengths from the above
general classes. This security target document is developed

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 36th Annual Simulation Symposium (ANSS’03)
1080-241X/03 $17.00 © 2003 IEEE

according to a security policy, and is the basis of the security
assurance process.

In characterising the security properties of a software
component, we regard the component as an IT system to
be evaluated according to the Common Criteria. Such
characterisation will include both the security functional
properties and security assurance properties of the compo-
nent. These properties will identify which requirements of
the Common Criteria are met at which levels of security
strength. For example, a set of properties based on the Com-
mon Criteria will characterise how user data is protected
with which levels of strength.

For a given software component, only certain security
requirements may apply depending on the nature of the
component. In general, therefore, a CC requirement may
or may not be applicable; for an applicable CC require-
ment, the component will have a specific level of protec-
tion strength. This applies to both the security functional
requirements and the security assurance requirements. For
the security assurance requirements, the characterisation of
a component may directly use the detailed individual re-
quirements, use one of the more coarse-grained evaluation
assurance levels, or use a combination of both. The use of
the detailed requirements will provide more information for
system analysis.

Such a CC-based security characterisation of software
component will be similar to a security target document,
except that the characterisation shows the security proper-
ties that the component possesses while the security target
document sets out the security requirements for the compo-
nent that may or may not be actually realised. Furthermore,
the characterisation should take a more formulated and suc-
cinct form rather than a lengthy document, but may have
additional justification documentation.

Given the large number of security requirements to be
considered under the Common Criteria, tool support is very
much desirable. The tools will manage the security evalu-
ation framework as well as the security properties of indi-
vidual components. In general, the characterised security
properties of a component are delivered together with the
component as its meta-data, just like other interface defini-
tion information of the component. The Common Criteria
as an international standard provide an ideal starting point
for the understanding and exchange of the security charac-
terisation information.

We are currently analysing the security functional re-
quirements of the Common Criteria to formulate a practical
model for characterising the security properties of software
components. Among the issues addressed are the formal-
isation of individual requirements and their dependencies.
At the same time, relevant tool support is also being inves-
tigated. Preliminary results can be found in [6, 7].

0-7695-0903-7/00 $10.00 © 2000 IEEE

Proceedings of the 36th Annual Simulation Symposium (ANSS’03)
1080-241X/03 $17.00 © 2003 IEEE

Security properties of component-based software sys-
tems. The security characterisation of a software system
assembled from components should take a form similar to
that of a component. After all, the composed system is an
IT system and may be used as a component of another larger
system. As such, the security characterisation of the target
system could be done in a way similar to that of an atomic
component. Given that the security properties of the com-
ponents used are already available, however, it is natural
and advisable to use these component properties together
with the system’s composition architecture and process to
arrive at the composed system’s security characterisation.
It is even more so in cases where detailed analysis of third
party components are not possible due to the lack of devel-
opment information. As such, the security properties of a
component-based system should be derived from those of
the components used and the system architecture.

Assuming the component properties are characterised
and defined as outline above, we have to consider the ways
of interaction between these components according to the
system architecture and how these interactions impact on
the components and the composed system. Therefore, we
need a component-based and architecture-directed compo-
sition model for software security. While the Common Cri-
teria do not directly address system composition issues, the
security concerns they address do suggest that the software
security composition model be based on the following as-
pects:

1. the security properties of individual components,
2. the system architecture of the target system, and

3. the process of architecture design and system compo-
sition.

The first two items contribute to both the security functional
properties and the security assurance properties of the target
system. The last item is mainly concerned with the system’s
security assurance properties.

In developing the security composition model, we need
to consider the security compatibility of the components
as dictated by the architectural interactions, the trade-offs
and compromises between individual components’ security
strength in the system context, the derivation of system-
wide properties from component properties and component
interactions, the security impact of the overall architecture
topology, and the relationships or dependencies between the
system and its underlying enabling technologies (as part of
the system’s security environment). We are currently inves-
tigating these issues. Some preliminary results are reported
in [8].

YF]',F.

COMPUTER

SOCIETY

4. Integrity assurance for software components References

In the previous sections, emphasis has been placed on [1} CBSE98. Proceedings of International Work-
characterising the inherent properties of software compo- shop —on Component-Based ~ Software Engineering.
nents, especially those pertinent to security. Another im- www.sei.cmu.edu/cbs/icse98/, Kyoto, Japan, April

portant issue in the development, distribution and applica-

1998.

tion of software components is related to the integrity of 21 Common} Criteria Project/I SO: Comm.on C”’ef‘“ for
Information Technology Security Evaluation, version 2.1
the companents, namely, how to ensure that any unautho- (ISO/IEC International Standard 15408). NIST, USA and
rised modification of a software component, be it acciden- ISO, Switzerland, http://csrc.nist.gov/cc/, December 1999,
tal or malicious, can be easily detected by a customer or [3] D.D’Souza and A. Wills. Objects, Components and Frame-
another software component that depends on it. It applies works with UML: The Catalysis Approach. Addison-Wesley,
to not only the implementation of the component function- 1998.
ality but also the characterisation or interface definition of [4] J. Han. A comprehensive interface definition framework
the component. This issue is especially important in dy- for software components. In Proceedings of the 1998 Asia-
namically configurable distributed software systems, where Pacific Software Engineering Conference, pages 119‘1 17,
system components may be acquired or purchased on the Taipei, Taiwan, Decemper 1998. IEE'E Cqmputer Society.
. . [5] J. Han. Temporal logic based specification of component
Internet on a per-use basis. It has the same importance for . . ; .
. X X interaction protocols. In New Issues in Object Interoper-
softwa.?e systems “‘VOlvmfo’ mobile agents. ability: ECOOP 2000 Workshop on Object Interoperability,
An integral part of the infrastructural support for the re- pages 43-52, Sophia Antipolis, France, June 2000.
liable and secure composition of software components is [6] K.Khan, J. Han, and Y. Zheng. Secuirity properties of soft-
a so-called “authentication infrastructure”, which is also ware components. In M. Mambo and Y. Zheng, editors, /n-
called the PKI or Public Key Infrastructure. Some ad hoc formation Security, pages 52-56. Springer, 1999.
systems that support some of the functions of a PKI in [7] K.Khan, J. Han, and Y. Zheng. Chracterising user data pro-
the context of electronic commerce have been promoted by tection of software components. In Proceedings of the 2000
commercial vendors like Verisign. New versions of Sun é"s’; “”“":"ﬂ";‘.’ € f"siﬂzeggg'é’l ggfz’ ence, pasges.3—11,
. , : : anberra, Australia, Apri . omputer Society.
Microsystems’ Java Development Kit enables one to sign (8] K. Khan, J. Han, and Y. Zheng. Security properties of

and verify an applet. However, these infrastructures are all
“heavy weighted” in that the computational costs involved
in creating and verifying the integrity tag of an object are
still relatively too high, and hence are not quite suitable
for component based systems which may be deployed in a
time-critical application. The same observation also applies
to the underlying infrastructure for emerging WAP enabled
applications.

Currently we are in the process of investigating a suit-
able PKI that would be best suited for the efficient, secure
and dynamic composition of software components in a net-
worked/distributed environment.

5. Conclusions

In this paper, we have proposed an approach to
the security characterisation of software components and
component-based systems, and introduced our work on en-
suring the integrity of software components as part of the
infrastructural support for component based software engi-
neering. Our approach to security characterisation is par-
tially based on the international security evaluation stan-
dard, the Common Criteria, and aims to develop a compo-
sition model for software security. Our work on integrity
assurance focuses on the development of a comprehensive
authentication infrastructure for the development, distribu-
tion and use of software components.

66

[91
(10]

software components and their compositional impact: A
characterisation model. Working paper, School of Network
Computing, Monash University, Melbourne, Australia, July
2000.

B. Meyer. Object-Oriented Software Construction. Prentice
Hall, Upper Saddle River, NJ, USA, 2nd edition, 1997.

C. Thompson. Workshop on Compositional
Software Architectures: Workshop Report.
http://www.objs.com/workshops/ws9801/report.htmi,
Monterey, USA, January 1998.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 36th Annual Simulation Symposium (ANSS’03)
1080-241X/03 $17.00 © 2003 IEEE

