
Signcryption or How to Achieve

Cost(Signature & Encryption) << Cost(Signature) +

Cost(Encryption) �

Yuliang Zheng

The Peninsula School of Computing and Information Technology

Monash University, McMahons Road, Frankston

Melbourne, VIC 3199, Australia

Email: yuliang.zheng@monash.edu.au

Phone: +61 3 9904 4196, Fax: +61 3 9904 4124

29 March 1999

�An extended abstract was presented at CRYPTO'97.

1

Contents

1 Introduction 5

2 The Traditional Signature-Then-Encryption Approach 7

3 Digital Signcryption | A More Economical Approach 8
3.1 Shortening ElGamal-Based Signatures . 10
3.2 Implementing Signcryption with Shortened Signature 12
3.3 Name Binding . 15
3.4 Extensions . 15
3.5 Working with Signature-Only and Encryption-Only Modes 16

4 Cost of Signcryption v.s. Cost of Signature-Then-Encryption 16
4.1 A Comparison with Signature-Then-Encryption Using Schnorr Signature and

ElGamal Encryption . 17
4.1.1 Saving in computational cost . 17
4.1.2 Saving in communication overhead 19

4.2 A Comparison with Signature-Then-Encryption Using RSA 19
4.2.1 Advantage in computational cost . 19
4.2.2 Advantage in communication overhead 20

4.3 Remarks on the Comparison . 20
4.4 How the Parameters are Chosen . 21

5 More on Signcryption v.s. Signature-then-Encryption 21
5.1 Static Key Management . 22
5.2 Forward Secrecy . 22
5.3 Past Recovery . 23
5.4 Repudiation Settlement . 23
5.5 \Community" or World Orientation . 24
5.6 Why Can Signcryption Save ? . 24

6 Signcryption for Multiple Recipients 25
6.1 Comparison with a Discrete Logarithm Based Scheme 26
6.2 Comparison with an RSA Based Scheme . 28

7 Applications of Signcryption 28

8 Unforgeability, Non-repudiation and Con�dentiality of Signcryption 31
8.1 Assumptions . 31
8.2 Unforgeability . 33
8.3 Non-repudiation . 33

8.3.1 With a Trusted Tamper-Resistant Device 33
8.3.2 By a Trusted Judge . 33
8.3.3 By a Less Trusted Judge . 33
8.3.4 By any (Trusted/Untrusted) Judge 34

8.4 Con�dentiality . 35

9 Conclusion 36

2

A RSA and Discrete Logarithm Based Signature and Encryption 42
A.1 Hardness of Factorization and Discrete Logarithm 42
A.2 RSA Signature and Encryption . 42
A.3 ElGamal Signature and Encryption . 43
A.4 Schnorr Signature Scheme . 43
A.5 Digital Signature Standard (DSS) . 44

B Fast Computation of the Product of Multiple Exponentials with the Same
Modulo 46

3

List of Figures

1 Centuries-Old \Signature-Then-Seal" . 5
2 Output Formats of Signcryption and Signature-then-Encryption for a Single

Recipient . 16
3 Output Formats of Signcryption and Signature-then-Encryption for Multiple

Recipients . 26
4 Secure and Unforgeable Key Transport in a Single ATM Cell (Based on SCS1) 30

List of Tables

1 Cost of Signature-Then-Encryption v.s. Cost of Signcryption 9
2 Examples of Shortened and E�cient Signature Schemes 12
3 Parameters for Signcryption . 13
4 Two Signcryption Schemes . 17
5 Saving of Signcryption over Signature-Then-Encryption Using Schnorr Sig-

nature and ElGamal Encryption . 18
6 Advantage of Signcryption over RSA based Signature-Then-Encryption with

Small Public Exponents . 18
7 Other Aspects of Signcryption v.s. Signature-then-Encryption 25
8 SCS1M | A Signcryption Scheme for Multiple Recipients 27
9 Cost Saving of Signcryption for Multiple Recipients 29
10 Cost of RSA, ElGamal, Schnorr, DSS . 45

4

Abstract

Secure and authenticated message delivery/storage is one of the major aims of com-
puter and communication security research. The current standard method to achieve
this aim is \(digital) signature followed by encryption". In this paper, we address a ques-
tion on the cost of secure and authenticated message delivery/storage, namely, whether
it is possible to transport/store messages of varying length in a secure and authenti-
cated way with an expense less than that required by \signature followed by encryption".
This question has apparently never been addressed in the literature since the invention
of public key cryptography. We then present a positive answer to the question. In
particular, we discover a new cryptographic primitive termed as \signcryption" which
simultaneously ful�lls both the functions of digital signature and public key encryption
in a logically single step, and with a cost signi�cantly smaller than that required by \sig-
nature followed by encryption". For typical security parameters for high level security
applications (size of public moduli = 1536 bits), signcryption costs 58% (50%, respec-
tively) less in computation time and 85% (91%, respectively) less in message expansion
than does \signature followed by encryption" based on the discrete logarithm problem
(factorization problem, respectively). The saving in cost brought to society by this new
technology is potentially huge, especially in the emerging era of electronic commerce in
which the assurance of secure and authenticated transactions and communications is a
key to its success as well as public acceptance.

Keywords

Authentication, Digital Signature, Encryption, Key Distribution, Secure Message Deliv-
ery/Storage, Public Key Cryptography, Security, Signcryption.

1 Introduction

To avoid forgery and ensure con�dentiality of the contents of a letter, for centuries it has
been a common practice for the originator of the letter to sign his/her name on it and
then seal it in an envelope, before handing it over to a deliverer. This two-step process is
graphically depicted in Figure 1.

Figure 1: Centuries-Old \Signature-Then-Seal"

Public key cryptography discovered nearly two decades ago [12] has revolutionized the
way for people to conduct secure and authenticated communications. It is now possible

5

for people who have never met before to communicate with one another in a secure and
authenticated way over an open and insecure network such as Internet. In doing so the same
two-step approach has been followed. Namely before a message is sent out, the sender of the
message would sign it using a digital signature scheme, and then encrypt the message (and
the signature) using a private key encryption algorithm under a randomly chosen message
encryption key. The random message encryption key would then be encrypted using the
recipient's public key. We call this two-step approach signature-then-encryption.

Signature generation and encryption consume machine cycles, and also introduce \ex-
panded" bits to an original message. Symmetrically, a comparable amount of computation
time is generally required for signature veri�cation and decryption. Hence the cost of a
cryptographic operation on a message is typically measured in the message expansion rate
and the computational time invested by both the sender and the recipient. With the current
standard signature-then-encryption approach, the cost for delivering a message in a secure
and authenticated way is essentially the sum of the cost for digital signature and that for
encryption.

In this paper, we address a question on the cost of secure and authenticated message
delivery 1, namely, whether it is possible to transfer a message of arbitrary length in a secure

and authenticated way with an expense less than that required by signature-then-encryption.

This question seems to have never been addressed in the literature since the invention of
public key cryptography. We then present a positive answer to the question. In particular,
we discover a new cryptographic primitive termed as \signcryption" which simultaneously
ful�lls both the functions of digital signature and public key encryption in a logically single
step, and with a cost signi�cantly smaller than that required by signature-then-encryption.
As shown in Tables 5 and 6, for the minimum security parameters recommended for the
current practice (size of public moduli = 512 bits), signcryption costs 58% less in average
computation time and 70% less in message expansion than does signature-then-encryption
based on the discrete logarithm problem, while for security parameters recommended for
long term security (size of public moduli = 1536 bits), it costs on average 50% less in
computation time and 91% less in message expansion than does signature-then-encryption
using the RSA cryptosystem. The saving in cost grows proportionally to the size of security
parameters. Hence it will be more signi�cant in the future when larger parameters are
required to compensate theoretical and technological advances in cryptanalysis.

The organization of the rest of this paper is as follows: Section 2 surveys current stan-
dard signature-then-encryption methods for secure and authenticated message delivery. Our
new approach \signcryption" is introduced in Section 3, where two concrete signcryption
schemes are also demonstrated. A detailed comparison of the computational and communi-
cation cost of signcryption with that of signature-then-encryption is conducted in Section 4,
and a comparison with regard to other aspects ranging from static key management, for-
ward secrecy, past recovery to repudiation settlement is carried out in Section 5. Section 6
is devoted to signcryption for multiple recipients, while Section 7 suggests the signi�cant
potential of signcryption in reducing the cost of many widespread applications. This is fol-
lowed by Section 8 where unforgeability, non-repudiation and con�dentiality of the proposed
signcryption schemes are discussed. Finally the paper is concluded with a few remarks in
Section 9. A brief summary of notable public key digital signature and encryption schemes
is provided in Appendix A.

1Methods for secure and authenticated communications can also be directly used for achieving con�den-
tiality and authenticity of stored information.

6

2 The Traditional Signature-Then-Encryption Approach

As we mentioned earlier, public key cryptography invented by Di�e and Hellman [12]
makes it a reality for one (1) to digitally sign a message, and (2) to send a message se-
curely to another person with whom no common encryption key has been shared. In Ap-
pendix A, we provide a short summary on some of the most important public key digital
signature/encryption schemes, these being RSA encryption and signature scheme, ElGamal
encryption and signature scheme, and two signature schemes derived from ElGamal, namely
Schnorr signature scheme and Digital Signature Standard (DSS).

In conjunction with other cryptographic technologies, such as secure and fast private key
ciphers, one can now send electronic mail messages to his friends or partners in such a way
that even an all-powerful attacker cannot learn the contents of a message or masquerade
him in producing a valid digital signature. In doing so one is following essentially the same
decades-old two-step approach, namely, one signs a message by attaching to it a digital
signature by the use of a piece of secret information known only to himself, followed by
encrypting the message using an encryption algorithm.

Software packages for secure and authenticated message delivery are now readily avail-
able. Some packages, such as PGP [50], are in the public domain and hence freely available.
Regardless whether key-escrow, trusted third party (TTP) or schemes of a similar nature
will be adopted by governments or not, cryptography is destined to �nd its widespread
use in society. In particular, it can be envisaged that in the foreseeable future, security
enhanced electronic transactions/message delivery, such as digital cash payments and EDI
(electronic data interchange), will become an indispensable part of a person's private life
and business activities. Therefore, analogously to fast \sorting" methods that are used by
virtually all computer based systems, any technology that reduces the cost for secure and
authenticated communications will bring potentially enormous saving in cost to society.

Currently, the standard approach for a user, say Alice, to send a secure and authenticated
message to another user Bob is signature-then-encryption. The best example that follows
the two-step approach is PEM, a standard for secure electronic mail on Internet [28]. The
same approach is also followed by PGP. Part (c) of Figure 2 shows the format of a ciphertext
in a signature-then-encryption based on discrete logarithm, while Part (b) of the �gure shows
the format based on RSA. The reader will notice that a notation EXP = N1 +N2 is used
in the �gure. N1 indicates the number of modular exponentiations carried out by a sender,
and N2 indicates the number by a recipient.

To compare the e�ciency of two di�erent methods for secure and authenticated mes-
sage delivery, we examine two types of \cost" involved: (1) computational cost, and (2)
communication overhead (or storage overhead for stored messages). The computational

cost indicates how much computational e�ort has to be invested both by the sender and
the recipient of a message. We estimate the computational cost by counting the number
of dominant operations involved. Typically these operations include private key encryp-
tion and decryption, hashing, modular addition, multiplication, division (inversion), and
more importantly, exponentiation. In addition to computational cost, digital signature and
encryption based on public key cryptography also require extra bits to be appended to a
message. We call these extra \redundant" bits the communication overhead involved. We
say that a message delivery method is superior to another if (the aggregated value of) the
computational cost and communication overhead required by the former is less than that
required by the latter.

The �rst part of Table 1 indicates the computational cost and communication overhead

7

of \RSA signature-then-RSA encryption" against that of \DSS-then-ElGamal encryption"
and \Schnorr signature-then-ElGamal encryption". Note that, although not shown in the
table, other combinations such as \Schnorr signature-then-RSA encryption" and \RSA
signature-then-ElGamal encryption" may also be used in practice. As discussed in Ap-
pendix A, with the current state of the art, computing discrete logarithm on GF (p) and
factoring a composite n of the same size are equally di�cult. This simpli�es our comparison
of the e�ciency of a cryptographic scheme based on RSA against that based on discrete
logarithm, as we can assume that the moduli n and p are of the same size.

It should be noted that to use RSA signature in a provably secure way, more extra
computational e�ort (not counted in Table 1) has to be invested in signature generation
and veri�cation [5]. Similarly, to employ RSA and ElGamal encryptions in a provably secure
fashion, more computational e�ort and communication overhead is required [49, 45, 4].

We close this section by examining the increasingly disproportionate cost for secure
and authenticated message delivery in the currently standard signature-then-encryption
approach, with an example text of 10000 bits (which corresponds roughly to a 15-line
electronic mail message). For current and low security level applications, when RSA is
used, the computational cost is centered around the execution of four (4) exponentiations
modulo 512-bit integers, and the communication overhead is 1024 bits. When Schnorr
signature and ElGamal encryption are used, the computational cost consists mainly of six
(6) exponentiations modulo 512-bit integers, and the communication overhead is about 750
bits.

However, if the contents of the text are highly sensitive, or a text of the same length will
be transmitted in 2010, then very large moduli, say of 5120 bits, might have to be employed.
In such a situation, if RSA is used, four (4) exponentiations modulo (very large!) 5120-bit
integers have to be invested in computation 2, and the communication overhead is 10240
bits, which is now longer than the original 10000-bit text ! If, instead, Schnorr signature
and ElGamal encryption is used, then the computational cost is six (6) exponentiations
modulo (again very large!) 5120-bit integers, and the communication overhead of about
5560 bits is more than half of the length of the original message. From this example, one
can see that in the signature-then-encryption approach, the cost, especially communication
overhead, for secure and authenticated message delivery, is becoming disproportionately
large for future, or current but high-level security, applications. This observation serves as
further justi�cation on the necessity of inventing a new and more economical method for
secure and authenticated message delivery.

3 Digital Signcryption | A More Economical Approach

With a hand-written letter to be delivered via ordinary postal services, the originator of the
letter is physically (in time and space) bound to the signature-then-seal approach, although
(un-realistically) with a highly personalized envelope the signing step may be omitted. Most
people do not feel inconvenient with the signature-then-seal practice, as the time and cost
involved is in most cases regarded as being marginal.

As discussed in the previous section, in the case of electronic message delivery, signing

2The number of bit operations required by exponentiation modulo an integer is a cubic function of the
size of the modulo. Thus, if exponentiation modulo a 512-bit integer takes 0.1 second, then using the same
computing device, exponentiation modulo a 5120-bit integer would theoretically take (5120

512
)3 � 0:1 = 100

seconds (although in practice a slightly smaller amount of time may su�ce).

8

Various
schemes

Computational
cost

Communication
overhead (in bits)

signature-then-encryption
based on RSA

EXP=2, HASH=1, ENC=1
(EXP=2, HASH=1, DEC=1)

jnaj+ jnbj

signature-then-encryption
based on \DSS +

ElGamal encryption"

EXP=3, MUL=1, DIV=1
ADD=1, HASH=1, ENC=1
(EXP=2.17, MUL=1, DIV=2
ADD=0, HASH=1, DEC=1)

2jqj+ jpj

signature-then-encryption
based on

\Schnorr signature +
ElGamal encryption"

EXP=3, MUL=1, DIV=0
ADD=1, HASH=1, ENC=1
(EXP=2.17, MUL=1, DIV=0
ADD=0, HASH=1, DEC=1)

jhash(�)j + jqj+ jpj

signcryption
SCS1

EXP=1, MUL=0, DIV=1
ADD=1, HASH=2, ENC=1
(EXP=1.17, MUL=2, DIV=0
ADD=0, HASH=2, DEC=1)

jKH�(�)j+ jqj

signcryption
SCS2

EXP=1, MUL=1, DIV=1
ADD=1, HASH=2, ENC=1
(EXP=1.17, MUL=2, DIV=0
ADD=0, HASH=2, DEC=1)

jKH�(�)j+ jqj

where
EXP = the number of modular exponentiations (a fractional number indicates an average cost),
MUL = the number of modular multiplications,
DIV = the number of modular division (inversion),
ADD = the number of modular addition or subtraction,
HASH = the number of one-way or keyed hash operations,
ENC = the number of encryptions using a private key cipher,
DEC = the number of decryptions using a private key cipher,
Parameters in the brackets indicate the number of operations involved in
\decryption-then-veri�cation" or \unsigncryption".

Table 1: Cost of Signature-Then-Encryption v.s. Cost of Signcryption

9

and encrypting a message consumes computational time and also results in added \redun-
dant" bits or communication overhead. Unlike the case of a hand-written letter, however,
the cost for signing and encrypting an electronic message can not be regarded as being
marginal. The main reason is that digital signature and encryption employ computation-
ally expensive operations including exponentiation modulo a large integer.

Over the past two decades since public key cryptography was invented, signature-then-
encryption has been a standard method for one to deliver a secure and authenticated mes-
sage of arbitrary length, and apparently no researcher has ever questioned whether it is
absolutely necessary for one to use the sum of the cost for signature and that for encryption
to achieve both contents con�dentiality and origin authenticity.

Having posed a question that is of fundamental importance both from a theoretical and
a practical point of view, we now proceed to tackle it. We will show how the question can
be answered positively by the use of a new cryptographic primitive called \signcryption"
whose de�nition follows.

Intuitively, a digital signcryption scheme is a cryptographic method that ful�lls both
the functions of secure encryption and digital signature, but with a cost smaller than that

required by signature-then-encryption. Using the terminology in cryptography, it consists of
a pair of (polynomial time) algorithms (S;U), where S is called the signcryption algorithm,
while U the unsigncryption algorithm. S in general is probabilistic, while U is most likely
to be deterministic. (S;U) satisfy the following conditions:

1. Unique unsigncryptability | Given a message m of arbitrary length, the algorithm S
signcrypts m and outputs a signcrypted text c. On input c, the algorithm U unsign-

crypts c and recovers the original message un-ambiguously.

2. Security | (S;U) ful�ll, simultaneously, the properties of a secure encryption scheme
and those of a secure digital signature scheme. These properties mainly include:
con�dentiality of message contents, unforgeability, and non-repudiation.

3. E�ciency|The computational cost, which includes the computational time involved
both in signcryption and unsigncryption, and the communication overhead or added
redundant bits, of the scheme is smaller than that required by the best currently
known signature-then-encryption scheme with comparable parameters.

A direct consequence of having to satisfy both the second and third requirements is
that \signcryption 6= signature-then-encryption". These two requirements also justify our
decision to introduce the new word signcryption which clearly indicates the ability for the
new approach to achieve both the functions of digital signature and secure encryption in a
logically single operation.

The rest of this section is devoted to seeking for concrete implementations of signcryp-
tion. We �rst identify two (types of) e�cient ElGamal-based signature schemes. Then we
show how to use a common property of these schemes to construct signcryption schemes.

3.1 Shortening ElGamal-Based Signatures

ElGamal digital signature scheme [14] involves two parameters public to all users:

1. p: a large prime.

2. g: an integer in [1; : : : ; p� 1] with order p� 1 modulo p.

10

User Alice's private key is an integer xa chosen randomly from [1; : : : ; p�1] with xa 6 j (p�1)
(i.e., xa does not divide p� 1), and her public key is ya = gxamod p.

Alice's signature on a message m is composed of two numbers r and s:

r = gxmod p

s = (hash(m)� xa � r)=xmod (p� 1)

where hash is a one-way hash function, and x is chosen independently at random from
[1; : : : ; p� 1] with x6 j (p� 1) every time a message is to be signed by Alice. Given (m; r; s),
one can verify whether (r; s) is Alice's signature on m by checking whether ghash(m) =
yra � rsmod p is satis�ed.

Since its publication in 1985, ElGamal signature has received extensive scrutiny by the
research community. In addition, it has been generalized and adapted to numerous di�erent
forms (see for instance [41, 6, 33, 35] and especially [18] where an exhaustive survey of some
13000 ElGamal based signatures has been carried out.) For most ElGamal based schemes,
the size of the signature (r; s) on a message is 2jpj, jqj + jpj or 2jqj, where p is a large
prime and q is a prime factor of p � 1. The size of an ElGamal based signature, however,
can be reduced by using a modi�ed \seventh generalization" method discussed in [18]. In
particular, we can change the calculations of r and s as follows:

1. Calculation of r | Set r = hash(k;m), where k = gxmod q (or k = gxmod (p� 1) if
the original r is calculated modulo (p� 1)), x is a random number from [1; : : : ; q� 1]
(or from [1; : : : ; p� 1] with x6 j (p� 1)), and hash is a one-way hash function such as
Secure Hash Standard or SHS [34] and HAVAL [48].

2. Calculation of s|For an e�cient ElGamal based signature scheme, the calculation of
(the original) s from xa, x, r and optionally, hash(m) involves only simple arithmetic
operations, including modular addition, subtraction, multiplication and division. Here
we assume that xa is the private key of Alice the message originator. Her matching
public key is ya = gxamod p. We can modify the calculation of s in the following way:

(a) If hash(m) is involved in the original s, we replace hash(m) with a number 1,
but leave r intact. The other way may also be used, namely we change r to 1
and then replace hash(m) with r.

(b) If s takes the form of s = (� � �)=x, then changing it to s = x=(� � �) does not add
additional computational cost to signature generation, but may reduce the cost
for signature veri�cation.

To verify whether (r; s) is Alice's signature on m, we recover k = gxmod p from r, s, g,
p and ya and then check whether hash(k;m) is identical to r.

To illustrate how to shorten ElGamal based signatures, now we consider Digital Sig-
nature Standard (DSS). It should be stressed that many other ElGamal based signature
schemes, in particular those de�ned on a sub-group of order q (see for example [18, 35]),
can be shortened in the same way and are all equally good candidates for signcryption.

Table 2 shows two shortened versions of DSS, which are denoted by SDSS1 and SDSS2
respectively. Here are a few remarks on the table: (1) the �rst letter \S" in the name of a
scheme stands for \shortened", (2) the parameters p, q and g are the same as those for DSS,
(3) x is a random number from [1; : : : ; q�1], xa is Alice's private key and ya = gxamod p is
her matching public key, (4) jtj denotes the size or length (in bits) of t, (5) the schemes have

11

the same signature size of jhash(�)j + jqj, (6) SDSS1 is slightly more e�cient than SDSS2
in signature generation, as the latter involves an extra modular multiplication.

Recently Pointcheval and Stern [37, 38] have proven that Schnorr signature is unforge-
able by any adaptive attacker who is allowed to query Alice's signature generation algorithm
with messages of his choice [16], in a model where the one-way hash function used in the
signature scheme is assumed to behave like a random function (the random oracle model).
The core idea behind the unforgeability proof by Pointcheval and Stern is based on an
observation that the signature has been converted from a 3-move zero-knowledge (ZK) pro-
tocol (for proof of knowledge) with respect to a honest veri�er. With such a signature
scheme, unforgeability against a non-adaptive attacker who is not allowed to possess valid
message-signature pairs follows from the soundness of the original protocol. Furthermore,
as the protocol is zero-knowledge with respect to a honest veri�er, the signature scheme
converted from it can be e�ciently simulated in the random oracle model. This implies
that an adaptive attacker is not more powerful than a non-adaptive attacker in the random
oracle model.

Turning our attention to SDSS1 and SDSS2, both can be viewed as being converted
from a 3-move zero-knowledge protocol (for proof of knowledge) with respect to a honest
veri�er. Thus Pointcheval and Stern's technique is applicable also to SDSS1 and SDSS2.
Summarizing the above discussions, both SDSS1 and SDSS2 are unforgeable by adaptive
attackers, under the assumptions that (1) the one-way hash function behaves like a random
function, and (2) discrete logarithm is hard (with respect to g chosen uniformly at random).

As a side note, both SDSS1 and SDSS2 are preferable to DSS in the sense that they
admit a shorter signature and provable security (albeit under a strong assumption on hash
functions).

Shortened
schemes

Signature (r; s)
on a message m

Veri�cation of
signature

Length of
signature

SDSS1
r = hash(gxmod p;m)
s = x=(r + xa)mod q

k = (ya � gr)smod p
check whether hash(k;m) = r

jhash(�)j + jqj

SDSS2
r = hash(gxmod p;m)
s = x=(1 + xa � r)mod q

k = (g � yra)smod p
check whether hash(k;m) = r

jhash(�)j + jqj

p: a large prime (public to all),
q: a large prime factor of p� 1 (public to all),
g: an integer with order q modulo p chosen randomly from [1; : : : ; p� 1] (public to
all),
hash: a one-way hash function (public to all),
x: a number chosen uniformly at random from [1; : : : ; q � 1],
xa: Alice's private key, chosen uniformly at random from [1; : : : ; q � 1],
ya: Alice's public key (ya = gxamod p).

Table 2: Examples of Shortened and E�cient Signature Schemes

3.2 Implementing Signcryption with Shortened Signature

An interesting characteristic of a shortened ElGamal based signature scheme obtained in the
method described above is that although gxmod p is not explicitly contained in a signature

12

Parameters public to all:

p | a large prime
q | a large prime factor of p� 1
g | an integer with order q modulo p chosen randomly from [1; : : : ; p� 1]
hash | a one-way hash function whose output has, say, at least 128 bits
KH | a keyed one-way hash function
(E;D) | the encryption and decryption algorithms of a private key cipher

Alice's keys:

xa | Alice's private key, chosen uniformly at random from [1; : : : ; q � 1]
ya | Alice's public key (ya = gxamod p)

Bob's keys:

xb | Bob's private key, chosen uniformly at random from [1; : : : ; q � 1]
yb | Bob's public key (yb = gxbmod p)

Table 3: Parameters for Signcryption

(r; s), it can be recovered from r, s and other public parameters. This motivates us to
construct a signcryption scheme from a shortened signature scheme.

We exemplify our construction method using the two shortened signatures in Table 2.
The same construction method is applicable to other shortened signature schemes based
on ElGamal. As a side note, Schnorr's signature scheme, without being further shortened,
can be used to construct a signcryption scheme which is slightly more advantageous in
computation than other signcryption schemes from the view point of a message originator.

In describing our method, we will use E and D to denote the encryption and decryption
algorithms of a private key cipher such as DES [32] and SPEED [46]. Encrypting a message
m with a key k, typically in the cipher block chaining or CBC mode, is indicated by Ek(m),
while decrypting a ciphertext c with k is denoted by Dk(c). In addition we use KHk(m)
to denote hashing a message m with a keyed hash algorithm KH under a key k. An
important property of a keyed hash function is that, just like a one-way hash function, it is
computationally infeasible to �nd a pair of messages that are hashed to the same value (or
collide with each other). This implies a weaker property that is su�cient for signcryption:
given a message m1, it is computationally intractable to �nd another message m2 that
collides with m1. In [1] two methods for constructing a cryptographically strong keyed
hash algorithm from a one-way hash algorithm have been demonstrated. For most practical
applications, it su�ces to de�ne KHk(m) = hash(k;m), where hash is a one-way hash
algorithm.

Assume that Alice has chosen a private key xa from [1; : : : ; q � 1], and made public her
matching public key ya = gxamod p. Similarly, Bob's private key is xb and his matching
public key is yb = gxbmod p. Relevant public and private parameters are summarized in
Table 3.

The signcryption and unsigncryption algorithms constructed from a shortened signature
are remarkably simple. For Alice to signcrypt a message m to be sent to Bob, she carries
out the following operations:

13

Signcryption of m by Alice the Sender

1. Pick x uniformly at random from [1; : : : ; q � 1], and let k = hash(yxb mod p).
Split k into k1 and k2 of appropriate length.

2. r = KHk2(m).

3. s = x=(r + xa)mod q if SDSS1 is used, or
s = x=(1 + xa � r)mod q if SDSS2 is used instead.

4. c = Ek1(m).

5. Send to Bob the signcrypted text (c; r; s).

Note that the output of the one-way hash function hash used in de�ning k = hash(yxb mod
p) should be su�ciently long, say of at least 128 bits, which guarantees that both k1 and
k2 have at least 64 bits. The main purpose of involving hash in the derivation of k is to
simplify our discussions on message con�dentiality in Section 8. In practice, k can be de-
�ned in a more liberal way, such as k = yxb mod p and k = fd(yxb mod p), where fd denotes
a folding operation.

The unsigncryption algorithm works by taking advantages of the property that gxmod p
can be recovered by Bob from r, s, g, p. On receiving (c; r; s) from Alice, Bob unsigncrypts
it as follows:

Unsigncryption of (c; r; s) by Bob the Recipient

1. Recover k from r, s, g, p, ya and xb:
k = hash((ya � gr)s�xbmod p) if SDSS1 is used, or
k = hash((g � yra)s�xbmod p) if SDSS2 is used.

2. Split k into k1 and k2.

3. m = Dk1(c).

4. accept m as a valid message originated from Alice only if KHk2(m) is identical
to r.

The signcryption scheme that employs the shortened signature scheme SDSS1 is called
SCS1, and the signcryption scheme that employs the shortened signature scheme SDSS2 is
called SCS2. For convenience, the two signcryption schemes are detailed in Table 4.

The format of the signcrypted text of a message m is depicted in Part (a) of Figure 2.
It should be pointed out that in some applications, part of a message m may not need to be
encrypted and the creation of the signature part (r; s), especially r, may involve other data
in addition to m. A similar observation can be made with the signature-then-encryption
approach.

The two signcryption schemes share the same communication overhead (jhash(�)j+ jqj).
Although SCS1 involves one less modular multiplication in signcryption than does SCS2,
both have a similar computational cost for unsigncryption. Table 1 shows the number of

14

dominant operations involved in the signcryption schemes, against those for two represen-
tative signature-then-encryption schemes.

Finally, we note that signature schemes with message recovery proposed in [35] do not
provide message con�dentiality, and hence they are not signcryption schemes. Although our
concrete signcryption schemes shown above bear some resemblance to \authenticated en-
cryption" discussed in [49, 19, 35, 27], the former di�erentiate itself from the latter in that it
addresses all the following three aspects: (1) to minimize both the number of modular expo-
nentiations and the overhead in communication, (2) to provide a explicit set of repudiation
settlement procedures, and (3) to be able to handle messages of arbitrary length.

3.3 Name Binding

In some applications such as electronic cash payment protocols, the names/identi�ers of
participants involved may need to be tightly bound to messages exchanged. This can be
achieved by explicitly including their names into the contents of a message. Alternatively,
data related to participants' names, such as public keys and their certi�cates, may be
included in the computation of r in the signcryption algorithm. Namely, we may de�ne

r = KHk2(m; bind info)

where bind info may contain, among other data, the public keys or public key certi�cates of
both Alice the sender and Bob the recipient. The corresponding unsigncryption algorithm
can be modi�ed accordingly. Compared with an exponentiation modulo a large integer, the
extra computational cost invested in hashing bind info is negligible.

Involving the recipient's public key yb or his public key certi�cate in the computation of r
is particularly important. To see this point, let (c; r; s) be a signcrypted text ofm (from Alice
to Bob) where the computation of r does not involve identi�cation information on Bob the
recipient, and consider a situation where m represents a commitment/statement for Alice
to transfer a certain amount of money (or valuable goods) to the recipient of the message.
Assume that a third participant Cathy has xc as her private key and yc = gxcmod p as
her matching public key. Furthermore, assume that Bob and Cathy are a pair of collusive
and dishonest friends, and that their private keys are related by xb = w � xcmod q. Then a
modi�ed text (c; r; s�), where s� = w �smod q, may represent a perfectly valid message from
Alice to Cathy, and hence it might be obligatory for Alice to pay the same of amount money
to both Bob and Cathy ! Clearly, such a collusive attack can be easily thwarted by involving
information on Bob's identity in the creation of r, say by de�ning r = KHk2(m; yb; etc).

3.4 Extensions

Signcryption schemes can also be derived from ElGamal-based signature schemes built on
other versions of the discrete logarithm problem such as that on elliptic curves [23]. In
addition, Lenstra's new method for constructing sub-groups based on cyclotomic polyno-
mials [24] can also be used to implement signcryption even more e�ciently.

There is also a marginally less e�cient version of signcryption schemes in which Alice's
private key xa participates in the computation of k. Taking SCS1 as an example, we can re-
de�ne the computation of k by Alice in the signcryption algorithm as k = hash(yx+xab mod
p), and correspondingly, the computation of k by Bob in the unsigncryption algorithm as

k = hash((y
(s+1)�xb
a) � (gr�s�xb)mod p).

15

Finally, we point out that the one-way hash function used in deriving k, namely hash
in k = hash(yxb mod p) and k = hash(yx+xab mod p), can be replaced by a hash function h
chosen uniformly at random from a class of (1=2jkj + 1=2jpj)-almost strongly universal hash
functions [44]. The Leftover Hash Lemma of [20] ensures that k is statistically very close
to a truly random key. Note that h needs to be sent to a receiver as part of a signcrypted
text, which slightly increases the communication overhead.

3.5 Working with Signature-Only and Encryption-Only Modes

Not all messages require both con�dentiality and integrity. Some messages may need to be
signed only, while others may need to be encrypted only. For the two digital signcryption
schemes SCS1 and SCS2, when a message is sent in clear, they degenerate to signature
schemes with direct veri�ability by the recipient only. As will be argued in Section 5.4,
limiting direct veri�ability to the recipient only still preserves non-repudiation, and may
represent an advantage for some applications where the mere fact that a message is orig-
inated from Alice needs to be kept secret. Furthermore, if Alice uses g instead of Bob's
public key yb in the calculation of k, the schemes becomes corresponding shortened ElGamal
based signature schemes with universal veri�ability.

To work with the encryption-only mode,
In an application where a message requires con�dentiality only, one may either switch

to a public key encryption scheme such as the ElGamal scheme, or stick to a signcryption
scheme. The latter is more e�cient than the former, even though authenticity may not be
a concern in such an application.

Figure 2: Output Formats of Signcryption and Signature-then-Encryption for a Single Re-
cipient

4 Cost of Signcryption v.s. Cost of Signature-Then-Encryption

The most signi�cant advantage of signcryption over signature-then-encryption lies in the
dramatic reduction of computational cost and communication overhead which can be sym-
bolized by the following inequality:

16

Signcryption
schemes

Signcrypted text (c; r; s)
of a message m (by Alice)

Recovery of
k = hash(gx�xb mod p) (by Bob)

SCS1
(from SDSS1)

c = Ek1(m)
r = KHk2(m)
s = x=(r + xa)mod q

k = hash((ya � gr)s�xbmod p)

SCS2
(from SDSS2)

c = Ek1(m)
r = KHk2(m)
s = x=(1 + xa � r)mod q

k = hash((g � yra)s�xbmod p)

On Alice's side, x is a number chosen independently at random from [1; : : : ; q � 1],
k is obtained by k = hash(yxb mod p), k1 and k2 are the left and right halves of
k respectively. Bob can recover k from r, s, g, p, ya and xb, and decipher c by
m = Dk1(c). He accepts m as a valid message from Alice only if r can be re-
constructed from KHk2(m).

Table 4: Two Signcryption Schemes

Cost(signcryption) < Cost(signature) + Cost(encryption).

With SCS1 and SCS2, this advantage is identi�able in Table 1. The purpose of this section
is to examine the advantage in more detail. The necessity of such an examination is justi�ed
by the facts that the computational cost of modular exponentiation is mainly determined
by the size of an exponent, and that RSA and discrete logarithm based public key cryp-
tosystems normally employ exponents that are quite di�erent in size. For readers who are
not interested in technical details in the comparison, Table 5 summarizes the advantage
of SCS1 and SCS2 over discrete logarithm based signature-then-encryption, while Table 6
summarizes that over RSA based signature-then-encryption.

4.1 A Comparison with Signature-Then-Encryption Using Schnorr Sig-
nature and ElGamal Encryption

4.1.1 Saving in computational cost

With the signature-then-encryption based on Schnorr signature and ElGamal encryption,
the number of modular exponentiations is three, both for the process of signature-then-
encryption and that of decryption-then-veri�cation.

Among the three modular exponentiations for decryption-then-veri�cation, two are used
in verifying Schnorr signature. More speci�cally, these two exponentiations are spent in
computing gs � yra mod p. Using a technique for fast computation of the product of multiple
exponentials with the same modulo which has been attributed to Shamir (see Appendix B),
gs � yra mod p can be computed, on average, in (1 + 3=4)jqj modular multiplications. Since
a modular exponentiation can be completed, on average, in about 1:5jqj modular multi-
plications when using the classical \square-and-multiply" method, (1 + 3=4)jqj modular
multiplications is computationally equivalent to 1.17 modular exponentiations. Thus with
\square-and-multiply" and Shamir's technique, the number of modular exponentiations in-
volved in decryption-then-veri�cation can be reduced from 3 to 2.17. The same reduction
techniques, however, cannot be applied to the sender's computation. Consequently, the
combined computational cost of the sender and the recipient is 5.17 modular exponentia-
tions.

17

security parameters saving saving in
jpj jqj jKH�(�)j average comp. cost comm. overhead

512 144 72 58% 70.3%

768 152 80 58% 76.8%

1024 160 80 58% 81.0%

1280 168 88 58% 83.3%

1536 176 88 58% 85.3%

1792 184 96 58% 86.5%

2048 192 96 58% 87.7%

2560 208 104 58% 89.1%

3072 224 112 58% 90.1%

4096 256 128 58% 91.0%

5120 288 144 58% 92.0%

8192 320 160 58% 94.0%

10240 320 160 58% 96.0%

saving in average comp. cost = (5:17�2:17) modular exponentiations
5:17 modular exponentiations = 58%

saving in comm. cost = jhash(�)j+jqj+jpj�(jKH�(�)j+jqj)
jhash(�)j+jqj+jpj

Table 5: Saving of Signcryption over Signature-Then-Encryption Using Schnorr Signature
and ElGamal Encryption

security parameters advantage in advantage in
jpj(= jnaj = jnbj) jqj jKH�(�)j average comp. cost comm. overhead

512 144 72 0% 78.9%

768 152 80 14.2% 84.9%

1024 160 80 32.3% 88.3%

1280 168 88 43.1% 90.0%

1536 176 88 50.3% 91.4%

1792 184 96 55.5% 93.1%

2048 192 96 59.4% 93.0%

2560 208 104 64.8% 94.0%

3072 224 112 68.4% 94.5%

4096 256 128 72.9% 95.0%

5120 288 144 75.6% 96.0%

8192 320 160 83.1% 97.0%

10240 320 160 86.5% 98.0%

advantage in average comp. cost = 0:375(jnaj+jnbj)�3:25jqj
0:375(jnaj+jnbj)

advantage in comm. cost = jnaj+jnbj�(jKH�(�)j+jqj)
jnaj+jnbj

Table 6: Advantage of Signcryption over RSA based Signature-Then-Encryption with Small
Public Exponents

18

In contrast, with SCS1 and SCS2, the number of modular exponentiations is one for
the process of signcryption and two for that of unsigncryption respectively. Since Shamir's
technique can also be used in unsigncryption, the computational cost of unsigncryption is
about 1.17 modular exponentiations. The total average computational cost for signcryption
is therefore 2.17 modular exponentiations. This represents a

5:17 � 2:17

5:17
= 58%

reduction in average computational cost.

4.1.2 Saving in communication overhead

The communication overhead measured in bits is jhash(�)j+ jqj+ jpj for the signature-then-
encryption based on Schnorr signature and ElGamal encryption, and jKH�(�)j+ jqj for the
two signcryption schemes SCS1 and SCS2, where jxj refers to the size of a binary string,KH
is a keyed hash function and hash is a one-way hash function (used in Schnorr signature,
but not the one used in signcryption). Hence the saving in communication overhead is

jhash(�)j + jqj+ jpj � (jKH�(�)j+ jqj)
jhash(�)j + jqj+ jpj

Assuming that the one-way hash function hash used in the signature-then-encryption
scheme and the keyed hash function KH used in the signcryption scheme share the same
output length, the reduction in communication overhead is jpj. For the minimum security
parameters recommended for use in current practice: jKH�(�)j = jhash(�)j = 72, jqj = 144
and jpj = 512, the numerical value for the saving is 70:3%. One can see that the longer the
prime p, the larger the saving.

Comparing Table 2 (shortened signature schemes) with Table 4 (signcryption schemes),
we can see that

Cost(signcryption) � Cost(shortened signature)

for the two signcryption schemes SCS1 and SCS2.

4.2 A Comparison with Signature-Then-Encryption Using RSA

4.2.1 Advantage in computational cost

With RSA, it is a common practice to employ a relatively small public exponent e for
encryption or signature veri�cation, although cautions should be taken in light of recent
progress in cryptanalysis against RSA with an small exponent (see for example [10, 9]).
Therefore the main computational cost is in decryption or signature generation which gen-
erally involves a modular exponentiation with a full size exponent d, which takes on average
1:5` modular multiplications using the \square-and-multiply" method, where ` indicates the
size of the RSA composite involved. With the help of the Chinese Remainder Theorem,
the computational expense for RSA decryption can be reduced, theoretically, to a quarter
of the expense with a full size exponent, although in practice it is more realistic to expect
the factor to be between 1/4 and 1/3. To simplify our discussion, we assume that the max-
imum speedup is achievable, namely the average computational cost for RSA decryption is
1:5
4 ` = 0:375` modular multiplications.

19

For the signature-then-encryption based on RSA, four (4) modular exponentiations are
required (two with public exponents and the other two with private exponents). Assuming
small public exponents are employed, the computational cost will be dominated by the two
modular exponentiations with full size private exponents. When the Chinese Remainder
Theorem is used, this cost is on average 0:375(jnaj + jnbj) modular multiplications, where
na and nb are the RSA composites generated by Alice and Bob respectively.

As discussed earlier, the two signcryption schemes SCS1 and SCS2 both involve, on
average, 2.17 modular exponentiations, or equivalently 3:25jqj modular multiplications, as-
suming the \square-and-multiply" method and Shamir's technique for fast computation of
the product of exponentials are used. This shows that the signcryption schemes represent
an advantage of

0:375(jnaj+ jnbj)� 3:25jqj
0:375(jnaj+ jnbj)

in average computational cost over the RSA based signature-then-encryption. For small
security parameters, the advantage is less signi�cant. This situation, however, changes
dramatically for large security parameters: consider jnaj = jnbj = jpj = 1536 and jqj =
176 which are recommended to be used for long term (say more than 20 years) security,
the signcryption schemes show a 50:3% saving in computation, when compared with the
signature-then-encryption based on RSA.

The advantage of the signcryption schemes in computational cost will be more visible,
should large public exponents be used in RSA.

4.2.2 Advantage in communication overhead

The signature-then-encryption based on RSA expands each message by a factor of jnaj+jnbj
bits, which is multiple times as large as the communication overhead jKH�(�)j + jqj of the
two signcryption schemes SCS1 and SCS2. Numerically, the advantage or saving of the
signcryption schemes in communication overhead over the signature-then-encryption based
on RSA is as follows: jnaj+ jnbj � (jKH�(�)j+ jqj)

jnaj+ jnbj
For jnaj = jnbj = 1536, jqj = 176 and jKH�(�)j = 88, the advantage is 91:4%. The longer
the composites na and nb, the larger the saving by signcryption.

Note that we have chosen not to compare the signcryption schemes with unbalanced
RSA recently proposed by Shamir [43]. The main reason is that while the new variant of
RSA is attractive in terms of its computational e�ciency, its security has yet to be further
scrutinized by the research community.

4.3 Remarks on the Comparison

The above comparison between signcryption and signature-then-encryption should only be
interpreted as a rough indicator for the relative e�ciency of the two di�erent paradigms.
The comparison has been based on the assumption that only basic modular exponentiation
techniques are used, these being the \square-and-multiply" method, Shamir's method for
fast evaluation of the product of several exponentials with the same modulo, and in the
case of RSA, the Chinese Remainder Theorem.

Instead of \square-and-multiply", other fast exponentiation methods such as sliding-
window exponentiation may be used. For the RSA cryptosystem, signature generation and

20

decryption can be sped up by adopting fast algorithms for �xed-exponent exponentiation.
A notable example of such algorithms is addition chain exponentiation. On the other hand,
discrete logarithm based cryptosystems, including the signcryption schemes proposed in this
work, can be made more e�cient using a number of strategies. Examples of these strategies
are (1) elliptic curves, (2) Lenstra's new sub-groups based on cyclotomic polynomials [24],
and (3) fast algorithms for �xed-base exponentiation. When all these techniques are used,
the resultant comparative indicator for the relative e�ciency of signcryption and signature-
then-encryption may oscillate around the values shown above.

A �nal remark is that our comparison has been carried out in terms of the absolute

number of bits and computational operations that can be saved by signcryption. Compar-
isons can also be made in terms of savings relative to the size of an entire data packet which
may include a (scrambled) message, the identi�ers of a sender and a recipient, signatures,
public key certi�cates, time-stamps, and so on. A problem with relative comparisons is that
their indicators decrease when the size of a message increases, which may render obscure
the signi�cant advantages of signcryption over signature-then-encryption.

4.4 How the Parameters are Chosen

Advances in fast computers help an attacker in increasing his capability to break a cryp-
tosystem. To compensate this, larger security parameters, including jnaj, jnbj, jpj, jqj and
jKH�(�)j must be used in the future. From an analysis by Odlyzko [36] on the hardness of
discrete logarithm, one can see that unless there is an algorithmic breakthrough in solv-
ing the factorization or discrete logarithm problem, jqj and jKH�(�)j can be increased at a
smaller pace than can jnaj, jnbj and jpj. Thus, as shown in Tables 5 and 6, the saving or
advantage in computational cost and communication overhead by signcryption will be more
signi�cant in the future when larger parameters must be used.

The selection of security parameters jpj, jqj, jnaj and jnaj in Tables 5 and 6, has been
partially based on recommendations made in [36]. The parameter values in the tables,
however, are indicative only, and can be determined exibly in practice. We also note that
choosing jKH�(�)j � jqj=2 is due to the fact that using Shank's baby-step-giant-step or Pol-
lard's rho method, the complexity of computing discrete logarithms in a sub-group of order
q is O(

p
q) (see [25]). Hence choosing jKH�(�)j � jqj=2 will minimize the communication

overhead of the signcryption schemes SCS1 and SCS2. Alternatively, one may decide to
choose KH�(�) 2 [1; : : : ; q�1] which can be achieved by setting jKH�(�)j = jqj�1. This will
not a�ect the computational advantage of the signcryption schemes, but slightly increase
their communication overhead.

5 More on Signcryption v.s. Signature-then-Encryption

In the previous section we concentrated on saving in computation and communication
o�ered by signcryption schemes. A natural question is why signcryption schemes can
achieve the savings. To search for a possible answer to the question, we have further
compared signcryption with \signature-then-encryption" and \signature-then-encryption-
with-a-static-key", in terms of key management, forward secrecy, past recovery, repudiation
settlement and users' \community" or world orientation.

We use the following encryption algorithm as an example of \signature-then-encryption-
with-a-static-key": (c; r; s) where c = Ek(m), k = KHSV (r; s), SV is a static key shared
between Alice and Bob, and (r; s) is Schnorr's signature on m. Typical examples of SV

21

include (a) a pre-shared random string between Alice and Bob, (b) the Di�e-Hellman key
gxaxbmod p, and (c) a shared key generated by an identity-based key establishment scheme
such as the key pre-distribution scheme [29].

5.1 Static Key Management

We focus narrowly on the way a static key SV between two users is generated and stored.
If SV is de�ned as a pre-shared random string between Alice and Bob, then �rst of all there
is a cost associated with distributing the key before a communication session takes place.
In addition, storing it in secure memory incurs a burden to a user, especially when the
number of keys to be kept securely is large. (These problems contributed to the motivation
for Di�e and Hellman to discover public key cryptography [12].)

On the other hand, if SV is de�ned as the Di�e-Hellman key gxaxbmod p, then prior
to using the value, a modular exponentiation is required on both Alice and Bob's sides.
Alice and Bob may save the exponentiation by computing SV = gxaxbmod p and storing it
in secure memory. But then they face the same problem with secure storage as that for a
pre-shared random string. Similar discussions apply to the case where SV is de�ned as a
shared key using the key pre-distribution scheme.

Now it becomes clear that static key generation/storage is a problem for \signature-then-
encryption-with-a-static-key", but not for signcryption or \signature-then-encryption".

5.2 Forward Secrecy

A cryptographic primitive or protocol provides forward secrecy with respect to a long term
private key if compromise of the private key does not result in compromise of security of
previously communicated or stored messages.

With \signature-then-encryption", since di�erent keys are involved in signature gener-
ation and public key encryption, forward secrecy is in general guaranteed with respect to
Alice's long term private key. (Nevertheless, loss of Alice's private key renders her signature
forgeable.) In contrast, with the signcryption schemes, it is easy to see that knowing Alice's
private key alone is su�cient to recover the original message of a signcrypted text. Thus no
forward secrecy is provided by the signcryption schemes with respect to Alice's private key.
A similar observation applies to \signature-then-encryption-with-a-static-key" with respect
to Alice's shared static key.

Forward secrecy has been regarded particularly important for session key establish-
ment [13]. However, to fully understand its implications to practical security solutions, we
should identify (1) how one's long term private key may be compromised, (2) how often it
may happen, and (3) what can be done to reduce the risks of a long key being compromised.
In addition, the cost involved in achieving forward secrecy is also an important factor that
should be taken into consideration.

There are mainly three causes for a long term private key being compromised: (1) the
underlying computational problems are broken; (2) a user accidentally loses the key; (3) an
attacker breaks into the physical or logical location where the key is stored.

As a public key cryptosystem always relies on the (assumed) di�culty of certain compu-
tational problems, breaking the underlying problems renders the system insecure and use-
less. Assuming that solving underlying computational problems is infeasible, an attacker
would most likely try to steal a user's long term key through such a means as physical
break-in.

22

To reduce the impact of signcryption schemes' lack of forward secrecy on certain security
applications, one may suggest users change their long term private keys regularly. In addi-
tion, a user may also use techniques in secret sharing [42] to split a long term private key
into a number of shares, and keep each share in a separate logical or physical location. This
would signi�cantly reduce the risk of a long term key being compromised, as an attacker
now faces a di�cult task to penetrate in a larger-than-a-threshold number of locations in a
limited period of time.

5.3 Past Recovery

Consider the following scenario: Alice signs and encrypts a message and sends it to Bob.
A while later, she �nds that she wants to use the contents of the message again.

To satisfy Alice's requirement, her electronic mail system has to store some data related
to the message sent. And depending on cryptographic algorithms used, Alice's electronic
mail system may either (1) keep a copy of the signed and encrypted message as evidence
of transmission, or (2) in addition to the above copy, keep a copy of the original message,
either in clear or encrypted form.

A cryptographic algorithm or protocol is said to provide a past recovery ability if Alice
can recover the message from the signed and encrypted message alone using her private key.

Obviously a cryptographic algorithm or protocol provides past recovery if and only if it
does not provide forward secrecy with respect to Alice the sender's long term private key.

Thus both signcryption and \signature-then-encryption-with-a-static-key" provide past
recovery, while \signature-then-encryption" does not.

In terms of past recovery, one may view \signature-then-encryption" as an information
\black hole" with respect to Alice the sender: whatsoever Alice drops in the \black hole"
will never be retrieval to her, unless a separate copy is properly kept. Therefore signcryption
schemes are more economical with regard to secure and authenticated transport of large
data �les. It is even more so when Alice has to broadcast the same message to a large
number of recipients. (See also Section 6 for more discussions on broadcasting).

5.4 Repudiation Settlement

Now we turn to the problem of how to handle repudiation. With signature-then-encryption,
if Alice denies the fact that she is the originator of a message, all Bob has to do is to decrypt
the ciphertext and present to a judge (say Julie) the message together with its associated
signature by Alice, based on which the judge will be able to settle a dispute.

With digital signcryption, however, the veri�ability of a signcryption is in normal situ-
ations limited to Bob the recipient, as his private key is required for unsigncryption. Now
consider a situation where Alice attempts to deny the fact that she has signcrypted and sent
to Bob a message m. Similarly to signature-then-encryption, Bob would �rst unsigncrypt
the signcrypted text, and then present the following data items to a judge (Julie): q, p, g,
ya, yb, m, r, and s. One can immediately see that the judge cannot make a decision using
these data alone. To solve this problem, Bob and the judge have to engage in an interactive
zero-knowledge proof/argument protocol. Details will be discussed in Section 8.3.

At the �rst sight, the need for an interactive repudiation settlement procedure between
Bob and the judge may be seen as a drawback of signcryption. Here we argue that inter-
active repudiation settlement will not pose any problem in practice and hence should not
be an obstacle to practical applications of signcryption. In the real life, a message sent

23

to Bob in a secure and authenticated way is meant to be readable by Bob only. Thus
if there is no dispute between Alice and Bob, direct veri�ability by Bob only is precisely
what the two users want. In other words, in normal situations where no disputes between
Alice and Bob occur, the full power of universal veri�ability provided by digital signature is
never needed. (For a similar reason, traditionally one uses signature-then-encryption, rather
than encryption-then-signature. See also [8] for potential risks of forgeability accompanying
encryption-then-signature.) In a situation where repudiation does occur, interactions be-
tween Bob and a judge would follow. This is very similar to a dispute on repudiation in the
real world, say between a complainant (Bob) and a defendant (Alice), where the process
for a judge to resolve the dispute requires in general interactions between the judge and the
complainant, and furthermore between the judge and an expert in hand-written signature
identi�cation, as the former may rely on advice from the latter in correctly deciding the
origin of a message. The interactions among the judge, Bob the recipient and the expert in
hand-written signature identi�cation could be time-consuming and also costly.

5.5 \Community" or World Orientation

With the signcryption schemes, both Alice and Bob have to use the same p and g. So they
basically belong to the same \community" de�ned by p and g. Such a restriction does not
apply to \signature-then-encryption".

Similar restrictions apply to \signature-then-encryption-with-a-static-key" where the
static key is derived from the Di�e-Hellman key gxaxbmod p, or a key pre-distribution
scheme [29]. Such restrictions seem to be inherent with cryptographic protocols based on
the Di�e-Hellman public key cryptosystem [12]. A recent example of such protocols is an
Internet key agreement protocol based on ISAKMP and Oakley [17].

In the case where a static key is a pre-shared random string between Alice and Bob,
whether or not Alice and Bob belong to the same \community" will be determined by the
underlying protocol for distributing the pre-shared random string.

In theory, the requirement that both Alice and Bob belong to the same \community"
does limit the number of users with whom Alice can communicate using a signcryption
scheme. In reality, however, all users belong to several \communities", and they tend to
communicate more with users in the same group than with outsiders: users (including banks
and individuals) of a certain type of digital cash payment system, employees of a company
and citizens of a country, to name a few. Therefore the \community" oriented nature of
signcryption schemes may not bring much inconvenience to their use in practice.

Table 7 summarizes all the comparisons we have carried out in this section.

5.6 Why Can Signcryption Save ?

Now we come back to the question of why signcryption has a cost similar to that of Schnorr
signature. At the �rst sight, one might think that a possible answer would lie in the fact
that with signcryption, forward secrecy is lost with respect to the sender's long term private
key. However, signcryption o�ers past recovery which cannot be achieved by \signature-
then-encryption". In other words, past recovery is not something for free. So perhaps loss
of forward secrecy does not directly contribute to the low cost of signcryption. Rather, one
may consider that the cost for forward secrecy has been somehow transformed to achieve
past recovery.

It seems more likely that the loss of non-interactive repudiation settlement, together

24

Various
Dimensions

Signcryption
Signature-then-Encryption

with a Static Key
Signature-then-Encryption

Cost in Comp.
& Comm.

� Cost(signature) � Cost(signature)
Cost(signature) +
Cost(encryption)

Static key
Management

N/A
Distribution,
Derivation,

Secure storage
N/A

Forward Secrecy No No Yes

Past Recovery Yes Yes No

Repudiation
Settlement

Interactive Non-interactive Non-interactive

World Orientation No Yes & No (see Section 5.5) Yes

Table 7: Other Aspects of Signcryption v.s. Signature-then-Encryption

with the fact that users are all con�ned to the same \community" de�ned by p and g, has
contributed to the low cost of signcryption.

6 Signcryption for Multiple Recipients

So far we have only discussed the case of a single recipient. In practice, broadcasting a
message to multiple users in a secure and authenticated manner is an important facility for
a group of people who are jointly working on the same project to communicate with one
another. In this scenario, a message is broadcast through a so-called multi-cast channel, one
of whose properties is that all recipients will receive an identical copy of a broadcast message.
Major concerns with broadcasting to multiple recipients include security, unforgeability,
non-repudiation and consistency of a message. Here consistency refers to that all recipients
recover an identical message from their copies of a broadcast message, and its aim is to
prevent a particular recipient from being excluded from the group by a dishonest message
originator.

With the traditional signature-then-encryption, the standard practice has been to en-
crypt the message-encryption key using each recipient's public key and attach the resulting
ciphertext to the signed and also encrypted message. RFC1421 [28] details a standard
based on RSA. A similar scheme for multiple recipients can be de�ned using cryptographic
schemes based on the discrete logarithm problem, such as \Schnorr signature-then-ElGamal
encryption". In Parts (b) and (c) of Figure 3, the format of a ciphertext for multiple re-
cipients in a Discrete Logarithm based approach is shown against that in an RSA based
approach.

Now we show that a signcryption scheme can be easily adapted to one for multiple
recipients. We assume that there are t recipients R1, R2, : : :, Rt. The private key of a
recipientRi is a number xi chosen uniformly and independently at random from [1; : : : ; q�1],
and his matching public key is yi = gximod p.

Table 8 details how to modify SCS1 described in Table 4 into a multi-recipient signcryp-
tion scheme which we call SCS1M. SCS2M is constructed similarly from SCS2, and hence
not shown in the Table. See also Part (a) of Figure 3 for the format of the signcrypted
text of a message for multiple recipients. The basic idea is to use two types of keys: the

25

�rst type consists of only a single randomly chosen key (a message-encryption key) and the
second type of keys include a key chosen independently at random for each recipient (called
a recipient speci�c key). The message-encryption key is used to encrypt a message with a
private key cipher, while a recipient speci�c key is used to encrypt the message-encryption
key.

Figure 3: Output Formats of Signcryption and Signature-then-Encryption for Multiple
Recipients

Having speci�ed SCS1M, a signcryption for multiple recipients, next we proceed to
examining other major issues with the scheme: message consistency, con�dentiality, un-
forgeability, non-repudiation and e�ciency.

As we discussed earlier, a message delivery scheme for multiple recipients is said to
be consistent if messages recovered by the recipients are identical. Such a requirement
is essential in the case of multiple recipients, as otherwise Alice the sender may be able
to exclude a particular recipient from the group of recipients by deliberately causing the
recipient to recover a message di�erent from the one recovered by other recipients. With
a signature-then-encryption scheme for multiple recipients, message consistency is not a
problem in general. With SCS1M message consistency is achieved through the use of two
techniques: (1) a message m is encrypted together with the hashed value h = KHk(m),
namely c = Ek(m;h). (2) m and k are both involved in the formation of ri and si through
ri = KHki;2(m;h). These two techniques e�ectively prevent a recipient from being excluded
from the group by a dishonest message originator.

Similarly to the case of a single recipient, identi�cation information on each recipient
Ri can be tied to a signcrypted text by involving Ri's public key or certi�cate in the
computation of ri, namely re-de�ning ri as ri = KHki;2(m;h; yi; etc). (see Section 3.3).

Next we examine the e�ciency of the schemes.

26

Signcryption by Alice the Sender for Multi-Recipients

An input to this signcryption algorithm for multi-recipients consists of a message m
to be sent to t recipients R1; : : : ; Rt, Alice's private key xa, Ri's public key yi for all
1 <= i <= t, q and p.

1. Pick a random message-encryption key k, calculate h = KHk(m), and encrypt
m by c = Ek(m;h).

2. Create a signcrypted text of k for each recipient i = 1; : : : ; t:

(a) Pick a random number vi from [1; : : : ; q � 1] and calculate ki =
hash(yvii mod p). Then split ki into ki;1 and ki;2 of appropriate length.

(b) ci = Eki;1(k).

(c) ri = KHki;2(m;h).

(d) si = vi=(ri + xa)mod q.

Alice then broadcasts to all the recipients (c; c1; r1; s1; : : : ; ct; rt; st).

Unsigncryption by Each Recipient

An input to this unsigncryption algorithm consists of a signcrypted text
(c; c1; r1; s1; : : : ; ct; rt; st) received through a broadcast channel, together with a re-
cipient Ri's private key xi where 1 <= i <= t, Alice's public key ya, g, q and p.

1. Find out (c; ci; ri; si) in (c; c1; r1; s1; : : : ; ct; rt; st).

2. ki = hash((ya � gri)si�ximod p). Split ki into ki;1 and ki;2.

3. k = Dki;1(ci).

4. w = Dk(c). Split w into m and h.

5. check if h can be recovered from KHk(m) and ri recovered from KHki;2(w).

Ri accepts m as a valid message originated from Alice only if both h = KHk(m)
and ri = KHki;2(w) hold.

Table 8: SCS1M | A Signcryption Scheme for Multiple Recipients

27

6.1 Comparison with a Discrete Logarithm Based Scheme

We compare SCS1M and SCS2M with the signature-then-encryption for multiple recipients
based on Schnorr signature and ElGamal encryption. As can be seen in Table 9, saving
by SCS1M (and by SCS2M) in computational cost and communication overhead can be
summarized as follow: the number of modular exponentiations is reduced (1) for Alice the
sender, from 2t + 1 to t (i.e., by a factor of larger than 50%), and (2) for each recipient,
from 2.17 to 1.17 (i.e., by a factor of 45.2% on average, assuming Shamir's fast evaluation
of the product of exponentials is used), while the communication overhead measured in bits
is reduced from t � (jkj + jpj) + jhash(�)j + jqj to t � (jkj + jKH�(�)j + jqj) + jKH�(�)j. As
jpj is in general far larger than jKH�(�)j + jqj (compare jpj = 512 with jKH�(�)j = 72 and
jqj = 144), the saving in communication overhead is signi�cant. To summarize the above
discussion, SCS1M and SCS2M are far more e�cient than the signature-then-encryption
based on Schnorr signature and ElGamal encryption, both in terms of computational cost
and communication overhead.

6.2 Comparison with an RSA Based Scheme

Now we compare SCS1M and SCS2M with RFC1421 [28] in which an RSA based signature-
then-encryption for multiple recipients is speci�ed. As the discrete logarithm and factor-
ization problems are of equal complexity with our current knowledge (see Appendix A), we
assume that jnaj = jnbj = jpj. First, two observations on computational costs can be made
(see also Table 9):

1. For Alice the sender | The number of modular exponentiations is t+1 with RFC1421,
as against t with SCS1M and SCS2M. Among the r+1 exponentiations with RFC1421,
one is for RSA signature generation which involves a full length exponent, and the
remaining are for RSA public key encryption which generally only involves small
exponents. The t exponentiations with SCS1M and SCS2M all involve exponents from
[1; : : : ; q � 1]. In addition, both SCS1M and SCS2M involve more hashing, modular
multiplications and additions. Hence it is fair to say that from Alice the sender's
point of view, neither SCS1M nor SCS2M shows an advantage in computational cost
over CFR1421.

2. For a recipient Ri | The number of modular exponentiations is two with RFC1421,
and on average 1.17 with SCS1M and SCS2M. Since one of the two exponentiations
with RFC1421 is invested in RSA decryption which involves a full size exponent,
SCS1M and SCS2M are faster than RFC1421 from Ri's point of view.

A signi�cant advantage of SCS1M and SCS2M over RFC1421, however, lies in its low
communication overhead: RFC1421 expands a message by jnaj+

P
i=1;:::;t jnij bits, which is

a number of times larger than t�(jkj+jKH�(�)j+jqj)+jKH�(�)j, the communication overhead
of SCS1M and SCS2M. In conclusion, the following can be said: SCS1M and SCS2M share
a similar computational cost with the scheme in RFC1421, but they have a signi�cantly
lower communication overhead than RFC1421.

A �nal note follows: comparisons between the new schemes and RSA or discrete log-
arithm based schemes in other aspects, including key management, forward secrecy, past
recovery, repudiation settlement and users' group or world orientation, are similar to the
case of a single recipient, and hence are committed here.

28

Schemes for
Multiple Recipients

Computational
cost

Communication
overhead (in bits)

RFC1421
(signature-then-encryption

for multi-recipients
based on RSA)

EXP=t+ 1, HASH=1, ENC=1
(EXP=2, HASH=1, DEC=1)

jnaj+
P

i=1;:::;t jnij

signature-then-encryption
for multi-recipients

based on
\Schnorr signature +
ElGamal encryption"

EXP=2t+ 1, MUL=1, ADD=1
HASH=1, ENCshort=t, ENC=1
(EXP=2.17, MUL=1
HASH=1, DECshort=1, DEC=1)

t � (jkj+ jpj)+
jhash(�)j + jqj

SCS1M
(signcryption for
multi-recipients)

EXP=t, DIV=t, ADD=t
HASH=2t+ 1, ENCshort=t, ENC=1
(EXP=1.17, MUL=2
HASH=3, DECshort=1, DEC=1)

t � (jkj + jKH�(�)j+ jqj)+
jKH�(�)j

SCS2M
(signcryption for
multi-recipients)

EXP=t, MUL=t, DIV=t, ADD=t
HASH=2t+ 1, ENCshort=t, ENC=1
(EXP=1.17, MUL=2
HASH=3, DECshort=1, DEC=1)

t � (jkj + jKH�(�)j+ jqj)+
jKH�(�)j

where
EXP = the number of modular exponentiations (a fractional number indicates an average cost),
DIV = the number of modular divisions,
MUL = the number of modular multiplications,
ADD = the number of modular addition or subtraction,
HASH = the number of one-way or keyed hash operations,
ENC = the number of encryptions using a private key cipher,
ENCshort = the number of short encryptions using a private key cipher,
DEC = the number of decryptions using a private key cipher,
DECshort = the number of short decryptions using a private key cipher,
jkj = the size of a message-encryption key,
Parameters in the brackets indicate the number of operations involved in
\decryption-then-veri�cation" or \unsigncryption" by each participant.

Table 9: Cost Saving of Signcryption for Multiple Recipients

29

7 Applications of Signcryption

As discussed in the introduction, a major motivation of this work is to search for a more
economical method for secure and authenticated transactions/message delivery. If digital
signcryptions are applied in this area, the resulting bene�ts are potentially signi�cant: for
every single secure and authenticated electronic transaction, we may save 50% in computa-
tional cost and 85% in communication overhead.

The proposed signcryption schemes are compact and particularly suitable for smart
card based applications. We envisage that they will �nd innovative applications in many
areas including digital cash payment systems, EDI and personal heath cards. Of particular
importance is the fact that signcryption may be used to design more e�cient digital cash
transaction protocols that are often required to provide with both the functionality of digital
signature and encryption.

Another surprising property of the proposed signcryption schemes is that it enables us
to carry out fast, secure, unforgeable and non-repudiatable key transport in a single block

whose size is smaller than jpj. In particular, using the two signcryption schemes de�ned in
Table 4, we can transport highly secure and authenticated keys in a single ATM cell (48 byte
payload + 5 byte header). A possible combination of parameters is jpj >= 512, jqj = 160,
and jKH�(�)j = 80, which would allow the transport of an unforgeable and non-repudiatable
key of up to 144 bits (see Figure 4). In the �gure, (key; TQ) indicates materials on a key
to be transported and TQ may contain a time-stamp or a nonce. The data item denoted
by other in r = KHk2(key; TQ; other) may contain name-binding data such as a recipient's
public key.

Figure 4: Secure and Unforgeable Key Transport in a Single ATM Cell (Based on SCS1)

Advantages of such a key transport scheme over interactive key exchange protocols such
as those proposed in [13] are obvious, both in terms of computational e�ciency and com-
pactness of messages. Compared with previous attempts for secure, but un-authenticated,
key transport based on RSA (see for example [21]), our key transport scheme has a fur-
ther advantage in that it o�ers both unforgeability and non-repudiation. In a similar way, a
multi-recipient signcryption scheme can be used as a very economical method for generating
conference keys among a group of users. The reader is directed to [47] for more technical
details.

30

8 Unforgeability, Non-repudiation and Con�dentiality of Sign-

cryption

Like any cryptosystem, security of signcryption in general has to address two aspects: (1)
to protect what, and (2) against whom. With the �rst aspect, we wish to prevent the
contents of a signcrypted message from being disclosed to a third party other than Alice,
the sender, and Bob, the recipient. At the same time, we also wish to prevent Alice, the
sender, from being masquerade by other parties, including Bob. With the second aspect,
we consider the most powerful attackers one would be able to imagine in practice, namely
adaptive attackers who are allowed to query Alice's signcryption algorithm and/or Bob's
unsigncryption algorithm.

We say that a signcryption scheme is secure if the following conditions are satis�ed:

1. Unforgeability | it is computationally infeasible for an adaptive attacker, who may be
a dishonest Bob and allowed to query Alice's signcryption algorithm, to masquerade
Alice in creating an authentic signcrypted text.

2. Non-repudiation | it is computationally feasible for a third party to settle a dispute
between Alice and Bob in an event where Alice denies the fact that she is the originator
of a signcrypted text with Bob as its recipient.

3. Con�dentiality | it is computationally infeasible for an adaptive attacker to gain any
partial information [15] on the contents of a signcrypted text. The adaptive attacker
may be any party other than Alice and Bob. In addition to Bob's unsigncryption
algorithm, the attacker is also allowed to query Alice's signcryption algorithm, as her
secret key is involved in the creation of a signcrypted text.

A formal de�nition for unforgeability of digital signature can be found in [16]. As for
con�dentiality, a formal de�nition for security against a passive attacker, who does not
query a decryption algorithm, was �rst introduced in [15], while a matching de�nition for
security against an adaptive attacker was �rst provided in [39].

Before proceeding to the proof of the security of the signcryption schemes SCS1 and
SCS2 de�ned in Table 4, let us �rst discuss the assumptions that are required by the proof.

8.1 Assumptions

Examining the procedures for signcryption and unsigncryption, we can see that they in-
volve three basic operations that are related to assumptions: (1) private key (symmetric)
encryption and decryption, (2) one-way hashing and keyed hashing, and (3) modular expo-
nentiation. In the following we discuss relevant assumptions.

Assumption 1 The private key cipher (E;D) hides all partial information on a message.

Assumption 2 The hash function hash behaves like a random function (or random ora-

cle).

As the keyed hash function KH can be constructed from hash, Assumption 2 implies
that for every secret key k, KHk(�) behaves like a random oracle. The above assumption
also implies that both hash and KH hide all partial information on their input.

31

With the discrete exponentiation, there are three di�erent, but closely related, compu-
tational problems in a sub-group of order q modular p, where p is prime and q is a prime
factor of p� 1. Recall that g is an integer in [1; : : : ; p� 1] with order q modulo p.

1. Discrete Logarithm (DL) Problem. Given (p; q; g; y), where y 2 [1; : : : ; p � 1],
�nd out an x 2 [1; : : : ; q � 1] such that y = gxmod p.

2. Computational Di�e-Hellman (CDH) Problem. Given (p; q; g; ya; yb), where
ya; yb 2 [1; : : : ; p � 1], �nd out a y 2 [1; : : : ; p � 1] such that y = gxaxbmod p, where
xa; xb 2 [1; : : : ; q � 1] satisfying ya = gxamod p and yb = gxb mod p. (Note that it is
not required to actually �nd out xa and xb.)

3. Decisional Di�e-Hellman (DDH) Problem. Given (p; q; g; ya; yb; yc), where
ya; yb; yc 2 [1; : : : ; p�1], decide whether xc = xaxbmod q, where xa; xb; xc 2 [1; : : : ; q�
1] satisfying ya = gxamod p, yb = gxbmod p, and yc = gxcmod p. (As in the com-
putational Di�e-Hellman problem, it is not required to actually �nd out xa, xb and
xc.)

Intuitively, a problem A is said to be reducible to another problem B if an algorithm for
solving B can be converted into one for solving A. Put it in another way, saying that \A is
reducible to B" is roughly the same as saying that \A is not harder than B". The current
state of the art in relation to the above three problems is that the decisional Di�e-Hellman
problem is reducible to the computational Di�e-Hellman problem, and the computational
Di�e-Hellman problem is reducible to the Discrete Logarithm problem. It is not known
whether the opposite direction is also true. The fastest algorithm currently available for
solving any of the three problems takes an exponential amount of time. This leads to the
following assumptions:

Assumption 3 The Discrete Logarithm assumption. There is no e�cient algorithm

for solving the Discrete Logarithm problem.

Assumption 4 The computational Di�e-Hellman assumption. There is no e�-

cient algorithm for solving the computational Di�e-Hellman problem.

Assumption 5 The decisional Di�e-Hellman assumption. There is no e�cient
algorithm for solving the decisional Di�e-Hellman problem.

From the reductions discussed above, we can see that the decisional Di�e-Hellman
assumption implies the computational Di�e-Hellman assumption, and the latter implies the
Discrete Logarithm assumption. In other words, the decisional Di�e-Hellman assumption
is the strongest among the three. The decisional Di�e-Hellman assumption has been very
useful in cryptography. Our discussions on the forgeability of the signcryption schemes will
be based on the Discrete Logarithm assumption, while discussions on the con�dentiality of
the schemes will have to rely on the stronger decisional Di�e-Hellman assumption. Some
recent applications of the decisional assumption can be found in [11, 31].

Finally we note that all the assumptions can be stated in a precise and formal way
using the terminology from the theory of computation. Such formalizations, however, are
not critical to our discussions on the security of signcryption, and hence omitted.

32

8.2 Unforgeability

Regarding forging Alice's signcryption, a dishonest Bob is in the best position to do so, as
he is the only person who knows xb which is required to directly verify a signcrypted text
from Alice. In other words, the dishonest Bob is the most powerful attacker we should look
at. Given the signcrypted text (c; r; s) of a message m from Alice, Bob can use his private
key xb to decrypt c and obtain m = Dk2(c). Thus the original problem is reduced to one
in which Bob is in possession of (m; r; s). The latter is identical to the unforgeability of
SDSS1 or SDSS2.

As shown in Section 3.1, SDSS1 and SDSS2 are unforgeable. Therefore we conclude
that both signcryption schemes SCS1 and SCS2 are unforgeable against adaptive attacks,
under the assumptions that the (keyed) hash function behaves like a random function, and
that the Discrete Logarithm is hard to compute (Assumptions 1 and 2).

8.3 Non-repudiation

As discussed in Section 5, signcryption requires a repudiation settlement procedure di�erent
from the one for a digital signature scheme is required. In particular, the judge would need
Bob's cooperation in order to correctly decide the origin of the message. In what follows
we describe four possible repudiation settlement procedures, each requiring a di�erent level
of trust on the judge's side.

8.3.1 With a Trusted Tamper-Resistant Device

If a tamper-resistant device is available, a trivial settlement procedure starts with the judge
asking Bob to provide the device with q, p, g, ya, yb,m, c, r, s and his private key xb, together
with certi�cates for ya and yb. The tamper-resistant device would follow essentially the same
steps used by Bob in unsigncrypting (c; r; s). It would output \yes" if it can recover m from
(c; r; s), and \no" otherwise. The judge would then take the output of the tamper-resistant
device as her decision. Note that in this case, Bob puts his trust completely on the device,
rather than on the judge.

8.3.2 By a Trusted Judge

If the judge is trusted, achieving correct repudiation settlement by the judge is again trivial:
Bob simply presents to the the judge xb together with other data items. Note that both in
this case and in the case of a tamper-resistant device, Bob's presenting k, rather than xb, to
the judge or the device without convincing her or the device that k satis�es the condition of
k = hash(uxb mod p), would open up a door for a dishonest Bob to frame Alice by providing
a message made up by himself, where xb is Bob's private key, u = (ya � gr)smod p for SCS1,
and u = (g � yra)smod p for SCS2.

Note that once being given xb, the judge can do everything Bob can with xb.

8.3.3 By a Less Trusted Judge

Another possible solution would be for Bob to present v = uxbmod p, rather than xb, to
the judge. Bob and the judge then engage in a zero-knowledge interactive/non-interactive
proof/argument protocol (with Bob as a prover and the judge as a veri�er), so that Bob
can convince the judge of the fact that v does have the right form. (A possible candidate
protocol is a 4-move zero-knowledge proof protocol developed in [7].)

33

Bob has to be aware of the fact that with this repudiation settlement procedure, the
judge can obtain from v, r, s and yb the Di�e-Hellman shared key between Alice and Bob,
namely kDH;ab = gxaxbmod p (= v1=sy�r

b mod p for SCS1). With kDH;ab, the judge can �nd
out v� for other communication sessions between Alice and Bob, and hence recover the
corresponding messages (v� = ks

�

DH;aby
r��s�
b mod p for SCS1). Therefore Bob may not rely

on this repudiation settlement procedure if the judge is not trusted by either Alice or Bob.

8.3.4 By any (Trusted/Untrusted) Judge

Now we describe a repudiation settlement procedure that works even in the case when
the judge corrupts and is not trusted. The procedure uses techniques in zero-knowledge
proofs/arguments 3 and guarantees that the judge can make a correct decision, with no
useful information on Bob's private key xb being leaked out to the judge.

First Bob presents following data to the judge: q, p, g, ya, yb, m, c, r, s and certi�cates
for ya and yb. Note that Bob does not hand out xb, k or v = uxbmod p. The judge then
veri�es the authenticity of ya and yb. If satis�ed both with ya and yb, the judge computes
u = (ya � gr)smod p when SCS1 is used, and u = (g � yra)smod p when SCS2 is used instead.
Bob and the judge then engage in a zero-knowledge interactive protocol, with Bob as a
prover and the judge as a veri�er.

The goal of the protocol is for Bob to convince the judge of the fact that he knows a
satisfying assignment z = xb to the following Boolean formula ':

'(z) = (gzmod p == yb) ^
(Dk1(c) ==m) ^
(KHk2(Dk1(c)) == r)

where k1 and k2 are de�ned by (k1; k2) = hash(uzmod p), and == denotes equality testing.
' is clearly a satis�able Boolean formula in the class of NP. There are a large number of

zero-knowledge proof/argument protocols for NP statements in the literature. Some zero-
knowledge protocols are based on assumptions on speci�c computational problems such
integer factorization and discrete logarithm, while others work with general complexity
assumptions such as the existence of one-way functions. Here we only mention one of such
protocols recently proposed in [2]. This zero-knowledge argument protocol assumes that
both Bob (the prover) and the judge (the veri�er) are polynomially bounded in computing
time, which matches our cryptographic setting. In other words, it is a zero-knowledge
argument protocol. It consists of only four moves of messages between Bob and the judge,
and any one-way function whose input and out are of equal length can be used to build a so-
called bit-commitment scheme used in the protocol. In practice, the one-way function can
be instantiated with a one-way hash function or a secure block cipher. After an execution
of the protocol, the judge announces that (c; r; s) is originated from Alice to Bob only if she
is convinced that the Boolean formula ' is satis�able.

To summarize the above discussion on interactions between Bob and the judge, one (such
as an implemented of a signcryption scheme) would �rst correctly �gure out the Boolean
formula '. Then one would select a suitable one-way function. And �nally one would code
the four-move protocol speci�ed in [2].

3The main di�erence between a proof and an argument in the context of zero-knowledge protocols is
that, while an argument assumes that a prover runs in polynomial time, a proof works even if a prover has
unlimited computational power. A zero-knowledge argument su�ces for most cryptographic applications,
including repudiation settlement in signcryption.

34

Properties of the protocol include: (1) the judge always correctly announces that (c; r; s)
is originated from Alice when it is indeed so; (2) the probability is negligibly small for the
judge to declare that (c; r; s) is originated from Alice when in fact it is not; (3) no useful
information on Bob's private key xb is leaked to the judge (or any other parties).

Two remarks on the interactive repudiation settlement procedure follow. First, the
message m may be dropped from the data items handed over to the judge, if Bob does
not wish to reveal the contents of m to the judge. Second, Bob may include k into the
data handed over to the judge if k is de�ned as k = hash(yxb mod p) in which a one-way
hash function hash is involved. This will reduce the computation and communication load
involved in the interactions without compromising the security of xb, especially when hash
is a cryptographically strong function that does not leak information on its input.

Finally we note that if Bob and the judge share a common random bit string, then the
number of moves of messages between Bob and the judge can be minimized to 1, by the
use of a non-interactive zero-knowledge proof protocol such as the one proposed in [22].

8.4 Con�dentiality

Finally we consider the con�dentiality of message contents against an adaptive attacker who
is allowed to query both the signcryption and unsigncryption algorithms. We have already
proved in Section 8.2 that the signcryption schemes are unforgeable by any attacker who
is allowed to query the signcryption algorithm (and even has access to Bob's secret key),
assuming that the hash function is a random oracle and that the discrete logarithm problem
is hard. This implies that every signcrypted text that can be produced by such an attacker,
during or after mounting an attack, must have been obtained by querying the signcryption
algorithm. This in turn implies that the attacker already knows the corresponding plain
text that the attacker must present to the signcryption algorithm for a query.

As the attacher is already aware of the plain text, being allowed to query the unsign-
cryption algorithm does not help the attacker in any way. Thus we only have to examine
the security of the signcryption schemes against a passive attacker who is allowed to query
the signcryption algorithm, but not the unsigncryption algorithm.

We use SCS1 as an example in proving security against a passive attacker, as discussions
for SCS2 are similar. Given the signcrypted text (c; r; s) of a messagem from Alice, a passive
attacker can obtain u = (ya � gr)s = gxmod p. Thus to the attacker, data related to the
signcrypted text of m include: q, p, g, ya = gxamod p, yb = gxbmod p, u = gxmod p,
c = Ek1(m), r = KHk2(m), and s = x=(r + xa)mod q.

We wish to show that it is computationally infeasible for the attacker to �nd out any
partial information on the message m from the related data listed above. We will achieve
our goal by reduction: we will reduce the con�dentiality of another encryption scheme to
be de�ned shortly (called Ckh for convenience) to the con�dentiality of SCS1.

The encryption scheme Ckh is based on ElGamal encryption scheme. With this encryp-
tion scheme, the ciphertext of a message m to be sent to Bob is de�ned as (c = Ek1(m),
u = gxmod p, r = KHk2(m)) where (1) x is chosen uniformly at random from [1; : : : ; q�1],
and (2) (k1; k2) = k = hash(yxb mod p). It turns out Ckh is a slightly modi�ed version of
a scheme that has received special attention in [45, 3]. (See also earlier work [49].) To
prove that Ckh hides all partial information from a passive attacker, we note that being
given r = KHk2(m) does not help the attacker at all, since the keyed hash function hides
all partial information on its input. Thus the problem can be translated into a new one
in which we wish to prove the security of (c = Ek1(m), u = gxmod p) against the passive

35

attacker. It turns out that (c = Ek1(m), u = gxmod p) does hide all partial information,
due to the following facts: (1) as q is prime and hence yb has order q modular p, when
x is chosen uniformly at random from [1; : : : ; q � 1], yxb mod p is a random element in the
sub-group of order q; (2) Thus k = hash(yxb mod p) is a random key, assuming that the
decisional Di�e-Hellman problem is hard and that the hash function behaves like a random
oracle.

Similar observations on the security of other relevant encryption schemes against a
passive attacker have been made in [11, 31]. To summarize the above discussions, Ckh hides
all partial information from a passive attacker, under the assumptions that the private key
cipher (E;D) is secure and hides all partial information, that the (keyed) hash function
behaves like a random oracle, and that the decisional Di�e-Hellman problem is hard to
solve.

Now we assume that there is an attacker for SCS1. Let us call this attacker ASCS1. We
show how ASCS1 can be translated into one for Ckh, called ACkh

. Recall that for a message
m, the input to ASCS1 includes q, p, g, ya = gxamod p, yb = gxbmod p, u = gxmod p,
c = Ek1(m), r = KHk2(m), and s = x=(r + xa)mod q. With the attacker ACkh

for Ckh,
however, its input includes: q, p, g, yb = gxbmod p, u = gxmod p, c = Ek1(m), and
r = KHk2(m). One immediately identi�es that two numbers that correspond to ya and
s which are needed by ASCS1 as part of its input are currently missing from the input to
ACkh

. Thus, in order for ACkh
to \call" the attacker ASCS1 \as a sub-routine", ACkh

has
to create two numbers corresponding to ya and s in the input to ASCS1. Call these two
yet-to-be-created numbers y0a and s0. y0a and s0 have to have the right form so that ACkh

can \fool" ASCS1. It turns out that such y
0
a and s

0 can be easily created by ACkh
as follows:

(1) pick a random number s0 from [1; : : : ; q � 1]. (2) let y0a = u1=s
0 � g�rmod p.

From the reduction, we see that if there is a passive attacker that �nds any partial
information on a message in SCS1, then the attacker can be used to �nd partial information
on a message in Ckh. As we have already proven the con�dentiality of Ckh, we conclude that
no attacker for SCS1 can �nd any partial information on a message, under the assumptions
(1) that the private key cipher (E;D) is secure and hides all partial information, (2) that the
(keyed) hash function behaves like a random oracle and hence hides all partial information on
its input, and (3) that the decisional Di�e-Hellman problem is hard to solve (Assumptions 1,
2 and 5).

We note that the proof techniques discussed in this section can also be used for other
signcryption schemes, provided that the underlying digital signature schemes are provably
secure. In addition, the techniques can be extended to prove the security of the signcryption
schemes for multiple recipients (SCS1M and SCS2M) described in Section 6.

9 Conclusion

We have introduced a new cryptographic primitive called signcryption for secure and authen-
ticated message delivery, which ful�lls all the functions of digital signature and encryption,
but with a far smaller cost than that required by the current standard signature-then-
encryption methods. Security of the signcryption schemes has been proven, and extensions
of the schemes to multiple recipients has been carried out. We believe that the new primitive
will open up a number of avenues for future research into more e�cient security solutions.

The signcryption schemes proposed in this paper have been based on ElGamal signa-
ture and encryption. We have not been successful in searching for a signcryption scheme

36

employing RSA or other public key cryptosystems. Therefore it remains a challenging open
problem to design signcryption schemes based factorization or other computationally hard
problems.

Our signcryption schemes all involve a zero-knowledge interactive protocol in repudiation
settlement. There seems to exist a trade-o� overhead in computation and communication
and other dimensions such as forward secrecy, past recovery and complexity of repudiation
settlement. Thus an even more challenging task would be to �nd out, say from an infor-
mation theoretic point of view, exactly how the trade-o� varies, with a view to design a
signcryption scheme that is e�cient and admits a less complicated repudiation settlement
procedure.

Acknowledgment

Many revisions on this paper have been carried out while the author was on sabbatical at the
University of Tokyo. The very idea of combining signature with encryption can be partially
traced many years back when I was still Professor Imai's PhD student and learnt the beauty
of Imai-Hirakawa scheme, a revolutionary invention that combines modulation with error-
correcting codes with an aim to achieve more reliable and e�cient communications.

Thanks also go to Dr Minghua Qu who pointed out the potential risk of double-payment
by Alice to a pair of collusive friends Bob and Cathy, to Dr Burt Kaliski who �rst noticed
a lack of forward secrecy with the signcryption schemes, and to Drs Markus Michels and
Holger Petersen who pointed out the problem with using Chaum's 4-move zero-knowledge
protocol in repudiation settlement by a dishonest judge.

Comments from anonymous referees for Crypto'97 have also been helpful in improving
the presentation of this paper.

References

[1] M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message authen-
tication. In Advances in Cryptology - CRYPTO'96, volume 1109 of Lecture Notes in

Computer Science, pages 1{15, Berlin, New York, Tokyo, 1996. Springer-Verlag.

[2] M. Bellare, M. Jakobsson, and M. Yung. Round-optimal zero-knowledge arguments
based on any one-way function. In Advances in Cryptology - EUROCRYPT'97, volume
1233 of Lecture Notes in Computer Science, pages 280{305, Berlin, New York, Tokyo,
1997. Springer-Verlag.

[3] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
e�cient protocols. In Proceedings of the First ACM Conference on Computer and

Communications Security, pages 62{73, New York, November 1993. The Association
for Computing Machinery.

[4] M. Bellare and P. Rogaway. Optimal asymmetric encryption | how to encrypt with
RSA. In Advances in Cryptology - EUROCRYPT'93, volume 950 of Lecture Notes in

Computer Science, pages 92{111, Berlin, New York, Tokyo, 1994. Springer-Verlag.

[5] M. Bellare and P. Rogaway. The exact security of digital signatures | how to sign
with RSA and Rabin. In Advances in Cryptology - EUROCRYPT'96, volume 1070 of

37

Lecture Notes in Computer Science, pages 399{416, Berlin, New York, Tokyo, 1996.
Springer-Verlag.

[6] E. Brickell and K. McCurley. Interactive identi�cation and digital signatures. AT&T
Technical Journal, pages 73{86, November/Decmber 1991.

[7] D. Chaum. Zero-knowledge undeniable signatures. In Advances in Cryptology - EURO-

CRYPT'90, volume 473 of Lecture Notes in Computer Science, pages 458{464, Berlin,
New York, Tokyo, 1990. Springer-Verlag.

[8] M. Chen and E. Hughes. Protocol failures related to order of encryption and signature:
Computation of discrete logarithms in RSA groups, April 1997. (Draft).

[9] D. Coppersmith. Finding a small root of a univariate modular equation. In Advances

in Cryptology - EUROCRYPT'96, volume 1070 of Lecture Notes in Computer Science,
pages 153{165, Berlin, New York, Tokyo, 1996. Springer-Verlag.

[10] D. Coppersmith, M. Franklin, J. Patarin, and M. Reiter. Low-exponent RSA with re-
lated messages. In Advances in Cryptology - EUROCRYPT'96, volume 1070 of Lecture
Notes in Computer Science, pages 1{9, Berlin, New York, Tokyo, 1996. Springer-Verlag.

[11] R. Cramer and V. Shoup. A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In Advances in Cryptology - CRYPTO'98, volume
1462 of Lecture Notes in Computer Science, pages 13{25, Berlin, New York, Tokyo,
1998. Springer-Verlag.

[12] W. Di�e and M. Hellman. New directions in cryptography. IEEE Transactions on

Information Theory, IT-22(6):472{492, 1976.

[13] W. Di�e, P. van Oorschot, and M. Wiener. Authentication and authenticated key
exchange. Designs, Codes and Cryptography, 2:107{125, 1992.

[14] T. ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory, IT-31(4):469{472, 1985.

[15] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System
Sciences, 28(2):270{299, 1984.

[16] S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against
adaptively chosen message attacks. SIAM Journal on Computing, 17(2):281{308, 1988.

[17] D. Harkins and D. Carrel. The resolution of ISAKMP with Oakley, March 1998.
Internet-draft (draft-ietf-ipsec-isakmp-oakley-07.txt).

[18] P. Horster, M. Michels, and H. Petersen. Meta-ElGamal signature schemes. In Pro-

ceedings of the second ACM Conference on Computer and Communications Security,
pages 96{107, New York, November 1994. The Association for Computing Machinery.

[19] P. Horster, M. Michels, and H. Petersen. Meta-message recovery and meta-blind sig-
nature schemes based on the discrete logarithm problem and their applications. In
Advances in Cryptology - ASIACRYPT'94, volume 917 of Lecture Notes in Computer

Science, pages 224{237, Berlin, New York, Tokyo, 1995. Springer-Verlag.

38

[20] R. Impagliazzo and D. Zuckerman. How to recycle random bits. In Proceedings of the

30th Annual IEEE Symposium on Foundations of Computer Science, pages 248{253,
1989.

[21] D. Johnson and S. Matyas. Asymmetric encryption: Evolution and enhancements.
CryptoBytes, 2(1):1{6, 1996. (available at http://www.rsa.com/).

[22] J. Kilian and E. Petrank. An e�cient non-interactive zero-knowledge proof system for
NP with general assumption. Electronic Colloquium on Computational Complexity, Re-
ports Series(TR95-038), 1995. (available at http://www.eccc.uni-trier.de/eccc/).

[23] N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation, 48:203{209,
1987.

[24] A. Lenstra. Using cyclotomic polynomials to construct e�cient discrete logarithm
cryptosystems over �nite �elds. In Information Security and Privacy { Proceedings of

ACISP'97, volume 1270 of Lecture Notes in Computer Science, pages 127{138, Berlin,
New York, Tokyo, 1997. Springer-Verlag.

[25] A. K. Lenstra and H. W. Lenstra. Algorithms in Number Theory, volume A of Handbook
in Theoretical Computer Science. Elsevier and the MIT Press, 1990.

[26] A. K. Lenstra and H. W. Lenstra. The Development of the Number Field Sieve, volume
1554 of Lecture Notes in Mathematics. Springer-Verlag, 1993.

[27] C. H. Lim and P J. Lee. Directed signatures and applications to threshold cryptography.
In Security Protocols, volume 1189 of Lecture Notes in Computer Science, pages 131{
138, Berlin, New York, Tokyo, 1997. Springer-Verlag.

[28] J. Linn. Privacy enhancement for internet electronic mail: Part I: Message encryption
and authentication procedures. Request for Comments RFC 1421, IETF, 1993.

[29] T. Matsumoto and H. Imai. On the key predistribution systems: A practical solution
to the key distribution problem. In Advances in Cryptology - CRYPTO'87, volume 239
of Lecture Notes in Computer Science, pages 185{193, Berlin, New York, Tokyo, 1987.
Springer-Verlag.

[30] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptography.
CRC Press, 1996.

[31] M. Naor and O. Reingold. Number-theoretic constructions of e�cient pseudo-random
functions. In Proceedings of the 38-th Annual Symposium on Foundations of Computer
Science, pages 458{467, 1997.

[32] National Bureau of Standards. Data encryption standard. Federal Information Pro-
cessing Standards Publication FIPS PUB 46, U.S. Department of Commerce, January
1977.

[33] National Institute of Standards and Technology. Digital signature standard (DSS). Fed-
eral Information Processing Standards Publication FIPS PUB 186, U.S. Department
of Commerce, May 1994.

39

[34] National Institute of Standards and Technology. Secure hash standard. Federal In-
formation Processing Standards Publication FIPS PUB 180-1, U.S. Department of
Commerce, April 1995.

[35] K. Nyberg and R. Rueppel. Message recovery for signature schemes based on the
discrete logarithm problem. Designs, Codes and Cryptography, 7(1/2):61{81, 1996.

[36] A. Odlyzko. The future of integer factorization. CryptoBytes, 1(2):5{12, 1995. (avail-
able at http://www.rsa.com/).

[37] D. Pointcheval and J. Stern. Security proofs for signature schemes. In Advances in

Cryptology - EUROCRYPT'96, volume 1070 of Lecture Notes in Computer Science,
pages 387{398, Berlin, New York, Tokyo, 1996. Springer-Verlag.

[38] D. Pointcheval and J. Stern. Security arguments for digital signatures and blind sig-
natures. Journal of Cryptology, 1998. (to appear).

[39] C. Racko� and D. Simon. Non-interactive zero-knowledge proof of knowledge and
chosen-ciphertext attacks. In J. Feigenbaum, editor, Advances in Cryptology -

CRYPTO'91, volume 576 of Lecture Notes in Computer Science, Berlin, New York,
Tokyo, 1992. Springer-Verlag.

[40] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM, 21(2):120{128, 1978.

[41] C. P. Schnorr. E�cient identi�cation and signatures for smart cards. In Advances in

Cryptology - CRYPTO'89, volume 435 of Lecture Notes in Computer Science, pages
239{251, Berlin, New York, Tokyo, 1990. Springer-Verlag.

[42] A. Shamir. How to share a secret. Communications of the ACM, 22(11):612{613, 1979.

[43] A. Shamir. RSA for paranoids. CryptoBytes, 1(3):1{4, 1995. (available at
http://www.rsa.com/).

[44] M. Wegman and J. Carter. New hash functions and their use in authentication and
set equality. Journal of Computer and System Sciences, 22:265{279, 1981.

[45] Y. Zheng. Improved public key cryptosystems secure against chosen ciphertext attacks.
Technical Report 94-1, University of Wollongong, Australia, January 1994.

[46] Y. Zheng. The SPEED cipher. In Proceedings of Financial Cryptography'97, volume
1318 of Lecture Notes in Computer Science, pages 71{89, Berlin, New York, Tokyo,
1997. Springer-Verlag.

[47] Y. Zheng and H. Imai. Compact and unforgeable session key establishment over an
ATM network. In Proceedings of IEEE INFOCOM'98, pages 411{418, San Francisco,
1998. IEEE.

[48] Y. Zheng, J. Pieprzyk, and J. Seberry. HAVAL - a one-way hashing algorithm with
varialbe length of output. In J. Seberry and Y. Zheng, editors, Advances in Cryptology

- AUSCRYPT'92, volume 718 of Lecture Notes in Computer Science, pages 83{104,
Berlin, New York, Tokyo, 1993. Springer-Verlag.

40

[49] Y. Zheng and J. Seberry. Immunizing public key cryptosystems against chosen cipher-
text attacks. IEEE Journal on Selected Areas in Communications, 11(5):715{724, June
1993.

[50] P. Zimmermann. PGP Source Code and Internals. MIT Press, Cambridge, Mass.,
1995.

41

A RSA and Discrete Logarithm Based Signature and En-

cryption

This appendix is intended as a concise summary of the factorization problem, the discrete
logarithm problem, RSA encryption and signature [40], ElGamal signature and encryp-
tion [14], Schnorr signature [41], and Digital Signature Standard (DSS) [33]. For more
technical details, the reader is directed to the relevant original papers and documents.

To assist our description of the various schemes, we consider a situation where a user
(say Alice) wishes to deliver a message to another user (say Bob) over an open insecure
communication network such as Internet. In addition we use hash to denote a one-way hash
algorithm such as SHS [34] and HAVAL [48]. We also use E and D to denote the encryp-
tion and decryption algorithms of a private key cipher such as DES [32] and SPEED [46].
Encrypting a message m with a key k, typically in the cipher block chaining or CBC mode,
is indicated by Ek(m), while decrypting a ciphertext c with k is denoted by Dk(c).

A.1 Hardness of Factorization and Discrete Logarithm

The security of RSA is based on the di�culty of factoring large composite numbers, while the
security of other schemes described in this appendix is based on the di�culty of computing
discrete logarithm on large �nite �elds. Currently, the fastest algorithm for factorization is
the number �eld sieve (see Page 50 of [26]) whose running time is asymptotically

e(1:923+o(1))((ln jnj)1=3(ln ln jnj)2=3)

where n is a composite to be factored, jnj refers to the size of n (in bits), and o(1) denotes a
function of jnj that approaches 0 as jnj ! 1. Similarly the fastest algorithm for computing
discrete logarithm on GF (p) for a prime p is also based on the number �eld sieve (see
Page 13 of [26]) with the same asymptotic running time as that for factoring, namely

e(1:923+o(1))((ln jpj)1=3(ln ln jpj)2=3)

Some cryptographic schemes such as DSS and Schnorr signature rely on the di�culty of
computing discrete logarithms in a sub-group of order q. One may compute discrete loga-
rithms in the sub-group either by solving the general discrete logarithm problem or working
on the sub-group directly. Currently the best algorithms that work directly on the sub-
group are Shank's baby-step-giant-step and Pollard's rho methods, whose running times
are both in the order of O(

p
q) = e0:345jqj+O(1). (See [25] for a survey on this and other

related topics.) The two algorithms become ine�ective for su�ciently large q, say jqj >= 144.
Comparing the running time of the two algorithms, we conclude that with the current

state of the art, computing discrete logarithm on GF (p) and factoring a composite n of
the same size are equally di�cult. This simpli�es our comparison of the e�ciency of a
cryptographic scheme based on RSA against that based on discrete logarithm, as we can
assume that n and p are of the same size.

A.2 RSA Signature and Encryption

The RSA scheme is based on the di�culty of factoring large composite numbers. To use
RSA, Alice �rst has to choose two large random primes pa and qa. She then calculates the
products na = paqa and '(na) = (pa � 1)(qa � 1). Next she selects two numbers ea and

42

da from (1; : : : ; na) such that eada = 1mod '(na). Finally Alice publishes (ea; na) as her
public key in a public key �le, while keeps da as her private key.

Alice's signature on a message m is de�ned as s = hash(m)damod na. Other users can
verify whether s is Alice's valid signature on m by checking whether hash(m) is identical
to seamod na.

Similarly to Alice, user Bob can create his public key (eb; nb) and private key db. To
send a (long) message m to Bob in a secure way, Alice picks a random message-encryption
key k and sends to Bob c1 = Ek(m) and c2 = kebmod nb. Upon receiving c1 and c2, Bob
can retrieve k by calculating cdb2 mod nb, with which he can decrypt c1.

A.3 ElGamal Signature and Encryption

ElGamal digital signature and encryption schemes are based on the hardness of computing
discrete logarithm over a large �nite �eld. It involves two parameters public to all users:

1. p: a large prime.

2. g: an integer in [1; : : : ; p� 1] with order p� 1 modulo p.

User Alice's private key is an integer xa chosen randomly from [1; : : : ; p�1] with xa 6 j (p�
1) (i.e., xa does not divide p� 1), and her public key is ya = gxamod p.

Alice's signature on a message m is composed of two numbers r and s which are de�ned
as

r = gxmod p

s = (hash(m)� xa � r)=xmod (p� 1)

where x is a random number from [1; : : : ; p� 1] with x 6 j (p� 1). It should be stressed that
x must be chosen independently at random every time a message is to be signed by Alice.

Given (m; r; s), one can verify whether ghash(m) = yra � rsmod p is satis�ed. (r; s) is
regarded as Alice's signature on m only if the equation holds.

Now assume that Bob has also chosen his private key xb randomly from [1; : : : ; p � 1]
with xb 6 j (p� 1), and made public the matching public key yb = gxbmod p. By using Bob's
public key. Alice can send him messages in a secure way. To do this, Alice chooses, for each
message m, a random integer x from [1; : : : ; p� 1] with x6 j (p� 1), calculates k = yxb mod p
and sends to Bob c1 = Ek(m) and c2 = gxmod p.

Upon receiving c1 and c2, Bob can recover k by k = cxb2 mod p. He can then use k to
decrypt c1 and obtain m.

Note that ElGamal encryption can also be achieved using parameters for Schnorr sig-
nature and DSS described below.

A.4 Schnorr Signature Scheme

Schnorr signature scheme, together with DSS to be described below, is a variant of ElGamal
signature scheme. The main idea behind the two variants is to choose g to be an integer in
[1; : : : ; p� 1] with order q modulo p for a prime factor q of p� 1, instead of with order p� 1
modulo p.

Schnorr signature scheme involves the following parameters:

1. Parameters public key to all users:

43

(a) p: a large prime, say p >= 2512.

(b) q: a prime factor of p� 1. The size of q would be at least 2144.

(c) g: an integer in [1; : : : ; p � 1] with order q modulo p. In practice, g is obtained
by calculating g = h(p�1)=qmod p where h is chosen uniformly at random from
[2; : : : ; p� 2] and satis�es h(p�1)=qmod p > 1.

2. Parameters speci�c to user Alice:

(a) Alice's private key: a number xa drawn randomly from [1; : : : ; q � 1].

(b) Alice's public key: ya = g�xamod p.

With the above parameters, Schnorr suggests that Alice sign a digital document m by
picking a random x from [1; : : : ; q � 1] and appending to m a pair of numbers (r; s) which
are calculated as follows:

r = hash(gxmod p;m)

s = x+ xa � rmod q
The procedure for other people to verify Alice's signature (r; s) on m is straightforward:
checking whether r is identical to hash((gs � yramod p);m).

If Alice publishes ya = gxamod p, instead of ya = g�xamod p, then s can be de�ned as
s = x� xa � rmod q. Signature veri�cation is the same.

A.5 Digital Signature Standard (DSS)

The public and private parameters involved in DSS are all the same as those in Schnorr
signature scheme, except that for DSS, Alice's public key is ya = gxamod p, but not ya =
g�xamod p as is the case for Schnorr signature scheme. In addition, the standard suggests
that, for current applications, jpj be between 512 and 1024, jqj = 160, and SHS [34] whose
output has 160 bits be used as the one-way hash function.

Alice's signature on a message m is composed of two numbers r and s which are de�ned
as

r = (gxmod p)mod q

s = (hash(m) + xa � r)=xmod q
where x is a random number chosen from [1; : : : ; q � 1].

Given (m; r; s), one can verify whether (r; s) is indeed Alice's signature on m by the
following steps:

1. calculates v = (ghash(m)=s � yr=sa mod p)mod q.

2. accepts (r; s) as valid only if v = r.

Table 10 shows the computational cost and communication overhead of the signature
and encryption schemes. The table assumes that Shamir's method for fast computation
of the product of multiple exponentials with the same modulo is employed (for technical
details of the method, see Appendix B) Note that to use RSA signature in a provably secure
way, more extra computational e�ort (not shown in the table) has to be invested in the
signing process [5]. Similarly, to employ RSA and ElGamal encryptions in a provably secure
fashion, more computational e�ort and communication overhead is required (see [4, 21] for
provably secure RSA encryption and [49, 45] for provably secure ElGamal encryption).

44

Various
Schemes

Computational
cost

Communication
overhead (in bits)

RSA
encryption

EXP=1, ENC=1
(EXP=1, DEC=1)

jnbj
ElGamal
encryption

EXP=2, ENC=1
(EXP=1, DEC=1)

jpj
RSA

signature
EXP=1, HASH=1
(EXP=1, HASH=1)

jnaj

ElGamal
signature

EXP=1, MUL=1, DIV=1
ADD=1, HASH=1
(EXP=1.25, MUL=1, DIV=0
ADD=0, HASH=1)

2jpj

Schnorr
signature

EXP=1, MUL=1,
ADD=1, HASH=1
(EXP=1.17, MUL=1,
ADD=0, HASH=1)

jhash(�)j + jqj

DSS

EXP=1, MUL=1, DIV=1
ADD=1, HASH=1
(EXP=1.17, MUL=1, DIV=2
ADD=0, HASH=1)

2jqj

where
EXP = the number of modular exponentiations (a fractional number indicates an average cost),
MUL = the number of modular multiplications,
DIV = the number of modular division (inversion),
ADD = the number of modular addition or subtraction,
HASH = the number of one-way or keyed hash operations,
ENC = the number of encryptions using a private key cipher,
DEC = the number of decryptions using a private key cipher,
Parameters in the brackets indicate the number of operations involved in
veri�cation or decryption.

Table 10: Cost of RSA, ElGamal, Schnorr, DSS

45

B Fast Computation of the Product of Multiple Exponen-

tials with the Same Modulo

In unsigncryption, the most expensive part of computation is contributed by ge00 g
e1
1 mod p,

where g0, g1, e0, e1 and p are all large integers. Although the computation can be carried out
in a straightforward way, namely computing y0 = ge00 mod p and y1 = ge11 mod p separately
and then multiplying y0 and y1 together, it was observed by A. Shamir that as the product
involves the same modulo, the �nal result can be obtained with a smaller computational
cost by using a variant of the \square-and-multiply" method for exponentiation (see [14] as
well as Algorithm 14.88 on Page 618 of [30]). The following algorithm embodies Shamir's
technique to compute the product of k exponentials with the same modulo.

INPUT: Integers p, g0, g1, � � �, gk�1 and e0, e1, � � �, ek�1, where the size of each ei is t
bits.

OUTPUT: ge00 g
e1
1 � � � gek�1

k�1 mod p.

1. Let the t-bit binary representation of ej , where 0 <= j <= k � 1, be

ej = ej;t�1ej;t�2 � � � ej;0
And let E be a k � t binary array whose jth row is the binary representation of ej .
Note that the most signi�cant bits of ej are stored in the left hand side of a row. Call
E an exponent array.

E =

e0;t�1 e0;t�2 � � � e0;0
e1;t�1 e1;t�2 � � � e1;0

...

ek�1;t�1 ek�1;t�2 � � � ek�1;0

2. Denote by It�1, It�2, : : :, I0 the t integers represented by the t columns of the exponent
array E, with e0;i being the least signi�cant bit, and ek�1;i the most signi�cant bit,
of Ii, where t� 1 >= i >= 0. Namely, Ii = ek�1;iek�2;i � � � e0;i, as indicated below.

It�1 It�1 � � � I0
e0;t�1 e0;t�2 � � � e0;0
e1;t�1 e1;t�2 � � � e1;0

...
ek�1;t�1 ek�1;t�2 � � � ek�1;0

3. For ` from 0 up to 2k � 1, pre-compute G` =
k�1Q

j=0
g
`j
j mod p, where ` = (`k�1 � � � `0)2.

4. set A = 1.

5. For i from t� 1 down to 0,

(a) Let A = A �A mod p,

(b) If Ii 6= 0, let A = A �GIi mod p.

46

6. Return A as the �nal result.

Now we analyze the computational complexity of the algorithm. First we note that
for a small k, say k <

= 4, the computational cost for pre-computing G0, G1, : : :, G2k�1

is marginal when compared to the total cost for computing the product. In other words,
the total computational cost is dominated by (t + v) modulo multiplications invested in
updating A, where v is the number of non-zero columns in the exponent array E. For e0,
e1, � � �, ek�1 chosen independently at random, one expects that (12)

kt of the columns in E
are zeros. Thus the expected number of modulo multiplications is (2� (12)

k)t.
For k = 2, the expected computational cost is 1:75t modulo multiplications. This

is roughly equivalent to 1:17 modulo exponentiations when the standard \square-and-
multiply" method is used.

Example 1 Let k = 2 and t = 6. Assume that we are given the following two exponents:
e0 = 60 = (111100)2 , and e1 = 20 = (010100)2 . Then the exponent array E is:

E =

I5 I4 I3 I2 I1 I0
e0 1 1 1 1 0 0
e1 0 1 0 1 0 0

Thus we have I0 = 0, I1 = 0, I2 = 3, I3 = 1, I4 = 3, and I5 = 1.
The pre-computation (Step 3) gives:

` 0 1 2 3

G` 1 g0 g1 g0g1 mod p

And iterations in Step 5, with i = 5; 4; 3; 2; 1; 0, update A by way of:

i 5 4 3 2 1 0

A g0 g30g1 mod p g70g
2
1 mod p g150 g51 mod p g300 g101 mod p g600 g201 mod p

The total number of modulo multiplications in Step 5 is therefore 6+4 = 10. If we count the
one modulo multiplication for computing G3, the total number of modulo multiplications
is 11. As a comparison, if the computation is done by calculating the two exponentiations
separately, then the total number of modulo multiplications would be (6+4)+(6+2)+1 = 19,
which is nearly twice as large as the number of modulo multiplications taken by the fast
method.

47

