
Signcryption with Non-interactive

Non-repudiation without Random Oracles

Jia Fan1,2, Yuliang Zheng1, and Xiaohu Tang2

1 University of North Carolina at Charlotte, NC 28223, USA
2 Southwest Jiaotong University, 610031, P.R. China
{jfan1,yzheng}@uncc.edu, xhutang@ieee.org

Abstract. Non-repudiation is a very important requirement of sign-
cryption. It ensures that a sender cannot deny the fact that he has sign-
crypted a message. Non-interactive non-repudiation enables a receiver to
settle a repudiation dispute with the help of a judge without the need to
engage in costly multi-round interactive communications with the judge.
In this paper, we strengthen Malone-Lee’s security model for signcryp-
tion with non-interactive non-repudiation by introducing two additional,
more subtle and useful security requirements, one about the unforgeabil-
ity and the other about the confidentiality of non-repudiation evidence.
A further contribution of this paper is to design a concrete signcryp-
tion scheme that admits provable security without random oracles in
our strengthened security model for signcryption.

Keywords: signcryption, non-repudiation, public key cryptography, non-
interaction, random oracle, bilinear map.

1 Introduction

Asymmetric encryption and signature are two basic primitives in public-key
cryptography. They provide us with confidentiality and authenticity indepen-
dently. When both functions are required, traditionally one has to carefully sign
and encrypt the data sequentially. In 1997, Zheng [26] proposed a new primi-
tive called signcryption. It combines the functions of both primitives with a cost
much less than the sign-then-encrypt (or encrypt-then-sign) method.

Let us consider a scenario where a sender signcrypts a message which is then
forwarded to a receiver. Afterwards the sender denies the fact. We note that in
the original signcryption, only the receiver can decrypt the signcryptext, that
is, he is the only one who can check the validity of the message. The challenge
the receiver faces is what he can do to ask a judge to help prove the fact, while
without revealing to the judge more information than that is required. Non-
repudiation is defined to guarantee that the sender cannot deny the fact that
the message is signcrypted by her in the first place.

One technique suggested by Zheng [26] is to rely on a judge who can be totally
trusted. In this case, a receiver simply gives his private key to the judge. The
judge can decrypt the signcryptext and verify the validity of the message by

M.L. Gavrilova et al. (Eds.): Trans. on Comput. Sci. X, LNCS 6340, pp. 202–230, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Signcryption with Non-interactive Non-repudiation without Random Oracles 203

making use of the receiver’s private key. A second technique suggested by Zheng
deals with a situation where the judge is not fully trusted. With the second
method, the receiver engages an interactive zero-knowledge proof protocol with
the judge. At the end of the execution of the protocol, the judge can make a
decision as to whether the signcrytext is indeed from the sender. Clearly, the
second method suggested by Zheng is not quite efficient in practice.

Bao and Deng [3] proposed a modified signcryption scheme, with the aim
of offering non-repudiation in a non-interactive way. With their method, when
there is a dispute on a message M and a signcryptext σ between a receiver R
and a sender S, the receiver R computes some non-repudiation evidence d, and
forwards (M, σ, d) together with the public keys (PKS , PKR) to a not necessarily
trusted judge. The judge can verify whether S has signcrypted M into σ for the
receiver R. However, it was later pointed out in [15] and [20] that the non-
repudiation evidence d would destroy the confidentiality of the message.

To address problems with Bao and Deng’s scheme, Malone-Lee [15] pro-
posed a new security model specifically for signcryption with non-interactive
non-repudiation (NINR). This model ensures that the exposure of evidence d
does not ruin the security of both confidentiality and unforgeability.

Our model. Now a natural question to ask is whether a signcryption scheme
in Malone-Lee’s model can be assured to be provably secure. We will show that
the answer to the question is unfortunately negative. The main reason for this is
that Malone-Lee’s model addresses only two basic security requirements, namely
confidentiality and unforgeability, which turns out to be inadequate to properly
define the model of signcryption with NINR. We now analyze it in greater detail.

First, it is required that a given piece of evidence d can help the judge make a
correct decision, especially when a given M is not the unsigncryption result of a
given σ. It turns out that Malone-Lee’s model does not provide this guarantee.
As an example we examine a signcryption scheme proposed by Chow et al [9].
Interestingly, although that scheme can be proved to be secure in Malone-Lee’s
model, a piece of not well-formed evidence d can lead a judge to incorrectly regard
a wrong message M ′ as being the unsigncryption of a signcryptext σ. To rectify
the above problem, we consider a new security requirement for signcryption
with NINR, namely soundness of non-repudiation. Fulfilling this requirement
will guarantee that a judge can always make a right decision.

Second, we observe that in some previous schemes, such as those proposed
in [17] [18] [14] [24], non-repudiation evidence d can be generated not only by
the receiver but also by the sender. That is to say, even if a judge is sure that a
signcryptext σ is in fact signcrypted from some message M , he still can not be
sure who generated this non-repudiation evidence d. This ambiguity can cause
troubles in many practical uses. As an example, consider a patient who receives
a signcrypted medical report from his doctor. If the patient is malicious, he can
generate a piece of well-formed evidence d, and then deliberately expose the
contents of the report to a third party. Latter, he claims that it is the doctor
who exposes his report to the third party, and asks for compensation. A judge
in this case will not be able to decide who, the patient or the doctor, is on the

204 J. Fan, Y. Zheng, and X. Tang

wrong side. Problems of similar nature may occur in many other situations, e.g.
military scenarios, on-line business transactions etc. In order to clarify the above
ambiguity, we consider an additional new security requirement, namely unforge-
ability of non-repudiation evidence, which guarantees that only the receiver can
generate valid non-repudiation evidence d.

Our scheme. Since the concept of signcryption introduced by Zheng [26],
a number of signcryption schemes with the property of non-interactive non-
repudiation [15] [17] [18] [9] etc. have been designed and proved secure in the
random oracle model [6] which assumes that certain functions, such as one-way
hash functions, output truly random values. While the random oracle model has
been a very useful tool in the field of provable security, no real hash function be-
haves like a random function. As a result, designing a signcryption scheme with
NINR that does not rely on a random oracle for its security is both attractive
in scholarly research and useful in practice. In the past few years, a number of
research papers e.g.[22] [23] [14] have been published on the topic of signcryption
without random oracles. However, according to the best of our knowledge, none
of these schemes is provably secure for non-interactive non-repudiation.

In this paper, we design a signcryption scheme with NINR that can be proved
secure without random oracles. Our signcryption scheme is based on the signa-
ture scheme of Boneh, Shen and Waters [8], and is very compact when compared
with the underling signature scheme. We will provide a specific efficiency com-
parison in Section 5.1.

Organization. The rest of the paper is organized as follows: We introduce some
preliminary facts in Section 2. In Section 3 we describe our model for signcryption
with NINR by defining the syntax, analyzing Malone-Lee’s model, defining four
security requirements, together with in depth discussions on core aspects of the
model. In Section 4, we construct a concrete signcryption scheme with NINR,
and prove that it is secure without random oracles. In Section 5, we discuss how
to improve the efficiency of the scheme together with its practical applications.
Finally, we draw some conclusions in Section 6. As a side contribution, we note
that our contruction can be turned into an even more efficient scheme when
random oracles are allowed. We discuss this in the appendix.

2 Preliminaries

2.1 Bilinear Maps

Throughout this paper we use the following standard notations on bilinear maps.
Let G and GT be two (multiplicative) cyclic groups of prime order p. Let g

be a generator of G. A symmetric bilinear map is a map e : G × G → GT with
the following properties:

1. Bilinear: for all u, v ∈ G and a, b ∈ Zp, we have e(ua, vb) = e(u, v)ab.
2. Non-degenerate: all u, v ∈ G satisfy e(u, v) �= 1.

Signcryption with Non-interactive Non-repudiation without Random Oracles 205

2.2 Collision Resistent Hash Functions

Throughout this paper we use ε with an appropriate subscript to indicate a
negligible function that vanishes at least as fast as the inverse of a polynomial
in an appropriate security parameter.

A hash function H is said to be collision resistant if it is infeasible for an
adversary to find two different inputs m0 and m1 such that H(m0) = H(m1). A
more formal definition follows.

Definition 1. A hash function H is (t, εH)-collision-resistant if for any adver-
sary A running in time t, it has possibility at most εH in finding two different
inputs m0 and m1 such that H(m0) = H(m1).

We require two collision resistent functions with different ranges for their out-
puts. Specifically, let G and GT be two groups of prime order p. The first collision
resistent function H1 maps input from GT ×G×G to an element in Zp, and the
second resistent function H2 maps input from G to a string in {0, 1}n.

2.3 Discrete Logarithm Assumption

The discrete logarithm problem applies to mathematical structures called groups.
Let G be a group of prime order p, and g be a generater for G. We have the
following definition for the discrete logarithm (D-Log) assumption.

Definition 2. The (t, εDLog) D-Log assumption holds in G, if for any adversary
A, given a random element g3 ∈ G, running in time t, A has possibility at most
εDLog in finding an integer x ∈ Zp such that gx = g3.

2.4 Decisional Bilinear Diffie-Hellman (DBDH) Assumption

Let G, GT be groups of a same prime order p, g be a generater of G, and
e : G×G→ GT be a bilinear map. Choose a, b, c, k from Zp at random, and let

BDH = {g, ga, gb, gc, T ← e(g, g)abc},
Random = {g, ga, gb, gc, T ← e(g, g)k}.

The DBDH assumption claims that BDH and Random are indistinguishable.
For any adversary A, consider two experiments. A is given BDH in experiment
0, and is given Random in experiment 1. A’s advantage for solving the DBDH
assumption is

εdbdh = |Pr[A = 1 in experiment 0]− Pr[A = 1 in experiment 1]|.

Definition 3. The (t, εdbdh)-DBDH assumption holds, if any adversary A run-
ning in time t has advantage at most εdbdh in solving the DBDH assumption.

206 J. Fan, Y. Zheng, and X. Tang

3 The Proposed Model of Signcryption with NINR

3.1 Syntax of Signcryption with NINR

A signcryption scheme with NINR is composed of six algorithms. The first four
algorithms constitute a signcryption scheme, and the last two algorithms fulfill
the requirements of NINR.

– SetupPub(1η), run by a trusted party: Given a security parameter 1η, a
trusted party generates and outputs the system’s public parameter Pub.

– KeyGen(Pub, IDP), run by every user: User P takes the public parameter
Pub as input, outputs a pair of private/public keys (SKP , PKP).

– Signcryption(SKS, PKR, M), run by a sender: To communicate a message
M ∈ M (M is the message space) from a sender S to a receiver R, the
algorithm produces a signcryptext σ on M by using S’s private key SKS

and R’s public key PKR. The signcryptext σ is sent to R.
– Unsigncryption(SKR, PKS, σ), run by a receiver: Upon receiving a sign-

cryptext σ from S, the algorithm first checks whether σ is valid. It returns
a plaintext M if σ is valid, or a special symbol ⊥ otherwise.

– NR-Evidence-Gen(SKR, PKS , σ), run by a receiver: If σ is a valid signcryp-
text, the algorithm computes and returns a piece of non-repudiation evidence
d. Otherwise, the algorithm returns a symbol ⊥.

– JG-Verification (σ, M, d, PKS , PKR), run by a judge: Upon receiving a sign-
cryptext/message pair (σ, M), a piece of non-repudiation evidence d, a sender
S’ public key PK, and a receiver R’s public key PKR, the algorithm returns
a special symbol � if it is S who has signcrypted the message M into σ for
R, or a symbol ⊥ otherwise.

For consistency, we require that for all σ = Signcryption(SKS, PKR, M), we
should have M = Unsigncryption(SKR, PKS , σ).

For completeness, we require that for all signcryptext σ and all possible
d = NR-Evidence-Gen(SKR, PKS , σ), if M = Unsigncryption(SKR, PKS, σ),
then we should have � ← JG-V erification(σ, d, M, PKS, PKR).

Remark 1. The public parameter Pub is not explicitly taken as input to the
last four algorithms, since we assume that all the users in the system know Pub.

3.2 Analysis of Malone-Lee’s Model

We first review security models for regular signcryption. Baek et al. [8] proposed
a formal security model for signcryption in 2001. Independently of this, An et
al. [1] also came up with similar security models for signcryption. Both models
consider two security definitions, namely confidentiality and unforgeability. And
in the models of both papers, two factors are considered:

1. If there are only two users (a sender and a receiver) in the network, then it
is called a two-user setting; otherwise if there are many (more than two) users
in the network, then it is called a multi-user setting.

Signcryption with Non-interactive Non-repudiation without Random Oracles 207

2. If the adversary is a sender (in the attack game of unforgeability) or a
receiver (in the attack game of confidentiality) in the communication for chal-
lenge, then we call it an inside attacker setting. Otherwise, we call it an outside
attacker setting.

Melone-Lee’s model [15] is different from the widely used definitions proposed
by Baek et al. [8] and An et al.[1] in the following two aspects:

1. In Molone-Lee’s model, an adversaryA is able to get the value of evidence d
by asking for non-repudiation oracles. For each non-repudiation oracle, A makes
queries with a signcryptext σ together with a sender and a receiver’s public keys,
and receives as a return from the oracle a piece of corresponding evidence d.

2. Malone-Lee’s model is defined in a multi-user attacker setting, but the
basic underling security definitions are different from the definitions proposed
by Baek et al. [8] and An et al.[1]. For example, in the attack game (for either
confidentiality or unforgeability) with a multi-user inside attacker setting in [1]
and [8], the adversary is able to generate public keys for all users in the system
except the one who is an attack target. In comparison, with the attack game
(e.g. confidentiality) of Malone-Lee’s model, the adversary is given public keys
for all users in the system at the beginning. Afterwards, he chooses one of them
as his attack target. An advantage of Malone-Lee’s model is that the user (whom
the adversary will attack against) can be arbitrarily chosen by the attacker. But
the total number of all users in the system needs to be pre-decided, and the
public keys of all users should be pre-computed by the simulator. When there
are a large number of users in the system (which happens frequently in practise),
security bounds provided by the proof become less tight.

3.3 Security Definitions in Our Model

In our model, we will consider four security requirements, namely confiden-
tiality, unforgeability, soundness of non-repudiation, and unforgeability of non-
repudiation evidence. If a signcryption scheme with NINR can be proved secure
under the first three definitions, we say that it is SCNINR secure. If a signcryp-
tion scheme with NINR is SCNINR secure and can also be proved secure under
the definition of unforgeability of non-repudiation evidence, we say that it is
strong SCNINR secure.

Our definitions do not follow Malone-Lee’s model directly. Instead we mainly
refer to the basic definitions of [8] and [1] in a multi-user inside attacker setting,
together with Malone-Lee’s idea [15] of adding non-repudiation oracles in the
attack game.

Confidentiality. The attack game for indistinguishability of signcryption under
chosen ciphertext attack (IND-SCNINR-CCA) contains five steps as follows:

– Setup system: An adversaryA is given the system’s public parameter Pub ←
SetupPub(1η), anda challengeuserB’s public keyPKB←KeyGen(Pub,IDB).

208 J. Fan, Y. Zheng, and X. Tang

– Oracles before challenge: A is able to ask for a number of signcryption,
unsigncryption and non-repudiation oracle queries associated with the chal-
lenge user B.
• For each signcryption oracle query, A generates a receiver’s public key

PKR, a message M ∈ M, and outputs (PKS , PKR, M) with PKS =
PKB. This oracle returns to A with σ ← Signcryption(SKB, PKR, M).
• For each unsigncryption oracle query, A generates a sender’s public key

PKS and a signcryptext σ, outputs (PKS , PKR, σ) with PKR = PKB.
This oracle returns toAwith the result ofUnsigncryption(PKS, SKB, σ).
• For each non-repudiation oracle query, A generates a sender’s public key

PKS , a signcryptext σ, and outputs (PKS , PKR, σ) with PKR = PKB.
This oracle returns to A with the result of NR-Evidence-Gen(PKS,
SKB, σ).

– Challenge: A generates a sender’s public key PKS∗ , and produces two equal
length messages (M0, M1) in M. A outputs (PKS∗ , PKR∗ , M0, M1) with
PKR∗ = PKB, then is returned with σ∗ ← Signcryption(SKS∗, PKB, Mγ),
where γ is randomly chosen from {0, 1}.

– Oracles after challenge: This step is the same as Oracles before challenge
step, except that A is not allowed to ask for an unsigncrypiton oracle query
or a non-repudiation oracle query on σ∗ with sender/receiver public key
(PKS∗ , PKR∗ = PKB).

– Guess: A outputs a guess bit γ′ for γ.

If γ′ = γ, then A wins the above attack game. We define the advantage for A to
win this game is ε = |Pr[γ′ = γ]− 1/2|.
Definition 4. The signcryption scheme with NINR is (t, qs, qu, qn, ε) IND-
SCNINR-CCA secure, if for running in time t, any adversary A who has asked
for signcryption oracle queries qs times, unsigncryption oracle queries qu times
and non-repudiation oracle queries qn times, has advantage at most ε in winning
the IND-SCNINR-CCA game.

Unforgeability. The attack game for strong existential unforgeability of sign-
cryption with NINR under chosen message attack (SEU-SCNINR-CMA) con-
tains three steps as follows:

– Setup system: The same as the Setup system step in the IND-SCNINR-CCA
game.

– Oracles: The same as the Oracles before the challenge step in the IND-
SCNINR-CCA game.

– Forge: A generates a receiver’s public key PKR∗ , and outputs a forged sign-
cryptext σ∗ on (PKS∗ , PKR∗) with PKS∗ = PKB.

If the following two conditions are both satisfied, then we say that A wins the
SEU-SCNINR-CMA game:

1. Unsigncryption(PKB, SKR∗ , σ∗) �= ⊥;
2. σ∗ is not a result of any the signcryption oracle queries with sender/receiver

public key (PKS∗ = PKB, PKR∗).

Signcryption with Non-interactive Non-repudiation without Random Oracles 209

Definition 5. The signcryption scheme with NINR is (t, qs, qu, qn, ε) SEU-
SCNINR-CMA secure, if for running in time t, any adversary A, who has asked
for signcryption oracle queries qs times, unsigncryption oracle queries qu times
and non-repudiation oracle queries qn times, has possibility at most ε in winning
the SEU-SCNINR-CMA game.

Soundness of Non-repudiation. As we have described in the introduction,
soundness of non-repudiation should ensure a judge always make a right decision.
That is, if a given M is not the unsigncryption result of a given σ, the judge
should not let it pass the verification. We first give an intuition for the attack
game:

To achieve this goal, our attack game described below for the soundness of
non-repudiation assumes a very strong adversary A, who can generate all users’
public/private keys, including the challenge user B. Then in the challenge, A
asks for one signcryption oracle. He outputs (M, PKS), the signcryption oracle
returns a signcryptext σ = Signcryption(SKS, PKR = PKB, M). Finally, if A
outputs another message M ′(M ′ �= M), and a piece of evidence d′ such that
JG-V erification(σ, M ′, d′, PKS, PKB) = �, then A wins.

In this attack game, we do not have oracle stages(as in pervious attack games),
since A is stronger than the attackers (in confidentiality and unforgeability). A
knows all users’ public/private keys, therefore, he can compute all the algorithms
in the scheme himself. Finally, if A wins, it implies the judge makes a wrong
decision.

This definition is similar to the definition of proof soundness in the model of
public-key encryption with non-interactive opening by Damgard et al. [11] and
Galindo et al. [12].

The game for the soundness of non-repudiation of signcryption with NINR
consists of three steps as follows:

– Setup system: First, the adversary A is given the system’s public param-
eter Pub. Then he generates a challenge user B’s public/private key pair
(PKB, SKB), and forwards (PKB, SKB) to the system.

– Challenge: In this stage, A has access to a signcryption oracle query once. A
generates a sender’s public key PKS and a message M ∈ M, then outputs
(PKS , PKR, M) with PKR = PKB to the signcryption oracle. Finally, A is
returned with σ ← Signcryption(SKS, PKB, M).

– Output: A outputs a message M ′ together with some non-repudiation evi-
dence d′.

If JG-V erification(σ, M ′, d′, PKS , PKB) = � and M ′ �= M , then A wins this
game.

Definition 6. A SCNINR scheme satisfies (t, ε) computational the soundness
of non-repudiation, if any adversary running in time t has probability at most ε
in winning the above game where ε is negligible. If ε = 0, the SCNINR scheme
satisfies the perfect soundness of non-repudiation.

210 J. Fan, Y. Zheng, and X. Tang

Unforgeability of Non-repudiation Evidence. The attack game is similar
to the attack game of unforgeability in most stages, but is different in the forge
stage. The adversary’s object here is to forge a piece of valid non-repudiation
evidence on a new signcryptext.

The game for existential unforgeability of non-repudiation evidence in sign-
cryption with NINR under chosen message attack (EUF-NR-evidence-SCNINR-
CMA) contains three steps as follows:

– Setup system: The same as the Setup system step in SEU-SCNINR-CMA
game.

– Oracles: The same as the Oracles step in the SEU-SCNINR-CMA game.
– Forge: A generates the sender’s public key PKS∗ , outputs a message M∗, a

piece of non-repudiation evidence d∗, and a signcryptext σ∗.

A wins the game if JG-V erification(σ∗, d∗, M∗, PKS∗ , PKR∗) = � with
PKR∗ = PKB and A has never asked for a non-repudiation oracle query
or an unsigncryption oracle query on σ∗ with sender/receiver public key
(PKS∗ , PKB).

Definition 7. The signcryption scheme with NINR is (t, qs, qu, qn, ε) EUF-NR-
evidence-SCNINR-CMA secure if for running in time t, A has asked for qs

signcryption oracle queries, qu unsigncryption oracle queries, qn non-repudiation
oracle queries and has possibility at most ε in winning this game.

3.4 Adapt Our Model to Existing Schemes

When we adapt our model to existing schemes, we find out that some schemes
e.g. Malone-Lee’s scheme in [15] and the second scheme of Chow et al. in [9]
achieve the first three security requirements1, but no schemes can fulfill the
security requirement of unforgeability of non-repudiation evidence. The reason
why none of the existing schemes (including [15] and [9]) meets the last security
requirement is that, traditionally, the evidence d is secret information (normally
the Diffie-Hellman key) embedded by the sender to prevent other users except
for the receiver from verifying the regular signature of M . In this method, the
sender is the one who directly generates d, and the receiver can regenerate the
value of d indirectly. In other words, both the sender and the receiver hold d.
In signcryption, this results in an attack on the security requirement of unforge-
ability of non-repudiation evidence (as the sender can be a successful forger).
For example, the evidence in Malone-Lee’s scheme [15] is an element k2 which
can be generated by the receiver as well as the sender.

Our construction, which will be described in detail in the next section, is
different from the traditional idea. The generation of evidence d makes use of
the identity-based technique [7]. If one takes the receiver’s private key as a master
key of the public key generator (PKG), then d can be regarded as a private key
1 Since the proofs are long and can be readily derived from existing proofs of those

schemes, we omit them from this paper.

Signcryption with Non-interactive Non-repudiation without Random Oracles 211

of identity ID whose value is determined by the current signcryptext σ. The
judge decrypts σ by making use of d, and then checks whether it matches the
value of the given message M . Informally, since d can only be used to decrypt
σ rather than other signcryptexts, the exposure of d does not pose risks to
confidentiality. Furthermore only the receiver, who is the only one holding the
master key, can generate d. Therefore, the unforgeability of non-repudiation
evidence is also ensured.

4 The Proposed Signcryption Scheme with NINR

4.1 Construction

Our signcryption scheme with NINR follows the six algorithm approach we de-
fined in Section 3.1. We first describe the SetupPub algorithm, and then list
other algorithms in Table 1 and Table 2.

– SetupPub(1η) by Trusted Party:
On input a security parameter 1η, a trusted party runs the following steps:

1. Set up {G, GT , e, g}, where G and GT are groups of prime order p, g ∈ G

is a generator, and e : G×G→ GT is a bilinear map.
2. Set up {g1, g2, g3, u0, U}: Choose random elements g1, g2, g3, u0 from

G, and a random n-length vector U = (u1, ..., un) ∈ Gn. For each i
(1 ≤ i ≤ n), ui is a random element in G.

3. Set up two collision-resistent hash functions H1 and H2, where H1 :
GT ×G ×G→ Zp and H2 : G→ {0, 1}n.

The system’s public parameter is: Pub = {G, GT , e, g, g1, g2, g3, u0, U, H1, H2}.

For consistency, one can verify that

σ0/e(σ1, g
αR
1) = M · e(g1, gR)t/e(gt, gαR

1) = M.

For completeness, we have

σ0 · e(σ2, d2)
e(σ1, d1) · e(d3, gS)

=
M · e(g1, gR)t · e(gαS

2 (u0

∏n
i=1 uci

i)t, gr)
e(gt, gαR

1 · (u0

∏n
i=1 uci

i)r) · e(gr
2 , gS)

=
M · e(g1, gR)t · e(gαS

2 , gr) · e(u0

∏n
i=1 uci

i , g)t·r

e(g1, gR)t · e(g, u0

∏n
i=1 uci

i)t·r · e(gr
2, gS)

= M.

4.2 Security Proofs

Now we will prove that the above signcryption scheme with NINR is strong
SCNINR secure.

212 J. Fan, Y. Zheng, and X. Tang

Table 1. KeyGen& Signcryption & Unsigncryption Algorithms

KeyGen(Pub, IDP) by User P :
1. randomly chooses αP ∈ Zp,
2. compute gP ← gαP ,
3. let the private key be SKP ← {αP },
4. let the public key be PKP ← {gP }.
Signcryption(SKS, PKR, M) by Sender S:
To signcrypt M ∈ GT to be communicated to receiver R, sender S
runs:
1. choose random elements t, s ∈ Zp,
2. compute σ0 ←M · e(g1, gR)t,
3. compute σ1 ← gt,
4. compute θ ← H1(σ0, σ1, gS),
5. compute z ← gθg3

s,
6. compute C ← H2(z), write as (c1...cn) ∈ {0, 1}n,

7. compute σ2 ← gαS
2 (u0

n∏

i=1

uci
i)t,

8. set σ3 ← s,
9. let the signcryptext be σ ← (σ0, σ1, σ2, σ3).

Unsigncryption(SKR, PKS , σ) by Receiver R:
To unsigncrypt σ from sender S, receiver R runs:
1. compute θ ← H1(σ0, σ1, gS),
2. compute z ← gθg3

σ3 ,
3. compute C ← H2(z), and write it as (c1...cn) ∈ {0, 1}n,
4. if e(σ2, g) �= e(g2, gS) · e(σ1, u0

∏n
i=1 uci

i), return ⊥.
5. otherwise compute and return M ← σ0/e(σ1, g

αR
1).

Proof of Confidentiality

Theorem 1. The signcryption scheme is (t, qs, qu, qn, εH1 + εH2 + εDlog + (qu +
qn)/p+εdbdh) IND-SCNINR-CCA secure, under the (t, εdbdh) DBDH assumption,
the (t, εDlog) Discrete Logarithm assumption in G, and the assumption that the
hash functions H1 and H2 are (t, εH1) and (t, εH2) collision resistent respectively.

Proof of Theorem 1: We are going to use the game technique [19] to prove this
theorem. Throughout this proof, we will list six games, from Game 0 to Game 5.
All the games are executed between an adversary and a simulator. Game 0 is the
IND-SCNINR-CCA game defined above, and other games will be quite similar
to Game 0 in their overall structure, and will only differ from Game 0 in terms of
how the simulator works. The key point for the proof is that we want to make sure
that for each i (1 ≤ i ≤ 5), either Pr[γ = γ′ in game i] = Pr[γ = γ′ in game i−1]
or |Pr[γ = γ′ in game i]− Pr[γ = γ′ in game i− 1]| ≤ Pr[Fi] where Pr[Fi] is
a negligible value.

In order to analyze the value of |Pr[γ = γ′ in game i]−Pr[γ = γ′ in game i−
1]|, we need the following lemma whose proof can be found in [19]:

Signcryption with Non-interactive Non-repudiation without Random Oracles 213

Table 2. NR-Evidence-Gen & JG-Verification Algorithms

NR-Evidence-Gen(SKR, PKS, σ) by Receiver R:
To compute non-repudiation evidence d, receiver R runs:
1. steps 1-4 of Unsigncryption in Table 1,
2. choose a random r ∈ Zp,
3. compute d1 ← gαR

1 (u0

∏n
i=1 uci

i)r,
4. compute d2 ← gr,
5. compute d3 ← gr

2 ,
6. return d← (d1, d2, d3).

JG-Verification(σ,M, d,PKS , PKR) by Judge:
To verify whether M = Unsigncryption(SKR, PKS, σ), the judge
runs:
1. steps 1-4 of Unsigncryption in Table 1,
2. if e(d2, g2) �= e(g, d3), return ⊥,
3. else if e(d1, g) �= e(g1, gR) · e(u0

∏n
i=1 uci

i , d2), return ⊥,

4. else if M �= σ0·e(σ2,d2)
e(σ1,d1)·e(d3,gS)

, return ⊥,
5. otherwise return �.

Lemma 1. Let S1, S2 and F be events defined on some probability spaces. Sup-
pose that the event S1 ∧ ¬F occurs if and only if S2 ∧ ¬F occurs. Then

| Pr[S1]− Pr[S2] |≤ Pr[F].

We are now ready to describe the six games.

– Game 0: This game is the usual game used to define IND-SCNINR-CCA
security. Therefore, the advantage for adversary A in winning the IND-
SCNINR-CCA game is

ε = |Pr[γ = γ′ in game 0]− 1/2|. (1)

– Game 1: Game 1 is the same as Game 0, except that the sim-
ulator keeps a list of data (σ0, σ1, σ3, θ, z, C, gS , gR) for all unsign-
cryption and non-repudiation oracles, and he also keeps the data of
(σ∗

0 , σ∗
1 , σ∗

3 , θ∗, z∗, C∗, yS∗ , yR∗) produced in the challenge oracle.
At the end of the step “oracles after challenge”, the simulator checks the

whole list to find out whether the following three cases happen:

• Case (1) (σ0, σ1, gS) �= (σ∗
0 , σ∗

1 , gS∗), θ = θ∗;
• Case (2) θ �= θ∗, z = z∗;
• Case (3) z �= z∗, C = C∗.

If any one of the three cases happens, it aborts.

Analysis: For Case (1) and Case (3), we can find a collision in H1 and H2

respectively. For Case (2), we can compute log g3 ← θ−θ∗
σ∗
3−σ3

. According to the

214 J. Fan, Y. Zheng, and X. Tang

previous security definition of H1, H2 and D-Log assumption, the possibility
for Case (1) to be true is εH1 , Case (2) is εDlog, and Case (3) is εH2 . Then,

Pr[new abort in game 1] = εH1 + εH2 + εDlog. (2)

Without this new abort, simulators in Game 0 and Game 1 run in the same
manner. Therefore, according to Lemma 1, we have

|Pr[γ =γ′ in game 1]−Pr[γ =γ′ in game 0] |≤ Pr[new abort in game 1].(3)

Now in Game 1, if the simulator does not abort, then for all unsigncryption
and non-repudiation oracles, C �= C∗. This conclusion will be useful for
analysis in the latter games. We analyze it from the following four cases:

1. If (σ0, σ1, yS) �= (σ∗
0 , σ∗

1 , yS∗), and since all the above three cases for
abort do not happen, then we get C �= C∗.

2. Else if (σ0, σ1, yS) = (σ∗
0 , σ∗

1 .yS∗) and σ3 �= σ∗
3 , then z �= z∗. Since case

(3) does not happen, we get C �= C∗.
3. Else if (σ0, σ1, σ3) = (σ∗

0 , σ∗
1 , σ∗

3), and gS = gS∗ , according to the ver-
ification equation e(σ2, g) = e(g2, gS) · e(σ1, u0

∏n
i=1 uci

i), we get that
σ2 = σ∗

2 when verification passed. Therefore, in this case σ = σ∗, which
is not allowed according to the attack game.

4. Else if (σ0, σ1, σ3) = (σ∗
0 , σ∗

1 , σ∗
3), and gS �= gS∗ , then θ �= θ∗. Case (2)

and case (3) do not happen to cause an abort, therefore, C∗ �= C.

– Game 2: Game 2 is mostly the same as Game 1, with the following three
changes:
1. In setup system step, generate {g2, g3, u0, U} as follows:

• Choose random elements x, y ∈ Zp, and compute g2 ← gx, g3 ← gy.
• To generate U , choose random elements k1, ..., kn ∈ Zp, and from

i = 1 to n compute ui ← g1
ki .

• To generate u0, choose random elements α, λ ∈ Zp, compute z∗ ←
gα, C∗ ← H2(z∗), write C∗ as (c∗1, ..., c

∗
n) ∈ {0, 1}n. Compute τ∗ ←∑n

i=1 kic
∗
i , then u0 ← g1

−τ∗
gλ.

2. In the challenge step, the simulator generates σ∗
0 , σ∗

1 according to the
signcryption algorithm, but computes σ∗

2 , σ∗
3 as follows:

σ∗
2 ← gx

S∗ · σ∗
1

λ, σ∗
3 ←

α−H1(σ∗
0 , σ∗

1 , gS∗)
y

.

3. For all unsigncryption and non-repudiation oracles, if
∑n

i=1 kici = τ∗,
then the simulator aborts.

Analysis: We now analyze the above three changes one by one.
1. For changes in 1, it is easy to see that U ∈ Gn, u0 ∈ G, g2 ∈ G and

g3 ∈ G are still random vector and elements. Therefore, these changes
are only notational changes.

Signcryption with Non-interactive Non-repudiation without Random Oracles 215

2. For changes in 2, if we take s← α−H1(σ∗
0 ,σ∗

1 ,gS∗)
y , which is also a random

element in Zp, then it is easy to verify that σ∗
2 = gαS∗

2 (u0

∏n
i=1 u

c∗i
i)t, σ∗

3 =
s, which is a valid setting.

3. For changes in 3, recall the conclusion in Game 1 that, if not abort, for all
unsigncryption and non-repudiation C �= C∗. And (k1, ..., kn) ∈ Zn

p are
independent elements chosen randomly by the simulator (independent of
the adversary), and for the complexity of discrete logarithm assumption,
the value of (k1, ..., kn) are computationally hidden from the value of
(u1, .., un). Therefore, the value of (k1, ..., kn) and independent of the
adversary’s view. For each unsigncryption oracle and non-repudiation
oracle, we have Pr[

∑n
i=1 kici = τ∗] = 1/p.

Finally, we have

Pr[new abort in game 2] = (qu + qn)/p. (4)

Without this new abort, the simulator provides the same environment as in
Game 1. According to Lemma 1, we have

|Pr[γ =γ′ in game 2]−Pr[γ =γ′ in game 1] |≤ Pr[new abort in game 2].(5)

Now in Game 2, if not abort, then for all unsigncryption and non-repudiation
oracles,

∑n
i=1 kici �= τ∗.

– Game 3: Game 3 is similar to Game 2, except that in both oracles be-
fore challenge step and oracles after challenge step, the simulator computes
answers for oracles as follows:

• For each signcryption oracle: Compute gαB

2 ← gx
B, and signcrypt the

message according to the Signcryption algorithm.
• For each non-repudiation oracle: First, run steps 1-4 in unsigncryption

algorithm. If
∑n

i=1 kici = τ∗, then the simulator aborts, otherwise it
computes d← (d1, d2, d3) as follows:

(d1 ← gB

−λ∑n
i=1 kici−τ∗

, d2 ← gB

−1∑n
i=1 kici−τ∗

, d3 ← dx
2).

• For each unsigncryption oracle: The simulator first runs the non-
repudiation oracle to get d, and then decrypt the signcryptext as follows:

M ← σ0 · e(σ2, d2)
e(σ1, d1)e(d3, gS)

.

Analysis: It is easy to verify that

d1 = gαB
1 (u0

∏
uci

i)r, d2 = gr, d3 = gr
2 , where r ← −αB∑n

i=1 kici − τ∗ .

216 J. Fan, Y. Zheng, and X. Tang

Recall that in Game 2, if
∑n

i=1 kici = τ∗, then the simulator also aborts.
Therefore, all the changes in the game are just notational. We have:

Pr[γ = γ′ in game 3] = Pr[γ = γ′ in game 2]. (6)

Now in Game 3, if not abort, the simulator runs the attack game perfectly
without the knowledge of αB.

– Game 4: Game 4 is mostly the same as Game 3, except that the simulator
tries to embed BDH = {g, ga, gb, gc, T ← e(g, g)abc} (a, b, c are random
elements in Zp) into the simulation by taking the following different steps:
1. In Setup system step, the simulator sets g1 ← ga, gB ← gb.
2. In Challenge step, the simulator computes σ∗

0 , σ∗
1 as follows:

σ∗
0 ← e(g, g)abc ·Mγ , σ∗

1 ← gc.

Analysis: If we take t ← c, then we have σ∗
0 = e(g1, gB)t ·M, σ∗

1 = gt. Since
a, b, c are random elements in Zp, then g1 ∈ G, gB ∈ G and t ∈ Zp are also
random elements. Therefore, the changes in Game 4 are only notational.
Then, we have:

Pr[γ = γ′ in game 4] = Pr[γ = γ′ in game 3] (7)

Now in Game 4, if not abort, the simulator runs the attack game per-
fectly with the values of {ga, gb, gc, e(g, g)abc}, but without the knowledge of
(a, b, c).

– Game 5: Game 5 represents a slightly modified version of Game 4. Specif-
ically, in this game instead of BDH , the simulator embeds Random =
{g, ga, gb, gc, T ← e(g, g)k} (k is randomly chosen from Zp) into the sim-
ulation by computing σ∗

0 ← e(g, g)k ·M in the Challenge step.

Analysis: If the adversary distinguishes the difference between Game 4 and
Game 5, then he also distinguishes the two cases of T . From the definition
of DBDH assumption, we have:

|Pr[γ = γ′ in game 5]− Pr[γ = γ′ in game 4]| ≤ εdbdh (8)

For the random and independent choice of T , the adversary’s output γ′ in
this game is independent of the hidden bit γ. We have

Pr[γ = γ′ in game 5|abort] = 1/2 (9)

Now in Game 5, the simulator aborts with the same probability as in
Game 4. If not abort, it simulates Game 5 perfectly with the value of
{ga, gb, bc, e(g, g)k}, but without the knowledge of (a, b, c, k). According to
previous analysis, we can reduce that the simulator aborts in Game 5 with

Signcryption with Non-interactive Non-repudiation without Random Oracles 217

probability εH1 + εH2 + εDlog + (qu + qn)/p, which can be regard as a con-
stant when the times of unsigncryption and non-repudiation oracles are fixed.
Therefore, we have

Pr[γ = γ′ in game 5] = Pr[γ = γ′ in game 5|abort] (10)

Combing all the above formulas in this proof, we get our conclusion that

|Pr[γ = γ′ in game 0]− 1/2| ≤ εH1 + εH2 + εDlog + (qu + qn)/p + εdbdh.

Proof of Unforgeability

Theorem 2. The signcryption scheme is (t, qs, qu, qn, ε) SEU-SCNINR-CMA
secure, assuming that the Waters signature scheme in [25] is (t, qs, ε/4) existen-
tial unforgeable, H1 is (t, ε/4) collision resistent, H2 is (t, ε/4) collision resistent
and the Discrete Logarithm assumption in G holds for (t, ε/4).

Proof of Theorem 2: In the SEU-SCNINR-CMA game, the adversary A’s goal is
to forge a valid signcryptext σ∗ = (σ∗

0 , σ∗
1 , σ∗

2 , σ∗
3) where σ∗ �= σ(i). Throughout

this proof, the variables with superscript (i) denote the variables computed in
the i-th signcryption oracle. And the variables with superscript ∗ denote the
variables computed in the Challenge stage. According to the result ofA’s forgery,
we divide it into four types as follows:

– Type I: C∗ �= C(i) (for all i form 1 to qs),
– Type II: C∗ = C(i) and z∗ �= z(i) for some i ∈ {1, ..., qs},
– Type III: C∗ = C(i), z∗ = z(i) and σ∗

3 = σ
(i)
3 for some i ∈ {1, ..., qs},

– Type IV: C∗ = C(i), z∗ = z(i) and σ∗
3 �= σ

(i)
3 for some i ∈ {1, ..., qs}.

We will show that a successful type I forgery will lead to a successful attack on
the Waters signature scheme, a successful type II forgery will lead to a break for
the collision-resistent hash function H2, a successful type III forgery will lead
to a break of the collision-resistent hash function H1, and a successful type IV
forgery will lead to a solution to the Discrete Logarithm assumption in G.

Before this attack, the simulator A′ flips a random coin to guess which kind
of forgery A will output, then sets up the public parameter and performs appro-
priately, and all our simulations are perfect.

– Type I forgery: We first briefly review the Waters signature scheme [25].
Given a public parameter Pubs ← {e, G, GT , u0, U, g, g2}, {αB, gB ← gαB}
are computed as private/public key pair of user B (αB is randomly cho-
sen from Zp), the signature σs on message C = (c1, ..., cn) ∈ {0, 1}n is:
(σs0 , σs1)← (gαB

2 (u0

∏n
i=1 uci

i)t, gt). The Waters signature scheme is said to
be (t, qs, ε/4) existential unforgeable (EUF), if given user B’s public key gB,
and has access to qs times signature oracles, the adversary A′ can forge a
valid signature on a new message C∗ with probability at most ε/4.

218 J. Fan, Y. Zheng, and X. Tang

We let A′ be the simulator of the SEU-SCNINR-CMA game as well as an
attacker of existential unforgeability (EUF) game of Waters scheme. A′ will
simulate the SEU-SCNINR-CMA game with the knowledge he gets from the
EUF game. Next, we show how A′ deals with the simulation as follows:

• In the Setup system step: A′ first gets the public parameter and user B’s
public key PKB from the EUF game. Then A′ chooses random x, y ∈ Zp,
computes g1 ← gx, g3 ← gy. Finally, A′ runs the SetupPub algorithm
to get the other elements of public parameter Pub, and returns Pub and
PKB to A.
• In the Oracles step: A′ is able to answer all the unsigncryption and

non-repudiation oracles easily, since A′ can computes gαB
1 ← gx

B. For
signcryption oracles, A′ answers it with the help of signature oracle
in EUF game. When A asks for a signcryption oracle on (M, PKS =
PKB, PKR), A′ chooses a random α ∈ Zp, computes C = H2(gα),
and then gets σs = (σs0 , σs1) on C from the signature oracle. Fi-
nally, A′ computes σ0 = e(σs1 , gR)x · M , σ1 ← σs1 , σ2 ← σs0 ,
σ3 ← (α−H1(σ0, σ1, gB))/y, returns σ = {σ0, σ1, σ2, σ3} to A.
• In the Forge step: If A outputs a successful type I forgery, σ∗ =

(σ∗
0 , σ∗

1 , σ∗
2 , σ∗

3). Then A′ can also generate a successful forgery σ∗
s ←

{σ∗
2 , σ∗

1} on a new message C∗ ← H2(gH1(σ∗
0 ,σ∗

1 ,gB)g
σ∗
3

3).

Now we can see that if A (adversary in SEU-SCNINR-CMA game) finally
makes a successful forgery, then A′ (as an attacker of EUF game) also makes
a valid forgery for the Waters scheme.

– Type II forgery: A is a type II adversary for the signcryption scheme, A′

is the simulator. Besides, A′ is aimed to find a collision for H2.
In this case, A′ simulates the game as a normal challenger in the defini-

tion. Finally, if A outputs a successful type II forgery that C∗ = C(i) and
z∗ �= z(i) for some i ∈ {1, ..., qs}, then A′ finds a collision for hash function
H2.

– Type III forgery: A is a type III adversary for the signcryption scheme,
A′ is the simulator. Besides, A′ is aimed to find a collision for H1.

In this case, A′ simulates the game as a normal challenger in the defini-
tion. If A outputs a successful type III forgery that C∗ = C(i), z∗ = z(i) and
σ∗

3 = σ
(i)
3 for some i ∈ {1, ..., qs}, then it implies that θ(i) = θ∗. There are

two cases follows:

1. (σ(i)
0 , σ

(i)
1) = (σ∗

0 , σ∗
1). According to the check equation e(σ2, g) =

e(g2, gS) ·e(σ1, u0

∏n
i=1 uci

i) in the unsigncryption algorithm, we get that
if (σ(i)

0 , σ
(i)
1 , σ

(i)
3) = (σ∗

0 , σ∗
1 , σ∗

3), then σ
(i)
2 = σ∗

2 . It is an impossible case,
because it contradicts with the requirement of the attack game that
σ(i) �= σ∗.

2. (σ(i)
0 , σ

(i)
1) �= (σ∗

0 , σ∗
1). Then A′ finds a collision in H1.

Signcryption with Non-interactive Non-repudiation without Random Oracles 219

– Type IV forgery: A is a type IV adversary for the signcryption scheme,
B′ is the simulator. Besides, A′ is given a random element g′3 ∈ G, and is
aimed to compute y ∈ Zp where g′3 = gy.
A′ simulates the game as a normal challenger in the definition except

that in the Setup system step, he sets g3 ← g′3. Finally, if A outputs a
successful type IV forgery that C∗ = C(i), z∗ = z(i) and σ∗

3 �= σ
(i)
3 for some

i ∈ {1, ..., q}, then A′ can computes y ← (θ∗ − θ(i))/(σ(i)
3 − σ∗

3).

Proof of Soundness of Non-repudiation

Theorem 3. The signcryption scheme has perfect soundness of non-repudiation.

Proof of Theorem 3. In this game, the adversary A is given the system’s pub-
lic parameter Pub, and he generates a challenge user B’s public/privete key
pair (PKB, SKB). A is given access to a signcryption oracle. In this ora-
cle, A outputs a pair of sender/receiver public key (PKS , PKB) and a mes-
sage M , then gets σ ← Signcryption(SKS, PKB, M). If the check equation
e(σ2, g) = e(g2, gS) · e(σ1, u0

∏n
i=1 uci

i) holds, then the signcryptext σ must be

formed as σ = (e(g1, gR)t ·M, gt, gαS
2 (u0

n∏

i=1

uci

i)t, s) for some t ∈ Zp.

Finally, A outputs a message M ′ and a non-repudiation evidence d′. If the
check equations e(d′2, g2) = e(g, d′3) and e(d′1, g) = e(g1, gR) · e(u0

∏n
i=1 uci

i , d′2)
both hold, then the non-repudiation evidence d′ must be formed as d′ ← (gαR

1 ·
(u0

∏n
i=1 uci

i)r′
, gr′

, gr′
2) for some r′ ∈ Zp. Hence we have

M ′ =
σ0 · e(σ2, d

′
2)

e(σ1, d′1)e(d
′
3, gS)

= M.

It contradicts the hypothesis that M �= M ′. Therefore, A has probability 0 in
wining this game. In other words, our proposed scheme satisfies perfect soundness
of non-repudiation.

Proof of Unforgeability of Non-repudiation Evidence

Theorem 4. The signcryption scheme is (t, qs, qu, qn, ε) EUF-NR-evidence -
SCNINR-CMA secure, assuming that the Waters signature scheme in [25] is
(t, qu + qn, ε/4) existential unforgeable, H1 is (t, ε/4) collision resistent, H2 is
(t, ε/4) collision resistent and the Discrete Logarithm assumption in G holds for
(t, ε/4).

Proof of Theorem 4. The proof for this theorem is very similar to that for un-
forgeability. In what follows we highlight key differences between them.

In the EUF-NR-evidence-SCNINR-CMA game, the adversary A’s goal is to
forge a valid non-repudiation evidence d∗ on σ∗ and M∗. According to the result
of A’s forgery, we divide it into four types as follows:

220 J. Fan, Y. Zheng, and X. Tang

– Type I: C∗ �= C(i) (for all i form 1 to qu + qn),
– Type II: C∗ = C(i) and z∗ �= z(i) for some i ∈ {1, ..., qu + qn},
– Type III: C∗ = C(i), z∗ = z(i) and σ∗

3 = σ
(i)
3 for some i ∈ {1, ..., qu + qn},

– Type IV: C∗ = C(i), z∗ = z(i) and σ∗
3 �= σ

(i)
3 for some i ∈ {1, ..., qu + qn}.

Note that in this proof, the variables with superscript (i) denote the variables
computed in the i-th unsigncryption oracle (when i ≤ qu) or in the (i − qu)-
th non-repudiation oracle (when qu < i ≤ qu + qn). And the variables with
superscript ∗ denote the variables computed in the Challenge stage.

At the beginning of the attack, the simulator A′ firstly flips a random coin to
guess which kind of forgery A will output, then sets up a public parameter and
performs appropriately. It turns out that all our simulations are perfect.

Analysis of Type II, III and IV is the same as in the proof of Theorem 2. There-
fore, we only analyze Type I forgery and omit analysis for other types here.

– Type I forgery: We let A′ be the simulator of the EUF-NR-evidence-
SCNINR-CMA game as well as an attacker of existential unforgeablility
(EUF) game of Waters scheme. We note that the Waters signature used in
this proof has one notational difference from what we have used in the proof
of Theorem 2, that is, g1 is used to replace g2. Thus, the Waters signature σs

on message C = (c1, ..., cn) ∈ {0, 1}n is: (σs0 , σs1)← (gαB
1 (u0

∏n
i=1 uci

i)t, gt).
A′ will simulate the EUF-non-repudiation evidence-SCNINR-CMA game
with the knowledge he gets from the EUF game. Next, we show how A′

simulates the game as follows:

• In the Setup system step: A′ first gets the public parameter and user
B’s public key PKB from the EUF game. Then A′ chooses random
x ∈ Zp, computes g2 ← gx. Finally, A′ runs the SetupPub algorithm in
signcryption scheme to get the other elements in public parameter Pub,
and returns Pub and PKB to A.
• In the Orales step: A′ is able to answer the all the signcryption oracles

easily, since A′ can computes gαB
2 ← gx

B. For non-repudiation oracles, A′

will answer them with the help of signature oracles in EUF game. When
A asks for a non-repudiation oracle on (σ, PKS , PKB), A′ computes C
according to the unsigncryption algorithm, and gets σs = (σs0 , σs1) on C
from the signature oracle. Finally, A′ computes d← (σs0 , σs1 , σ

x
s1

). And
for each unsigncryption oracle, A′ first runs the non-repudiation oracle
to get d, then decrypts M ← σ0·e(σ2,d2)

e(σ1,d1)e(d3,gS) .
• In the Forge step: If A outputs a successful forgery d∗ on (σ∗, M∗) with

sender/receiver public keys (PKS∗ , PKB), then A′ can also generate
a successful forgery σ∗

s ← {d∗1, d∗2} for the Waters signature on a new
message C∗ ← H2(gH1(σ∗

0 ,σ∗
1 ,gS∗)g

σ∗
3

3).

Now we can see that A′ (as an attacker) will finally make a valid forgery
for Waters signature scheme, if A (the adversary in EUF-non-repudiation-
evidence-SCNINR-CMA game) makes a successful forgery.

Signcryption with Non-interactive Non-repudiation without Random Oracles 221

5 Discussions

5.1 Efficiency Comparison

Our proposed signcryption scheme is based on the signature scheme of Boneh,
Shen and Waters[8] (for short, we call it BSW signature). In order to give a
better intuition on the comparison of efficiency, we review the BSW signature
as follows:

– SetupPub: Pubbsw = {G, GT , e, g, g2, g3, u0, U, H2}. Most of the elements in
Pubbsw are generated the same way as SetupPub in in Table 1, except that
H1 : {0, 1}∗ → Zp.

– KeyGen: The same as KeyGen in Table 1.
– Sign: To sign on M ∈ SPM, the signer runs almost the same as Signcryption

in Table 1, except that there is no σ0 in the signature and θ ← H1(σ1, M).
The signature is σbsw ← (σ1, σ2, σ3).

– Verify: To verify a signature σbsw from a signer S, the verifier runs almost the
same as Unsigncryption in Table 1, except that it computes θ ← H1(σ1, M)
and there is no need to compute M in the last step. If all the check passed,
it returns �.

First, we compare our proposed signcryption scheme with the BSW signature
scheme on computational cost. From the above description, it is clear the ad-
ditional cost in signcryption is to compute σ0 (σ0 ← M · e(g1, gR)t) and the
additional cost in unsigncryption is to compute M (M ← σ0/e(σ1, g

αR
1)).

Therefore, our signcryptext requires one additional exponentiation in GT in
signcryption and one additional bilinear computation in unsigncryption, when
pre-computation (which will be claimed latter) is applied.

Second, we compare the communication overhead with the BSW signature.
In usual communication, the BSW scheme needs to send (M, σ1, σ2, σ3, IDS),
our scheme needs to send (σ0, σ1, σ2, σ3, IDS, IDR). When |M | ≈ |GT |, there is
nearly no expansion in terms of communication overload (we assume the user
ID be a very short string compared with other elements in communication).

Third, we claim that our scheme takes advantage of the the compositional
method (either sign-then-encrypt or encrypt-then-sign). For consistency of com-
parison, we fix the underlying signature scheme as BSW scheme. Since the
cost for the compositional method is 1 + 1 = 2 (that means Total-Cost =
Costsignature +Costencryption), we only has to compare our additional cost with
the encryption scheme. For example, we choose the encryption scheme in [7].
The cost for computation cost (if pre-computation applied) is approximately 4
exponentiation in encryption and one bilinear computation in decryption. And
the ciphertext size is 2|G|+ |GT |. Clearly, the cost for the encryption scheme is
larger than our additional cost.

5.2 Improve Efficiency of the Proposed Scheme

Increase Online Computation Speed. In our scheme, the online compu-
tation efficiency can be improved if pre-computation applied. For example, a

222 J. Fan, Y. Zheng, and X. Tang

sender S can compute gαS
2 and a receiver can compute gαR

1 immediately after
the computation of public/private key pair. Then it can be stored for latter use.
And when a sender S communicates with a receiver R the first time, the sender
S can store the value of e(g1, gR), then he does not need to repeatedly compute
it in latter communication. Similarly, when a receiver R received a signcryp-
text from S the first time, he can also store the value of e(g2, gS). The judge
can also store the value of e(g1, gR) and e(g2, gS) after the first time of solving
computation.

This method costs a little more space for storage, but greatly improves the on-
line computation efficiency. According to an approximate estimation, the online
computation time can reduce 56.5% in Signcryption, 25.5% in Unsigncryption,
26% in NR-Evidence-Gen, and 17.3% in JG-verification2.

Considering that in practise, the cost for storage is cheaper than online com-
putation, the above per-computation method does work on improving the whole
efficiency in most cases, except the following two cases. 1. One user communi-
cates with another user once. 2. One judge just deal with repudiation problems
between two specific users once.

Reduce the Signcryptext Size. In our original scheme, the signcryptext size
is σ ∈ GT ×G2×Zp. To get a shorter signcryptext, we can replace the symmetric
bilinear map with an asymmetric bilinear map [7]: e : G1×G2 → GT , and there
is an efficiently computable homomorphism ϕ : G2 → G1. Consider the case
where h is a generator of G2, and g ← ϕ(h) is a generator of G1. Then we can
get a shorter signcryptext σ ∈ GT × G2

1 × Zp. The size of the representation
of elements in G1 is 1/k of that of G2, where k is the embedding degree [13].
This method results in lower computation speed, but it leads to a more compact
signcryptext and a boarder range of choices of elliptic curve implementations.
More details about bilinear maps used in cryptography can be found in [13].

The changes of bilinear maps result in a lot of changes in the scheme, which
are shown in detail in Table 3 and Table 4.

The security of this modified scheme is quite similar to the original scheme,
except with some small changes corresponding to the change of bilinear maps
(from symmetric ones to asymmetric ones).

5.3 Applications of Signcryption with NINR

Signcryption with NINR is suitable for those applications where we assume there
will be repudiation disputes between the sender and the receiver. For example,
emails, ATM networks, and cryptographic protocols that aims to transport, ex-
change or establish keys etc.

We take the above mentioned “key” related cryptographic protocols as an ex-
ample. In such scenarios, since the “key” is a very sensitive message, we normally
2 We assume for simplicity that a single computation of exponential computation cost

one unit of time, a bilinear computation takes 6 units of time, a multi-exponential
computation takes 1.5 units of time, and an n-time multiply computation costs one
unit of time.

Signcryption with Non-interactive Non-repudiation without Random Oracles 223

Table 3. SetupPub& KeyGen& Signcryption& Unsigncryption

SetupPub(1η) by Trusted Party:
1. generate (G1, G2, GT , e, g, h) as described above,
2. choose random h1, h2, w0 ∈ G2 and a random vector W ∈ G

n
2 ,

3. compute the images of elements and vector in step 2 by ϕ to get
g1, g2, u0 ∈ G1 and U ∈ G

n
1 .

4. choose a random element g3 ∈ G1,
5. set collision-resistant hash functions H1 : GT × G1 × G1 → Zp,
H2 : G1 → {0, 1}n.
6. Pub = {G1, G2, GT , e, g, h, g1, g2, g3, h1, h2, u0, w0, U, W, H1, H2}
KeyGen(Pub, IDP) by User P :
1. private key for user P is a random αP ∈ Zp,
2. public key for user P is hP ← hαP .
Signcryption(SKS, PKR, M) by Sender S:
To signcrypt M ∈ GT to be communicated to receiver R, sender S
runs:
1. steps 1 and 3 of Signcryption in Table 1.
2. compute σ0 ← e(g1, hR)t ·M ,
3. steps 4-9 of Signcryption in Table 1.

Unsigncryption(SKR, PKS , σ) by Receiver R:
To unsigncrypt σ from sender S, receiver R runs:
1. steps 1 and 3 of Unsigncryption Table 1.
2. if e(σ2, h) �= e(g2, hS)e(σ1, w0Π

n
i=1w

ci
i), return ⊥,

3. compute M ← σ0/e(σ1, h
αR
1).

Table 4. NR-Evidence-Gen & JG-Verification

NR-Evidence-Gen(σ,SKR, PKS)by Receiver R:
To compute non-repudiation evidence d, receiver R runs:
1. steps 1-2 of Unsigncryption in Table 3,
2. choose a random r ∈ Zp,
3. compute d1 ← hαR

1 (w0

∏
wci

i)r,
4. steps 4-6 of NR-Evidence-Gen in Table 2.

JG-Verification(σ,M, d,PKS , PKR) by Judge:
To verify whether M = Unsigncryption(SKR, PKS, σ), the judge
runs:
1. steps 1-2 in Unsigncryption in Table 3,
2. if e(g2, d2) �= e(d3, h), return ⊥,
3. else if e(g, d1) �= e(g1, hR) · e(u0

∏
uci

i , d2), return ⊥,

4. else if M �= σ0·e(σ2,d2)
e(σ1,d1)·e(d3,hS)

, return ⊥,
5. otherwise return �.

224 J. Fan, Y. Zheng, and X. Tang

have the following basic security requirements. From one aspect, the user who
generated the “key” (or part of the “key”), should never deny on it, and from
the other aspect, the user who exposes the fact that the sender translates such a
“key” by a well-formed evidence should also responsible for his act. Fortunately,
if we apply signcryption scheme with NINR to construct the cryptographic pro-
tocols, soundness of non-repudiation ensures that the non-repudiation evidence
d correctly reveals the relationship of a signcryptext σ and a message M , and
at the same time, unforgeability of non-repudiation evidence guarantees that
the receiver has to be responsible for exposing this relationship if he offered a
well-formed evidence.

6 Conclusion

In this work, we propose a model for signcryption with NINR. Compared with
the model of Malone-Lee, our model focuses more on the security of NINR by
considering two more security requirements. Soundness of non-repudiation makes
sure that the property of NINR really works. And unforgeability of evidence data
offers a strong requirement for some particular scenarios. Besides, we also come
up with a concrete scheme, which is the first signcryption scheme with NINR
that can be proved secure without random oracles.

Our scheme should be considered to be a first step in constructing provably
secure signcryption with NINR without random oracles. There is still a lot of
work that needs to be done. One interesting future research direction relates to
efficiency. Our construction makes use of bilinear maps which may take more
computational time than that can be afforded in some light applications where
low power computing devices dominate. As efficiency is the most important
motivation for signcryption, deigning more efficient signcryption schemes with
NINR (e.g. avoid using bilinear computations) will be very valuable.

References

1. An, J., Dodis, Y., Rabin, T.: On the Security of Joint Signature and Encryption. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107. Springer,
Heidelberg (2002)

2. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004)

3. Bao, F., Deng, R.H.: A signcryption scheme with signature directly verifiable by
public key. In: Imai, H., Zheng, Y. (eds.) PKC 1998. LNCS, vol. 1431, pp. 55–59.
Springer, Heidelberg (1998)

4. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. SIAM
Journal on Computing 32(3), 586–615 (2003)

5. Baek, J., Steinfeld, R., Zheng, Y.: Formal Proofs for the Security of Signcryption.
In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 80–98. Springer,
Heidelberg (2002)

Signcryption with Non-interactive Non-repudiation without Random Oracles 225

6. Bellare, M., Rogaway, P.: Random oracle are practical: A paradigm for designing
efficient protocols. In: ACM-CCS 1993, pp. 62–73. ACM press, Fairfax (1993)

7. Boyen, X., Mei, Q., Waters, B.: Direct Chosen Ciphertext Security from Identity-
Based Techniques. In: Atluri, V., Meadows, C., Juels, A. (eds.) ACM-CCS 2005,
pp. 320–329. ACM press, Alexandria (2005)

8. Boneh, D., Shen, E., Waters, B.: Strongly Unforgeable Signatures Based on Com-
putational Difie-Hellman. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.)
PKC 2006. LNCS, vol. 3958, pp. 229–240. Springer, Heidelberg (2006)

9. Chow, S.S.M., Yiu, S.M., Hui, L.C.K., Chow, K.P.: Efficient forward and provably
secure ID-based signcryption scheme with public verifiability and public ciphertext
authenticity. In: Lim, J.I., Lee, D.H. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 352–
369. Springer, Heidelberg (2004)

10. Cramer, R., Shoup, V.: A Practical Public Key Cryptosystem Provably Secure
against Adaptive Chosen Ciphertext Attack. In: Krawczyk, H. (ed.) CRYPTO
1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

11. Damgard, I., Holfheins, D., Kiltz, E., Thorbek, R.: Public-Key with Non-interactive
Opening. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 239–255.
Springer, Heidelberg (2008)

12. Galindo, D., Libert, B., Fischlin, M., Fuchsbauer, G., Lehmann, A., Manulis,
M., Schroder, D.: Public-Key Encryption with Non-Interactive Opening: New
Constructions and Stronger Definitions. In: Bernstein, D.J., Lange, T. (eds.)
AFRICACRYPT 2010. LNCS, vol. 6055, pp. 333–350. Springer, Heidelberg (2010)

13. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for Cryptographers, Cryp-
tology ePrint Archive: Report 2006/165, http://eprint.iacr.org/2006/165

14. Malone-Lee, J.: A general Construction for Simutaneous Signing and Encrypting.
In: Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 116–
135. Springer, Heidelberg (2005)

15. Malone-Lee, J.: Signcryption with Non-interactive Non-repudiation. J. Designs,
Codes and Cryptography 37(1), 81–109 (2005)

16. Li, F., Shirase, M., Takagi, T.: Efficient Signcryption Key Encapsulation with-
out Random Oracles. In: Yung, M., Liu, P., Lin, D. (eds.) Inscrypt 2008. LNCS,
vol. 5487, pp. 47–59. Springer, Heidelberg (2009)

17. Libert, B., Quisquater, J.J.: Efficient signcryption with key privacy from gap
Diffie-Hellman groups. In: Bao, F., Deng, R.H., Zhou, J. (eds.) PKC 2004. LNCS,
vol. 2947, pp. 187–200. Springer, Heidelberg (2004)

18. Libert, B., Quisquater, J.J.: Improved Signcryption from q-Diffie-Hellman Prob-
lems. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 220–234.
Springer, Heidelberg (2005)

19. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs.
Cryptology ePrint Archive, Report 2004/332 (2004)

20. Shin, J.B., Lee, K., Shim, K.: New DSA-verifiable signcryption schemes. In: Lee,
P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp. 35–47. Springer, Heidelberg
(2003)

21. Tan, C.H.: Security Analysis of Signcryption Scheme from q-Diffie-Hellman Prob-
lems. J. IEICE Transactions E89-A(1), 206–208 (2006)

22. Tan, C.H.: Insider-secure Hybrid Signcryption Scheme Without Random Oracles.
In: ARES 2007, pp. 1148–1154. IEEE Press, Vienna (2007)

23. Tan, C.H.: Insider-secure Signcryption KEM/Tag-KEM Schemes without Random
Oracles. In: ARES 2008, pp. 1275–1281. IEEE Press, Barcelona (2008)

24. Toorani, M., Shirazi, A.A.B.: An Elliptic Curve-Based Signcryption Scheme with
Forward Secrecy. J. Applied Sciences 9(6), 1025–1035 (2009)

http://eprint.iacr.org/2006/165

226 J. Fan, Y. Zheng, and X. Tang

25. Waters, B.: Efficient identity based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005)

26. Zheng, Y.: Digital signcryption or how to achieve cost (signature&encryption)�
cost(signature)+cost (encryption). In: Kaliski Jr., B.S. (ed.) CRYPTO 1997.
LNCS, vol. 1294, pp. 165–179. Springer, Heidelberg (1997)

Appendix: A More Efficient Construction in the Random
Oracle Model

A.1 The Construction

If random oracle model is allowed, we can construct a modified scheme which
is more efficient from all aspects. The public parameter can be reduced from
O(log p) to O(1), the size of signcryptext can be reduced from GT ×G2 ×Zp to
GT ×G2, and the computational efficiency can also be improved. In this paper,
our main goal is to generate signcryption with NINR without random oracles,
but we stress that this modified scheme is also meaningful. Since even in the
random oracle model, there are no existing signcryption schemes with NINR
that fulfilling all the four security requirements of our model.

The main difference is that in the modified scheme u0u
θ
1 is used to replace

u0

∏n
i=1 uci

i in the original scheme. The construction is described in Table A-1
and Table A-2, and all the security theorems and proofs for this scheme will be
provided in the next subsection.

A.2 Security Proofs

We are going to provide security theorems and proofs for the modified signcryp-
tion scheme with NINR in the random oracle model. The difference between
the standard model and the random oracle model is that, in the random oracle
model, the attacker has access to additional hash oracles in the oracles stage. In
this proof, we assume that in each attack game, the attacker can ask for at most
qh time hash oracles on H1.

Theorem A. 1. The modified signcryption scheme is (t, qh, qs, qu, qn, ε) IND-
SCNINR-CCA secure, assuming that the (t, ε) DBDH assumption holds, and
hash function H1 is a random oracle.

Proof of Theorem A. 1: We will prove that if A has advantage ε that wins the
attack game, then the simulator A′ can solve the DBDH problem with the same
advantage ε. Initially A′ is given input a tuple (ga, gb, gc, T), T is either gabc or
a random element in G.

– In the Setup system stage, A′ sets g1 ← ga, the challenge user B’s public
key gB ← gb. Choose random elements k1, k2, θ

∗, τ ∈ Zp, and compute u0 ←
g−θ∗·k1
1 gk2 , u1 ← gk1

1 , g2 ← gτ .

Signcryption with Non-interactive Non-repudiation without Random Oracles 227

Table A-1. SetupPub& KeyGen& Signcryption& Unsigncryption

SetupPub(1η) by Trusted Party:
Pub = {G, GT , e, g, g1, g2, g3, u0, u1, H1} is generated the same way as
in SetupPub in Table 1. But here we take H1 as a random oracle.

KeyGen(Pub, IDP) by User P :
The same as KeyGen in Table 1.

Signcryption(SKS, PKR, M) by Sender S:
To signcrypt M ∈ GT to be communicated to receiver R, sender S
runs:
1. steps 1-4 of Signcryption in Table 1,
2. compute σ2 ← gαS

2 (u0u
θ
1)

t,
3. the signcryptext is σ ← (σ0, σ1, σ2).

Unsigncryption(SKR, PKS , σ) by Receiver R:
To unsigncrypt σ from sender S, receiver R runs:
1. compute θ ← H1(σ0, σ1, gS),
2. if e(σ2, g) �= e(g2, gS) · e(σ1, u0u

θ
1), return ⊥,

3. otherwise compute M ← σ0/e(σ1, g
αR
1).

Table A-2. NR-Evidence-Gen & JG-Verification

NR-Evidence-Gen(σ,SKR, PKS) by Receiver R:
To compute non-repudiation evidence d, receiver R runs:
1. steps 1-2 of Unsigncryption in Table A-1,
2. choose a random r ∈ Zp,
3. compute d1 ← gαR

1 · (u0u
θ
1)

r, d2 ← gr, d3 ← gr
2 ,

4. return d← (d1, d2, d3).

JG-Verification(σ,M, d,PKS , PKR) by Judge:
To verify whether M = Unsigncryption(SKR, PKS, σ), the judge
runs:
1. steps 1-2 of Unsigncryption in Table A-1,
2. if e(d2, g2) �= e(g, d3), return ⊥,
3. else if e(d1, g) �= e(g1, gR) · e(u0u

θ
1, d2), return ⊥,

4. else if M �= σ0·e(σ2,d2)
e(σ1,d1)e(d3,gS)

, return ⊥,
5. otherwise return �.

228 J. Fan, Y. Zheng, and X. Tang

– In the Oracles before challenge stage,
1. For each hash oracle on (σ0, σ1, gS), the simulator keeps a list for the

input and output for hash oracles (which is initially empty). If the input
has already been asked, check the list to find the output, else it returns
a random element θ that θ �= θ∗, and add {(σ0, σ1, gS), θ} to the list.

2. For each signcryption oracle on M with (PKS ← PKB, PKR), the sim-
ulator first computes gαB

2 ← gτ
B, then it can compute a signcryptext

according to the Signcryption algorithm.
3. For each non-repudiation oracle on σ with (PKS , PKR = PKB), the

simulator first runs step 1 of the NR-Evidence-Gen algorithm. If it does
not abort, the simulator chooses a random element r′ ∈ Zp, then com-

putes d1 ← g
k1(θ−θ∗)r′
1 g

k2
k1(θ∗−θ)

B gk2r′
, d2 ← g

1
k1(θ∗−θ)

B gr′
, d3 ← dτ

2 . Taking
r ← b

k1(θ∗−θ) + r′, then d1 ← gαB
1 (u0u

θ
1)r, d2 ← gr, d3 ← gr

2.
4. For each unsigncryption oracle on σ with (PKS , PKR = PKB), the sim-

ulator first runs the the non-repudiation oracle to get d, then computes
M ← σ0·e(σ2,d2)

e(σ1,d1)e(d3,gS) .
– In the challenge stage, A outputs (M0, M1) with (PKS∗ , PKR∗ = PKB),

the simulator computes σ∗
0 ← T ·Mγ (γ is a random bit), σ∗

1 ← gc, σ∗
2 ← gτ

S∗ .
Finally, it returns σ∗ = (σ∗

0 , σ∗
1 , σ∗

2) and then add {(σ∗
0 , σ∗

1 , gS), θ∗} to the
hash list.

– In the oracles after challenge stage, the simulator operates similar as in the
oracle before challenge stage.

– In the Guess stage, A outputs a guess bit γ′. If γ = γ′, the simulator outputs
a bit 1, or outputs a bit 0 for the DBDH assumption.

If the input tuple is sampled in experiment 0, where T = e(g, g)abc, then |Pr[γ =
γ′ in experiment 0] − 1/2| = ε. Else if the input tuple is sampled from in
experiment 1 where T = e(g, g)k, then Pr[γ = γ′ in experiment 1] = 1/2. Thus
we have
|Pr[A′ = 1 in experiment 0] − Pr[A′ = 1 in experiment 1]| = |(1/2 ±

ε) − 1/2| = ε. Therefore, if the adversary A has advantage ε in wining the
attack game, then the simulator A′ also has advantage ε in solving the DBDH
assumption.

Theorem A. 2. The signcryption scheme is (t, qh, qs, qu, qn, ε) SEU-SCNINR-
CMA secure, assuming the CDH assumption in G holds for (t, ε/qh), and hash
function H1 is a random oracle.

Proof of Theorem A. 2: We will prove that if A has advantage ε that wins the
attack game, then the simulator A′ can solve the CDH problem with advantage
at least ε/qh. For CDH assumption, A′ is given input (ga, gb), and aims to
compute gab.

– In the Setup system stage, A′ sets g2 ← ga, the challenge user B’s public
key gB ← gb. Choose random elements k1, k2, θ

∗, τ ∈ Zp, and compute u0 ←
g−θ∗k1
2 gk2 , u1 ← gk1

2 , g1 ← gτ .

Signcryption with Non-interactive Non-repudiation without Random Oracles 229

– In the Oracles stage,

1. For each hash oracle on (σ0, σ1, gS), the simulator keeps a list for the
input and output for hash oracles (which is initially empty). If the input
has already been asked, check the list to find the output. Else it returns
θ ← θ∗ with probability 1/qh, and returns a random element θ that
θ �= θ∗ with probability 1− 1/qh, and add {(σ0, σ1, gS), θ} to the list.

2. For each signcryption oracle on M with (PKS = PKB, PKR), the sim-
ulator first chooses random elements t′, θ ∈ Zp, and computes σ0 ←
e(g

τ
k1(θ∗−θ)

B gt′
1 , gR) ·M , σ1 ← g

1
k1(θ∗−θ)

B gt′ , σ2 ← g
k1(θ−θ∗)t′

2 g
k2

k1(θ∗−θ)

B gk2t′ .
Taking t ← b

k1(θ∗−θ) + t′, then σ0 ← e(g1, gR)t · M, σ1 ← gt, σ2 ←
gαS
2 (u0u

θ
1)

t. Finally, the simulator add {(σ0, σ1), θ} the the hash list.
3. For each non-repudiation oracle on σ with (PKS , PKR = PKB), the

simulator first computes the gαB
1 ← gτ

B, then it can compute an answer
according to the NR-Evidence-Gen algorithm.

4. For each unsigncryption oracle on σ with (PKS , PKR = PKB), the sim-
ulator first runs the the non-repudiation oracle to get d, then computes
M ← σ0·e(σ2,d2)

e(σ1,d1)e(d3,gS) .

– In the forge stage, if A outputs a signcryptext σ∗ ← (σ∗
0 , σ∗

1 , σ∗
2) with

(PKS∗ = PKB, PKR∗), the simulator checks the hash list with input
(σ∗

0 , σ∗
1 , gB). If it is not on the input list, then sets the output as θ∗.

If the signcryptext is a valid one, and the output of hash oracle for (σ∗
0 , σ∗

1 , gB)
is θ∗, then the simulator can solve the CDH assumption by computing
gab ← σ∗

2/σ∗
1

k2 . Now we can see the probability that {(σ∗
0 , σ∗

1 , gB), θ∗} is on
the hash list is at least 1/qh. Therefore, if A has advantage ε in winning the
attack game, then the simulator can solves the CDH assumption with advantage
at least ε/qh.

Theorem A. 3. The modified scheme has perfect soundness of non-repudiation.

Proof of Theorem A. 3: In this game, the adversary A is given the system’s
public parameter Pub, and he generates a challenge user B’s public/privete key
pair (PKB, SKB). And A is given access to a signcryption oracle. In this oracle,
A outputs a pair of sender/receiver public key (PKS , PKR = PKB) and a
message M , then gets σ ← Signcryption(SKS, PKB, M). If the check equation
e(σ2, g) = e(g2, gS) · e(σ1, u0u

θ
1) holds, then the signcryptext σ must be formed

as σ = (e(g1, gR)t ·M, gt, gαS
2 (u0u

θ
1)

t) for some t ∈ Zp.
Finally, A outputs a message M ′ and an non-repudiation evidence d′. If the

check equations e(d′2, g2) = e(g, d′3) and e(d′1, g) = e(g1, gR) · e(u0u
θ
1, d

′
2) both

hold, then the non-repudiation evidence d′ must be formed as follows: d′ ←
(gαR

1 · (u0u
θ
1)r′

, gr′
, gr′

2) for some r′ ∈ Zp.
Hence we have

M ′ =
σ0 · e(σ2, d

′
2)

e(σ1, d′1)e(d
′
3, gS)

= M.

230 J. Fan, Y. Zheng, and X. Tang

It contradicts the hypothesis that M �= M ′. Therefore, A has probability 0
in wining this game. In other words, this signcryption scheme satisfies perfect
soundness of non-repudiation.

Theorem A. 4. The modified scheme is (t, qh, qs, qu, qn, ε) EUF-NR-evidence-
SCNINR-CMA secure, assuming that CDH assumption in G holds for (t, ε/qh),
and hash function H1 is a random oracle.

Proof of Theorem A. 4: We will prove that if A has advantage ε that wins
the attack game, then the simulator A′ can solve the CDH assumption with
advantage at least ε/qh. Initially A′ is given input (ga, gb).

– In the Setup system stage, A′ sets public parameter as the simulator in the
proof of Theorem A.1.

– In the oracles stage, A′ operates similarly as the the simulator in stage of
oracles before challenge in the proof of Theorem A.1, except that A′ answers
the hash oracles in a different way. For each hash oracle on (σ0, σ1, gS), it
returns θ ← θ∗ with probability 1/qh, and returns a random element θ that
θ �= θ∗ with probability 1− 1/qh,

– In the forge stage,A outputs (d∗, σ∗, M∗, PKS∗ , PKR∗) with PKR∗ = PKB.
The simulator checks the hash list, if (σ∗

0 , σ∗
1 , gS∗) is not on the hash list as

input, then adds {(σ∗
0 , σ∗

1 , gS), θ∗} to the list.

If d∗ is a valid one, and {(σ∗
0 , σ∗

1 , gS∗), θ∗} is on the hash list, then the simulator
can solve the CDH assumption by computing gab ← σ∗

2/σ∗
1

k2 . Now we can see
the probability that {(σ∗

0 , σ∗
1), θ∗} is on the hash list is at least 1/qh. Therefore,

if A has advantage ε in winning the attack game, then the simulator can solves
the CDH assumption with advantage at least ε/qh.

	Signcryption with Non-interactive Non-repudiation without Random Oracles
	Introduction
	Preliminaries
	Bilinear Maps
	Collision Resistent Hash Functions
	Discrete Logarithm Assumption
	Decisional Bilinear Diffie-Hellman (DBDH) Assumption

	The Proposed Model of Signcryption with NINR
	Syntax of Signcryption with NINR
	Analysis of Malone-Lee's Model
	Security Definitions in Our Model
	Adapt Our Model to Existing Schemes

	The Proposed Signcryption Scheme with NINR
	Construction
	Security Proofs

	Discussions
	Efficiency Comparison
	Improve Efficiency of the Proposed Scheme
	Applications of Signcryption with NINR

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

