Breaking Real-World Implementations of
Cryptosystems by Manipulating their Random
Number Generation *

Yuliang Zheng
The Peninsula School of Computing and Information Technology
Monash University, McMahons Road, Frankston
Melbourne, VIC 3199, Australia
Email: yzheng@fcit.monash.edu.au

Fax: 461 3 9904 4124 Tel: 461 3 9904 4196

Tsutomu Matsumoto
Division of Artificial Environment Systems and
Division of Electrical and Computer Engineering
Yokohama National University
79-5 Tokiwadai, Hodogaya, Yokohama 240, Japan
Email: tsutomu@mlab.dnj.ynu.ac.jp
Fax: 045-338-1157 Tel: 045-338-1171/1173

May 6, 1997

Abstract

We suggest several methods that may allow one to completely break
cryptosystems implemented in a portable hardware device such as a smart
card. These cryptanalytic methods work by exploring the hardware in
such a way that the pseudo-random number generator embedded in the
device behaves predictably, even for a very short period of time. While
these attacking methods will be discussed by standing in the position of an
attacker, our genuine intention is to serve as an alarm for users, developers
and researchers in information security.

*In the Proceedings of the 1997 Symposium on Cryptography and Information Security,
pp.6B1-6, January 29 - February 1, 1997, Fukuoka, Japan. A less polished version entitled
“Breaking Smart Card Implementations of ElGamal Signature and Its Variants” was presented
at the rump session of Asiacrypt’96, Kyongju, Korea, November 5, 1996.



1 Cryptanalysis by Exploring Hardware Faults

On 25 September, 1996, Bellcore announced that D. Bouneh, R. DeMillo (both of
Bellcore) and R. Lipton (of Princeton University) have found that RSA signature
generation/decryption key that is stored in a “tamper-proof” device such as a
smart card may be extracted by an attacker who is in possession of the device [4].
The media release explains that the attack works by subjecting the tamper-proof
device to certain types of physical stresses that would cause it to generate faulty
computations. Technical details on the attack were later published in [7]. Prior
to this, on 23 October 1996, six researchers from the National University of
Singapore demonstrated in detail how an attacker may extract a secret RSA key
stored in a “tamper-proof” device, again by subjecting the device to physical
stresses [3].

The above attacks have been considered specifically for smart card imple-
mentations of public key cryptosystems (including decryption, signature, au-
thentication and identification). A few weeks after Bellcore’s media release,
however, Biham and Shamir announced, with sufficient technical details, that
practically all smart card implementations of private key cryptosystems (such
as DES, IDEA, FEAL, ...) may be broken within the same attack model where
an attacker may introduce hardware faults into a “tamper-proof” device [6]. In
less than two weeks’ time, Biham and Shamir pushed their cryptanalysis further
to show that hardware faults may allow one to break a smart card implemen-
tation of a private key cryptosystem whose algorithmic details are not public
(for instance, the Skipjack cryptosystem) [5]. A further improvement to their
attack can be found in [1].

These attacks work primarily under the assumption that a computation pro-
cess within a smart card may result in a faulty outcome, or an attacker may
somehow flip a few bits in a secret key stored in a register. In this paper,
we take a different approach. In particular, we concern ourselves with pseudo-
random number generation which is a core part of most cryptosystems. Our
cryptanalytic methods work by exposing a device to physical stresses in such
a way that a pseudo-random number generator (PRG) embedded in the device
behaves predictably. Although our discussions will be mainly about smart card
implementations of ElGamal digital signature scheme, they can be easily gener-
alized to virtually all cryptosystems that rely on randomness for the assurance
of their security.

Some more recent advances in the above lines of cryptanalysis have been
found in [8].

2 ElGamal Signature and Its Variants

ElGamal digital signature is based on the hardness of computing discrete loga-
rithm over a large finite field. It involves two parameters public to all users:



1. p: alarge prime.
2. g: an integer in [1,...,p — 1] with order p — 1 modulo p.

User Alice’s secret key is an integer z, chosen randomly from [1,...,p — 1]
with 24 ) (p — 1) (i.e., 24 does not divide p — 1), and her public key is y, =
g“*mod p.

Alice’s signature on a message m is composed of two numbers 7 and s which
are defined as

r = g¢g”modp
hash(m) — z, -
s = 42 (m) —= TIIlOd(p—l)
T

where # is a random number from [1,...,p — 1] with =} (p — 1). It should be
stressed that z must be chosen independently at random every time a message
is to be signed by Alice.

Given (m,r,s), oue can verify whether ghashtm) — ¢ ps1od p is satisfied.
(r,s) is regarded as Alice’s valid signature on m only if the equation holds.

ElGamal signature scheme has been scrutinized extensively in the past decade.
It has also been generalized to numerous variants, including the notable DSA
and Schnorr signature scheme.

3 Breaking ElGamal Signature by Controlling
the Pseudo-Random Number Generator

Some of the attacks, such as those in [3, 1], work under the assumption that
an attacker can directly flip bits in an unknown secret decryption/signature
generation key. In this work we take a different approach. In Particular, we
focus on the generation of a pseudo-random number z, a crucial part of the
signature scheme.

We consider two types of ElGamal signature cards:

1. smart cards that use a piece of program that is known to the public to
generate pseudo-random numbers (smart cards with a software PRG).

2. smart cards that have a built-in hardware pseudo-random number gener-
ator (smart cards with a hardware PRG).

3.1 Cards with a Software PRG

For a smart card with a software PRG, it must have a status register to store
data on its current status information S;,f,. To produce a fresh pseudo-random
number, normally the piece of program would first fetch the current data Siyy,
from the status register, calculate a number z from S;,¢,, update the contents



in the status register, and finally output = as an outcome. For an attacker
who is in possession of User Alice’s ElGamal card with a software PRG, the
first thing he would do is to identify the location of the status register in a chip
embedded in the card. This could be done by searching through public literature
(some chip manufacturers publish the layout of chips), or simply assuming that
the register would be located in the lower end of RAM (storing key or other
important information in low address locations in RAM is apparently a practice
adopted by many programmers [1]).

The attacker would proceed to expose that particular part of the smart
card (i.e., the status register) to certain physical stresses (such as laser, focused
heating or radiation etc). This would suppress the original S;,f, in the status
register, and force it to temporarily turn into a constant data, say the all-one
value. While the physical pressure is still effective, the attacker may supply the
smart card with a message m and ask it to sign on the message. Assume that
(r,s) is the corresponding signature produced by the smart card.

Now the attacker would be able to extract Alice’s secret signature generation
key z, as follows:

1. calculates zy from the all-one value using the public algorithm for PRG.

2. extracts x,:
hash —s ;
S ash{m) = s - @ mod (p — 1)
r

3.2 Cards with a Hardware PRG

If Alice’s signature card has a built-in hardware PRG, the attacher could use
a technique similar to the one discussed above to force the output the PRG to
turn into a known number zg, say the all-one value. Some smart cards with a
built-in hardware PRG have the following property: when they are exposed in
certain “abnormal” physical environments, such as being supplied with a lower-
than-normal voltage, their PRG would produce a predictable output g [2].
Either case would lead to the immediate breaking of the signature scheme:

vy = hash(m) — s - xq mod (p— 1)
,

3.3 Relaxing the Assumption

In the above discussions we have assumed that the attacker may know directly
the output zq of a software or hardware PRG. This requirement can be weakened
if the attacker can ask a smart card to sign on two different messages. Assume
that the attacker can force the PRG to produce a fixed, but unknown, output
2zg. While maintaining the stresses on the card, the attacker asks it to sign on



two different messages my and my. He would get

, hash(my) — x4 -
(ro = ¢g*°mod p,s; = ash(mi) = Zq - 7o mod (p — 1))
Zo

and hash
(ro = ¢*°mod p, s2 = ash(ms) = Zq - 7o mod (p — 1))
Zo

as Alice’s signatures on my and mqy respectively. From these data, the attacker
would be able to find out
hash(my) — hash(mz)

Ty = mod (p — 1)
S1 — 82

and hence Alice’s secret signature generation key z,

= hash(my) — s1 - xg mod (p— 1)
To ’

We believe that from an attacker’s point of view, the two-message attack
is more effective and easier to carry out than one that requires the attacker to
force a PRG to produce a known outcome.

The requirement on forcing the PRG to produce a fixed but unknown output
can be further weakened. More specifically, we can consider a situation where
an attacker might be able to force the PRG to produce “significantly” biased
outcomes, namely, to manipulate the PRG so that it produces some outcomes
(say all zyp < 10,000) more often than the others. With such a smart card, the
task to extract the secret key z is essentially reduced to a statistical experiment:
by supplying the smart card with a sufficient number of different messages m;,
the attacker would be bound to eliminate the equivocalness surrounding the
secret key .

3.4 Further Extension

The cryptanalytic methods presented above are also applicable to all the vari-
ants of ElGamal signature scheme, including those based on elliptic curves. In
addition, the general idea of manipulating a PRG in a smart card can also be
readily adapted to compromise smart card implementations of other types of
cryptographic primitives that rely on pseudo-random numbers for their security.
These primitives include many types of digital signature schemes, authentication
and identification protocols.

We also note that the attacks described above are not limited to hardware
implementations. A cryptosystem implemented in software or in a combina-
tion of hardware and software may be attacked in a similar way, if an attacker
could manage to manipulate pseudo-random number generation employed by
the system.



4 The Importance of Un-Compromiseable Pseudo-
Random Generation

While attacks using register faults or computation process errors, as is the case
for cryptanalytic methods discussed in [7, 6] and other related papers, may be
foiled by using hardware fault tolerance technology and result verification, mali-
cious manipulation of pseudo-random number generation may be more difficult
to handle, as it cannot be detected by fault tolerance circuitry or result veri-
fication alone. Technically, embedding an un-compromiseable pseudo-random
number generator into a LSI chip seems as challenging as making a truly tamper-
resistant LSI chip.

This observation is closely related to a fundamental gap between a security
solution in an abstract mathematical model and its implementation using real-
world technology. While the abstract solution may have some desirable features
such as provable security, these features would rely on a number of mathe-
matical or non-mathematical assumptions, such as the pseudo-randomness of
sequences employed and the intractability of certain underlying mathematical
problems. The abstract model would tend to capture mathematical assumptions
better than those non-mathematical. Examples of non-mathematical assump-
tions include that a secret key algorithm or signature generation procedure can
be executed uninterruptedly with no intermediate results or partial keys being
leaked, that modular exponentiation can be done in a constant fraction of time
regardless of the size of an exponent, that a secret key can be truly kept secret,
that a pseudo-random number generator behaves consistently and honestly, to
name just a few. The breaking-down of a non-mathematical assumption in a
real-world implementation would lead to the breaking-down of the security solu-
tion: timing attacks and hardware fault attacks are perhaps the best examples
to support this assertion. Indeed, an important question is whether and how
the gap between an abstract mathematical model and real-world techunology can
be bridged at all.

References

. Anderson. serious weakness o . posted to cypher-
1] R. And A i k f DES d h
punks@toad.com, 2 November 1996).

[2] R. Anderson and M. Kuhn. Tamper resistance — a cautionary note. In
Proceedings of the 1996 Usenix Electronic Commerce Conference, November
1996.

[3] F. Bao, R. Deng, Y. Han, A. Jeng, T. H. Nagir, and D. Narasimhalu. A new
attack to RSA on tamperproof devices. (posted to cypherpunks@toad.com,
23 October 1996).



[4]

[6]

[7]

[8]

Bellcore. Now, smart cards can leak secrets. (press release, available at
http://www.bellcore.com/PRESS/ADVSRY96/smrtcrd.html, 25 Septem-
ber 1996).

E. Biham and A. Shamir. The next stage of differential fault analysis: How
to break completely unknown cryptosystems. (email message to a group of
researchers including one of the present authors, 30 October 1996).

E. Biham and A. Shamir. Research announcement: A new cryptanalytic
attack on DES. (posted to cypherpunks@toad.com, 18 October 1996).

D. Boneh, R. DeMillo, and
R. Lipton. On the importance of checking computations. (extended ab-
stract, available at http://www.bellcore.com/SMART/, 31 October 1996).

S. Moriai. A fault-based attacks of rchb. In Proceedings of the Workshop on
Design and Evaluation of Cryptographic Algorithms, pages 117-126, Kikai
Shinko Kaikan, Tokyo, Japan, November 1996.



