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Abstract. This paper proves (i) in any (n — 1)-dimensional linear sub-
space, the non-propagative vectors of a function with n variables are
linearly dependent, (ii) for this function, there exists a non-propagative
vector in any (n — 2)-dimensional linear subspace and there exist three
non-propagative vectors in any (n — 1)-dimensional linear subspace, ex-
cept for those functions whose nonlinearity takes special values.
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1 Introduction

In examining the nonlinearity properties of a function f with n variables, it is
important to understand Ry, the set of so-called non-propagative vectors where
f does not satisfy the propagation criterion. In this work, we are concerned with
both #R; (the number of non-propagative vectors in £¢) and the distribution
of N. More specifically, we prove two properties of . One is called the strong
linear dependence and the other the unbiased distribution, of R.

The strong linear dependence property states that if W is a (n—1)-dimensional
linear subspace satisfying #(R N W) > 4, then the non-zero vectors in RN W
are linearly dependent. This improves a previously known result. The unbiased
distribution property says that any function f with n variables, except for those
whose nonlinearity takes the special value of 27~1 — 2%(”_1), on=1 _ 931 or
9n=1 _ 937=1 fulfills the condition that every (n — 2)-dimensional linear sub-
space contains a non-zero vector in ; and every (n — 1)-dimensional linear sub-
space contains at least three non-zero vectors in R. In special cases, #(RNW)
may significantly effect other cryptographic properties of a function. The strong
linear dependence and the unbiased distribution are helpful for the design of
cryptographic functions as these conclusions provide more information on the
number and the status of non-propagative vectors in any (n — 1)-dimensional
linear subspace.



2 Cryptographic Criteria of Boolean Functions

We consider functions from V,, to GF(2) (or simply functions on V},), V,, is
the vector space of n tuples of elements from GF(2). The truth table of a
function f on Vj, is a (0, 1)-sequence defined by (f(ao), flai1),..., flas=_1)),
and the sequence of f is a (1, —1)-sequence defined by ((—1)f(“°) , (—1)f(“1),

., (—1)f(“2"—1)), where ag = (0,...,0,0), a1 = (0,...,0,1), ..., agn-1_q7 =
(1,...,1,1). The matriz of f is a (1,—1)-matrix of order 2" defined by M =
((—l)f(o"@aj)) where @ denotes the addition in GF(2). f is said to be balanced
if its truth table contains an equal number of ones and zeros.

Given two sequences @ = (ay, - - -, @y, ) and b= (b1, -+, by,), their component-
wise product is defined by dx b = (aiby, -+, amby,). In particular, if m = 2" and
i, b are the sequences of functions f and g on Vj, respectively, then &« b is the
sequence of f @ g where @ denotes the addition in GF(2).

Let @ = (a1,---,am) and b = (b1,---,bm) be two sequences or vectors,
the scalar product of a and b, denoted by (a,b), is defined as the sum of the
component-wise multiplications. In particular, when @ and b are from V,,,, (@, b) =
aiby @ - - - @ apby,, where the addition and multiplication are over GF(2), and
when & and b are (1, —1)-sequences, (a, 7)) =Y a;b;, where the addition and
multiplication are over the reals.

An affine function f on V, is a function that takes the form of f(z1,...,2,) =
a1z1 @ - P anxy, @ ¢, where aj,c € GF(2), j = 1,2,...,n. Furthermore f is
called a linear function if ¢ = 0.

A (1,—1)-matrix N of order n is called a Hadamard matrix if NNT = nT,,
where N7 is the transpose of N and I, is the identity matrix of order n. A
Sylvester-Hadamard matrix of order 2" denoted by H,, is generated by the
following recursive relation

_ _ Hn—l Hn—l _
Ho=1, H, = [Hn_l—Hn_l] n=12,....

Let £;, 0 < i< 2"—1, be the ¢ row of H,. It is known that ¢; is the sequence
of a linear function ¢;(x) defined by the scalar product ¢;(z) = («j, z), where
«; 18 the ith vector in V,, according to the ascending alphabetical order.

The Hamming weight of a (0, 1)-sequence &, denoted by W (&), is the number
of ones in the sequence. Given two functions f and ¢ on V,,, the Hamming
distance d(f,g) between them is defined as the Hamming weight of the truth
table of f(z) @ g(z), where z = (21,...,2,).

Definition 1. The nonlinearity of a function f on Vi, denoted by Ny, is the
minimal Hammang distance between f and all affine functions on V,,, t.e., Ny =
min—y 5 ont1 d(f, ;) where @1, @a, ..., pansr are all the affine functions on
Va-

The following characterisations of nonlinearity will be useful (for a proof see
for instance [2]).



Lemma 1. The nonlinearity of f on V,, can be expressed by

1
Ny =27 L ma{](€,6)],0< i < 2"~ 1)
where € 1s the sequence of f and Ly, ..., lan_1 are the rows of H,, namely, the
sequences of linear functions on V,.

Definition 2. Let f be a function on V,. For a vector o € V,,, denote by &(a)
the sequence of f(x @ «). Thus £(0) is the sequence of f itself and £(0) *&(a) is
the sequence of f(z) ® f(z ® «). Set

Ag(a) = (£(0),&(a)),

the scalar product of £(0) and &(a). A(w) is called the auto-correlation of f with
a shift «. Write
Ay = max{|A(a)||a € Vi, a # 0}

We omit the subscript of Af(a) if no confusion occurs.

Definition 3. Let f be a funciion on'V,,. We say that f satisfies the propagation
criterion with respect to a if f(z) ® f(z ® «) is a balanced function, where
z=(2y1,...,2,) and « is a vector in V,,. Furthermore f is said to satisfy the
propagation criterion of degree k if it satisfies the propagation criterion with
respect to every non-zero vector o whose Hamming weight is not larger than k

(see [3]).

The strict avalanche criterion (SAC) [5] is the same as the propagation cri-
terion of degree one.
Obviously, A(a) = 0 if and only if f(z)® f(z @ «) is balanced, i.e., f satisfies

the propagation criterion with respect to a.

Definition 4. Let f be a function on V,,. « € V,, is called a linear structure of

fif|A(a)] =27 (ie., f(z) ® f(z @ a) is a constant).

For any function f, A(ag) = 27, where «g is the zero vector on V. It is
easy to verify that the set of all linear structures of a function f form a linear
subspace of V;,, whose dimension 1s called the linearity of f. It is also well-known
that if f has non-zero linear structures, then there exists a nonsingular n x n
matrix B over GF(2) such that f(zB) = g(y) ® h(z), where 2 = (y,2), y € V},,
z € Vy, g is a function on V,, that has no non-zero linear structures, and h is an
affine function on V.

The following lemma is the re-statement of a relation proved in Section 2

of [1].
Lemma 2. For every function f on Vy, we have

(A(ao), Alar), ..., Alazn1))Ha = ((§,€0)?, (€, 1), .-, (€, £2n1)).
where & denotes the sequence of f and £; is the ith row of H,,1=10,1,...,27—1.

The balance and the nonlinearity are necessary in most cases. The propaga-
tion or especially the SAC, is an important cryptographic criterion.



3 Introduction to R

Notation 1. Let f be a function on V. Set R; = {a | A(a) £ 0, a € W},
Ay = max{|A(a)||a € Va, a # 0}.

We simply write ®; as ® if no confusion occurs. Tt is easy to verify that
#R and Aps are invariant under any nonsingular linear transformation on the
variables, where # denotes the cardinal number of a set.

#R and the distribution of R reflects the propagation characteristics, while
Ay forecasts the avalanche property of the function. Therefore information on
R and Aps is useful in determining important cryptographic characteristics of

f. Usually, small #R and Ay are desirable.

Definition 5. A function f on V, is called a bent function [4] if (€,4;)% = 27
for every i =0,1,...,2" — 1, where £; is the ith row of H,.

A bent function on V), exists only when n is even, and 1t achieves the highest

. . . 1 . .
possible nonlinearity 27~1! — 227~1. The algebraic degree of bent functions on
Vj, is at most $n [4]. From [4] and Parseval’s equation, we have the following:

Theorem 1. Let f be a function on V,. Then the following statements are
equivalent: (i) f is bent, (i) #R =1, (iii) Ay = 0, (iv) the nonlinearity of f,
Ny, satisfies Ny = 2771 — 2371 (v) the matriz of f is an Hadamard matriz.

The following result is called the linear dependence theorem that can be found

in [7]

Theorem 2. Let f be a function on V, that satisfies the propagation criterion
with respect to all but k + 1 vectors 0, pB1,...,Br in Vi, where k > 2. Then
B1y..., 0, are linearly dependent, namely, there exist k constanis c1,...,cp €

GF(2), not all of which are zeros, such that c101 @ -+ @ e = 0.

Note that n + 1 non-zero vectors in V,, must be linearly dependent. Hence if
#R>n+2 (ie., #(R—{0}) > n+1) then Theorem 2 is trivial. For this reason,
we improve Theorem 2 in this paper. We prove two properties of R: the strong
linear dependence and the unbiased distribution of R.

4 The Strong Linear Dependence Theorem

Note the ith (i.e., the a;th) row of H,,, where a; € V}, is the binary representation
of integer 7, = 0,1,...,2"—1, is the sequence of linear function ¢;(z) = (o, ).
Lemma 4 of [7] can be restated as follows:

Lemma 3. Let Q be the 27 x q that consists of the aj,th, ..., the aj, th rows
of Hy,, where each aj € V,, 1s the binary representation of integer j, 0 < j <
2" — 1. If aj,,...,;, are linearly independent then each (ai, ..., aq)T, where

each aj = %1, appears as a column in @ precisely 2”1 times.



The following Lemma can be found in [7].

Lemma 4. Let n > 3 be a positive integer and 2" = Z;zl a]2- where ay > ag >
az > ay > 0 and each a; is an integer. We have the following statements:

(1) if n is add, then a? = a3 =2"7', a3 = a4 =0,
(ii) if n is even, then a?=2" as =az=as =0 or a} = a?

Lemma 5. For every function f on V,, we have

Q(A(Oéo), A(O@), e .,A((XQn_Q))Hn_l
(<£a£0)2 + <£a£1>2’ (5)52)2 + <£a£3>2’ sy (Ea£2"—2>2 + <£a£2"—1)2)

where & denotes the sequence of f and £; 1s the ith row of H,, 1 =0,1,...,2"—1.

Proof. From Lemma 2,
Qn(A(QO); A(al)a BN A(a2n—1)) = ((gaf(])za <£a£1>2a S <£;£2"—1>2)Hn (1)

Comparing the Oth, the 2nd, .. ., the (2” —2)th terms in the two sides of equality
(1), we obtain

2" (A(ag), Alaa), . .., Aagn_2))
= ((€00)” + (6, 01)% (€, £2)” + (€, 43)%, . (€, ban2)? + (€, 4an 1)) Hn s

This proves the lemma. O

The following theorem is called the strong linearly dependence theorem which
is an improvement on Theorem 2 (the linearly dependence theorem).

Theorem 3. Let f be a function on V,, and W be a (n — 1)-dimensional linear
subspace satisfying ROAW = {0,51,..., 6} (k > 3). Then p1, ..., By are linearly
dependent, namely, there exist k constants cq, ..., ¢, € GF(2) with (c1,...,cp) #
(0,...,0), such that c181 @ - -+ @ e, = 0.

Proof. The theorem is obviously true if ¥ > n. Now we prove the theorem
for k < n. We only need to prove the lemma in the special case when W is

composed of ag, s, ..., agn_2, where as; € V;, is the binary representation of
an even number 2j, j = 0,1,...,2"~! — 1. In other words, W is composed of all
the vectors in V;,, that can be expressed in the form (a1, ..., an-1,0), where each

a; € GF(2). In the general case, we can use a nonsingular linear transformation
on the variables so as to change W into the special case. Let £ be the sequence
of f.

Since §; € W, j = 1,...,k, §; can be expressed as f#; = (7j,0) where
Y € Va1, j=1,...,k, and 0 € GF(2).



Let P be a (k+ 1) x 2"~ matrix composed of the Oth, the yith, ..., the
yrth rows of H,,_1. Set ajz- =(£,¢;)%,j=0,1,...,2" — 1. Note that A(a) =0 if
a ¢ {0,51,..., 0t} Hence the equality in Lemma 5 can be specialized as

Q(A(O)’ A(ﬁl)a B A(ﬁk))P = (ag + a%a a% + a?’n RS ag"—2 + a%"—l) (2)

where A(0) is identical to A(ag) where ag = 0.
Write P = (p;;), i=0,1,...k, j=0,1,...,2"71 — 1. As the top row of P is
(1,1,...,1), from (2),

2(A(0) + ZPU’A(@)) = “%j + “§j+1 (3)

j=0,1,...,2""1 — 1. Let P* be the submatrix of P obtained by removing the
top row from P.
We now prove the theorem by contradiction. Suppose k vectors in V,,, f1,
., Pk, are linearly independent. Hence k vectors in Vi,_1, ¥1,..., 7k, are also
linearly independent and hence k¥ < n — 1.
Applying Lemma 3 to matrix P*, we conclude that each k-dimensional
(1, —1)-vector appears in P*, as a column vector of P* precisely 27~ 1=* times.
Thus for each fixed j there exists a number jo, 0 < jo < 2?~! — 1, such that

(P1jos -+ +» Prjo) = —(P1j, ..., pr;) and hence
k
2(A(0) = > pijoAB)) = aF, + a3, 44 (4)
i=1

Adding (3) and (4) together, we have 4A(0) = a} + a3;,, + af, + a3; 4.
Hence a]z + a%j+1 + a]zo + a%j0+1 = 271+2 There are two cases to be considered:
even n and odd n.

Case 1: n is odd. By using Lemma 4,

{(1]2, a%j+17 a]zuiagju+1} = {2n+1) 2n+1) OJ 0};.7 = 07 1; s '72n_1 (5)

Hence from (3), we have A(0) + ZlepijA(ﬁi) =27+ 2" ( and hence

k
ZPZJA(QZ):T’LJOJ_QTLJJ:0a1aJ2n_1 (6)

i=1
For each fixed j, rewrite (6) as
k
pi;AB) + ZPijA(ﬁi) =2"0,-2" (7)
=2

By using Lemma 3, there exists a number ji, 0 < j; < 2"~! — 1, such that
(P1j1:P2jrs - PRji) = (P1j, —DP2j, - o —Phj)-



Hence
k
P ABr) = Y pij Ai) = 27,0, 2" (8)
=2
Adding (7) and (8) together, we have
pr A(Br) = £27,+£2771 0
Since A(B1) # 0, we conclude A(B1) = £27, £27~1. By the same reasoning we

can prove
A(ﬁj)::}:?”)i?”—l’j:1,2,...,13 9)
Thus we can write

(AB), ..., ABr)) = 277 (by, ..., b) (10

where each b; = +1,£2. By using Lemma 3, there exists a number 5, 0 < 5 <
n=1 _ 1, such that

~

b1 by
Plsy -y Phs) = (75— y ). 11
” L ()

Due to (10) and (11),

k k k
szs (51) :Zb— :ZZ— P2 N b > k2 (12)
i=1 i=1 i=1

Since k > 3, (12) contradicts (6).
Case 2: n is even. By using Lemma 4,

{aJZ’ a%j+1; a.]z’uﬂ a%j(ﬁ-l} = {2n+2, 0; 0; 0} or
{af,a3;,1, 05, a3; 1} ={2",2",2",2"},5=0,1,...,2*"} (13)

Hence from (3), we have A(0) + Zlepi]-A(ﬁi) =27+1 97 (), and hence

k
> piAB) =2",0,-2"
i=1
Repeating the same deduction as in Case 1, we obtain a contradiction in
Case 2.
Summarizing Cases 1 and 2, we conclude that the assumption that f1,..., B
are linearly independent is wrong. This proves the theorem. O

Theorem 3 shows that 3 is subject to crucial restrictions. We now compare
Theorem 3 with Theorem 2. Since n + 1 non-zero vectors in V,, must be linearly
dependent, Theorem 2 is trivial when #R > n+ 2 (i.e., #(R — {0}) > n+ 1).
In contrast, in Theorem 3 the linear dependence of vectors takes place in each
RN W not only in R.

We notice that there exist n — 1 (n — 1)-dimensional linear subspaces. Hence
Theorem 3 is more profound than Theorem 2.



5 The Unbiased Distribution of IR

In this section we focus on the distribution of R for the functions on V,,, whose
. . . 1 1
nonlinearity does not take the special value 27~ — 23(7=1) gp 27=1 _ 937 op

2n—1 _ Z%n—l.

The next result is from [6] (Theorem 18).

Lemma 6. Let f be a function on V,, (n > 2), & be the sequence of f, and p is
an integer, 2 < p < n. If (€,4;) =0 (mod 2"7P*%) where {; is the jth row of
H,,j=0,1,...,2" — 1, then the algebraic degree of f is at most p — 1.

Lemma 7. For every function f on V,, we have

4(A(Oz0), A(O(4), ey A(()an_4))Hn_2

3 7 2" -1
:(Z<€a£j>2a <Ea£j>2a"') Z <£)£j>2)
j=0 j=4 j=2m—-4

Where & denotes the sequence of f and £; is the ith row of H,, 1 =0,1,...,2"—1.

Proof. Comparing the 4jth terms, j = 0,1,...,2""%2 — 1, in the two sides of
equality (1), we obtain

2“(A(a0), A(Oz4), ey A(()zzn_4))
3 7 27 -1
= (Z(£)£j>2az<£a£j>2a'“) Z <£:£]'>2)Hn—2
j=0 j=4 j=2n—-4
This proves the lemma. O

Theorem 4. Let f be a function on V,,, and U be a (n — 2)-dimensional linear

subspace satisfying #(RNU) =1 (i.e., RNU = {0}). Then we have

(1) if n is odd, then the nonlinearity of f satisfies Ny = 2771 — 23(n=1) gnd the
algebraic degree of [ is at most 2%(”‘*'1),

(ii) if n is even, then f is bent or the nonlinearity of f satisfies Ny = gn=1_93n
and the algebraic degree of f is at most 23+,

Proof. We only need to prove the theorem in the special case when U is com-

posed of aq, s, ag,...,aan_4, where ay; € Vj is the binary representation of
even number 45, j = 0,1,2,...,2"~2 — 1. In other words, U is composed of all
the vectors in Vj,, that can be expressed in the form (a1, ..., an-2,0,0), where

each aj € GF(2). For U in general case, we can use a nonsingular linear trans-
formation on the variables so as to change U into the special case. Let & be the
sequence of f. Set a]z =(&,0)%,j=0,1,...,2" — L.

Since A(0) = 2™ and A(asj) = 0, j = 1,2,...,2"72 — 1, the equality in
Lemma 7 is specialized as



T”%L~w0=(z)@§:ﬁw~ﬁ§: al) (14)

j=0,1,..., 27721,
(i) When n is odd, by using Lemma 4,

2 2 2 2 _ +1 +1 > -2
{a4jaa4j+1aa4j+3aa4j+3} - {2n J2n )O)O}JJ - 0) 1) . 'JQn

By using Lemma 1, we have proved the nonlinearity of f satisfies Ny =
an-1l_ 2%(”_1), and by using Lemma 6, we have proved that the algebraic degree
of f is at most 23(n+1),

(ii) When n is even. By using Lemma 4,

{aézlja aézlj+1)a421j+3a ag}j+3} = {277.’ 2n,2n’ 277.} or {2n+2’ 0; 0; O}a

j=0,1,...,2""2 1.
If there exists a number jo, 0 < jo < 2?72 — 1, such that

2 9 2 2 _ ron+2
{4505 @4541, 4jo 40y g3} = 12777,0,0,0}

then by using Lemma 1, we have proved that the nonlinearity of f satisfies
1 . .
N; = 2"~1 — 22" and by using Lemma 6, we have proved that the algebraic
degree of f is at most 23("+1),
If there exists no such jg, mentioned as above, i.e., {aﬁj, aiﬂ_l, aiH_S, aiﬂ_s} =
{27, 27,27 27}, j =0,1,...,2""2 — 1. Then f is bent.
a

To emphasise the distribution of ® we modify Theorem 4 as follows:

Theorem 5. Let f be a function on V. If the nonlinearity of f does not take the
special value 27=1 —23("=1) op 2n=1_937 op 9n=1_937=1 4hen #(RNT) > 2
where U is any (n—2)-dimensional linear subspace, in other words, every (n—2)-
dimensional linear subspace U contains a non-zero vector in R.

There exist many methods to locate all the (n — 1)-dimensional linear sub-
spaces and all the (n — 2)-dimensional linear subspaces in V},. For example, let
o denote the linear function on V,, where a € V,, such that pa(z) = («, ).
Hence W = {y|a € Vi, @a(y) = 0} is a (n — 1)-dimensional linear subspace and
each (n — 1)-dimensional linear subspace can be expressed in this form.

Also for any a, o € V,, with o £ o', U = {y|a € Vpr, @a(7) =0, par(y) =0}
is a (n — 2)-dimensional linear subspace and each (n — 2)-dimensional linear
subspace can be expressed in this form.

Lemma 8. Let §2 be a subset of Vi, with 0 € §2. If there exists a positive integer
p such that #(2NU) > p holds for every (k — 1)-dimensional linear subspace
U, then #02 > 2p+ 1.



Proof. Note that each non-zero vector is included in precisely 2¢=1 —1 (k — 1)-
dimensional linear subspaces, on the other hand, there exist exactly 2% — 1 (k —
1)-dimensional linear subspaces. Hence (28~ — 1)#02 = Y, #(2 N U). From
#(2NU) > p, we conclude that (2871 — 1)#02 > (2¥ — 1)p. Since QkZi—l__ll > 2,
#802>2por #02>2p+ 1. O

Theorem 6. Let f be a function on V,,. If the nonlinearity of f does not take the
special values 271 —23(n=1) gpon=1_93n gpon-1_93n=1 they #RNW) >4
for every (n — 1)-dimensional linear subspace W, in other words, every (n—1)-
dimenstonal linear subspace W contains at least three non-zero vectors in R.

Proof. Let W be an arbitrary (n — 1)-dimensional linear subspace and U be
an arbitrary (n — 2)-dimensional linear subspace with I/ C W. Note that the
inequality in Theorem 5 can be rewritten as

#R-{0HnU) > 1 (15)
and (R—{0HNW)NU = (R - {0})NU. Applying Lemma 8§, we have proved
#((R-{0HNW)>3.Since 0 eRNW, #RNW) > 4. O

Theorems 5 and 6 are helpful to locate the non-propagative vectors.

The properties mentioned together in Theorems 5 and 6 are called the unbi-
ased distribution of R, with respect to every (n — 2)-dimensional linear subspace
and every (n — 1)-dimensional linear subspace.

6 Distribution of R in Special Cases

We now turn to the case #(R; N W) < 3 where W is an (n — 1)-dimensional
linear subspace. The following Lemma can be found in [7]:

Lemma 9. Let n > 2 be a positive integer and 2" = a® 4+ b? where a > b > 0
and both a and b are integers. Then a?> = 2™ and b = 0 when n is even, and
a?=b%=2""1 when n is odd.

Theorem 7. Let f be a function on V,, and W be an (n—1)-dimensional linear

subspace satisfying #FRNW) =1 (ie., RNW = {0} ). We have

(i) f has at most one non-zero linear structure,
(i) if n is odd, then the nonlinearity of f satisfies Ny = 2"~ 1 — 23("=1) and the
algebraic degree of [ is at most 2%(”‘*'1),
(iii) if n is even, then f is bent.

Proof. (i) Let o* € V,, and o* ¢ W, From linear algebra, V,, = W U (a* & W),
where o*®W = {a*®ala € W}, W and a* @ W are disjoint. We now prove that

f has at most one non-zero linear structure by contradiction. Suppose f has two



non-zero linear structures, £1 and 32 with 81 # 5. Since all linear structures of f
form a linear subspace of V,,, 1 @ 2 is also a non-zero linear structures of f and
hence B1 @ B2 € R. Since RNW = {0}, B1,02 € a* @ W. Obviously 81 ® 32 € W
and hence B @ B2 € RN W. This contradicts the condition ® N W = {0}. The
contradiction proves that f has at most one non-zero linear structure.

Recall the proof of Theorem 3, (3) can be specialized as 2A(0) = agj + a§j+1
and hence agj + “§j+1 = 2"+t where j =0,1,...,2" "1 — 1.

(i1) If n be odd, from Lemma 9, {agj,agﬂ_l} = {27t 0}, where j = 0,1, ...,
27=1_1. From Lemma 1, the nonlinearity of f satisfies Ny = on=1_93(n=1), By
using Lemma 6 we conclude that the algebraic degree of f is at most 23(n+1),

(iii) If n is even, due to Lemma9, agj = a§j+1 = 2" where j =0,1,...,2"7 1~
1. This proves that f is bent.

a

Ezample 1. Let n be apositive odd number and f(z1,...,2n) = 21Dg(22, ..., 2n)
where g is a bent function in V1. Let W be an (n — 1)-dimensional linear sub-

space of V,,;, composed of all the vectors in V,, that can be expressed in the form

(0,as,...,a,), where each a; € GF(2). Tt is easy to see o* = (1,0,...,0) € V,

is a non-zero linear structure of f and ¥ N W = {0}. Due to (ii) of Theorem 7,

Ny =2n=1 = 23(n=1),

We can restate (ii1) of Theorem 7 as follows:

Proposition 1. Let f be a function on V,, where n is even. If there exisis an
(n—1)-dimensional linear subspace Wy satisfying #(ROWy) =1 (i.e., RNWy =
{0}), then f satisfies RONW = {0}, for every (n—1)-dimensional linear subspace
w.

Next we examine the case of #(ROW) = 2.

Theorem 8. Let f be a function on V,. If there exists a (n — 1)-dimensional
linear subspace W satisfying RN W = {0, 51}, then we have

(i) B1 is a non-zero linear structure of f,
(i) if n is odd, then the nonlinearity of f satisfies Ny = 2"~ 1 — 22(n=1) and the
algebraic degree of f is at most 23("+1),
(iii) if n is even, then Ny = 2771 — 237 and the algebraic degree of [ is at most
2371,

Proof. Since any single non-zero vector is linearly independent, we can keep the
deduction in the proof of Theorem 3 until inequality (12) where we need the
condition k > 3.

(i) Recall the proof of Theorem 3, (6) can be specialized as p; A(f1) =
27,0,-2", j=0,1,...,2” — 1. Since B1 € N, A(H1) # 0. Hence A(B) = £2".

This proves that 81 is a non-zero linear structure.



(i) If n is odd, from (5) we conclude that (¢, £;)? = 27+ 0,4 =0,1,...,2"—1,
and hence by using Lemma 1, we have proved Ny = 2"~! — 22(n=1) By using
Lemma 6 we conclude that the algebraic degree of f is at most 23(n+1),

(iii) If n is even, from (13), (§,4;)? = 27%2/0,2". Since #R > 1, f is not
bent. Hence (£, ¢;)? = 2™ cannot hold for all i and hence there exists a number
io, 0 < ig < 2" —1, such that (¢,4;)? = 2"+2. By using Lemma 1, we have proved
Ny =271 23" if n is even. By using Lemma 6 we conclude that the algebraic
degree of f is at most 237+1,

a

FEzample 2. Let n be a positive odd number and f(z1,...,z,) be the same with
that in Example 1. Let W be an (n — 1)-dimensional linear subspace of V,,, com-
posed of all the vectors in V;,, that can be expressed in the form (a1,...,a,-1,0),
where each a; € GF(2). Tt is easy to see a* = (1,0,...,0) € V;, is a non-
zero linear structure of f and R N W = {0,a*}. Due to (ii) of Theorem 8,
Ny =2n=1 —23(n=1),

Let k£ be a positive even number with & > 4 and h(z1,...,2x) = 21 ®
z2 @ q(za,...,x;) where ¢ is a bent function on Vi_s. Let U be an (n — 1)-
dimensional linear subspace of V,,, composed of all the vectors in V,,, that can
be expressed in the form (0, as, ..., a), where each a; € GF(2). It is easy to
see af = (0,1,0,...,0) is a non-zero linear structures of h and RN U = {0, a7}.
Due to (iii) of Theorem 8, N = 2k=1 _ 93k

It is interesting that by using Theorem 8, we have determined Np only from
the condition #(RNU) = 2 for an (n—1)-dimensional linear subspace U although
we do not search other vectors in R.

Finally, we consider the case when #(R® N W) = 3.

Theorem 9. Let f be a function on V,,. If there exists a (n — 1)-dimensional
linear subspace W satisfying RONW = {0, 81, B2}, then the following statements
hold:

(i) AB)==2""1,j =12,
(i) if n is odd, then the nonlinearity of f satisfies Ny = 2771 — 2:(n=1) and the
algebraic degree of f is at most 23("+1),
(iii) if n 1s even, then Ny = 2"~ 1 — 23" and the algebraic degree of f 1s at most
237,

Proof. Since any two non-zero vectors are linearly independent, we can keep
the deduction in the proof of Theorem 3 until inequality (12) where we need the
condition k > 3.

Recall the proof of Theorem 3, (9) can be specialized as A(f;) = +2", £27~1
j=12.

On the other hand, (10), (11) and (12) can be rewritten as (A(51), A(F2)) =
27~ 1(b1, by) where each b; = £1,42, (p15, p2s) = (Ig_il’ |Z—z|) and

PLaA(Br) + p2: A(B2) = (ba] + [ba] )27 (16)



respectively. It is easy to prove by,by = £1. Otherwise, for example, by = £2,
from (16), p1s A(B1)+pas A(F2) > 3.27=1 This contradicts (6). Since by, by = £1,
A(Br), A(B2) = £2"~ L. This proves (i).

The rest proof is the same with the proof of Theorem 8. O

Ezample 3. Let n be a positive odd number with n > 7, h(x1, 22, 23, 24, 25) =
(1 @ x2 @ x3)vaxs Dr1xs O roxs D 21 D 29 O vz and g(xs,...,xn) be a bent
function on Vi, _5. Set f(z1,...,&n) = h(x1, 2, 3, 24, 25) D g(xe, ..., Tn).

Let W be an (n — 1)-dimensional linear subspace of V},, composed of all
the vectors in Vj,, that can be expressed in the form (0, as,...,a,), where each
a; € GF(2). Write o] = (0,0,1,0,...,0), a3 = (0,1,0,...,0) € V;,, It is easy to
verify of, a3 € R and RNW = {0, aj, a3}. Due to (i) and (ii) of Theorem 9, we
conclude A(af) = £2"~1, A(a}) = 2"~ and N; = 27~ —23(n=1),

We notice that by using Theorem 9, we have determined Nj,, A(aj) and
A(aj) only from the information about #(R N W) for an (n — 1)-dimensional
linear subspace W although we do not search other the vectors in R.

We can also find an example corresponding to (iii) of Theorem 9. All The-
orems 7, 8 and 9 and Examples 1, 2 and 3 show that we can determine the
nonlinearity of a function only from some information about #(% N W), where
W is an (n — 1)-dimensional linear subspace. It is interesting that [7] has proved
that there exists no a function with #3 = 3 while Example 3 gives a function
satisfying #£(R N W) = 3 for an (n — 1)-dimensional linear subspace W.

7 Conclusions

The strong linear dependence is an improvement on a previously known result.
The unbiased distribution of non-propagation vectors is valid for most functions.
These results provide more information on the non-propagative vectors in any
(n—1)-dimensional linear subspace of V,,, and hence they are helpful for designing
cryptographic functions.
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