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Abstract

Due to the success of differential and linear attacks on a large number of encryption algorithms, it is
important to investigate relationships among the various cryptographic, including differential and linear,
characteristics of an S-box (substitution box). After discussing a precise relationship among three tables,
namely the difference, auto-correlation and correlation immunity distribution tables, of an S-box, we
develop a number of results on various properties of S-boxes. These results include: (1) an interesting
equivalence relationship between a regular (balanced) S-box and a tight lower bound on the sum of
elements in the leftmost column of its differential distribution table, (2) a proof for the nonexistence of
quadratic S-boxes with a uniformly half-occupied difference distribution table for the case of n 2 2m — 1.
This serves as a piece of evidence that further supports an important and unproven conjecture, namely,
for all n > m, there exist no n x m S-boxes with a uniformly half-occupied difference distribution table.
Prior to this work, the best known result that supports the conjecture is that there exist no quadratic
S-boxes with a uniformly half-occupied difference distribution table if n or m is even, (3) a non-trivial
and tight lower bound on the differential uniformity of an S-box, and (4) two upper bounds on the
nonlinearity of S-boxes (one for a general, not necessarily regular, S-box and the other for a regular

S-box).

1 Introduction

This paper deals with n x m S-boxes with n > m. Success of the notable differential cryptanalysis on
various block ciphers [4, 5] has motivated researchers to investigate properties of the difference distribution



tables of S-boxes. A core topic in the endeavor is to find out relationships between differential distribution
tables and other properties of S-boxes. In this paper we first introduce two additional tables associated
with an S-box, these being the auto-correlation and correlation immunity distribution tables. Then we
establish a precise relationship among the three tables of an S-box (i.e., the difference, auto-correlation
and correlation immunity distribution tables). With this relationship as a basis, we show that an S-box is
regular (or balanced) if and only if the sum of the values in the leftmost column of its different distribution
table is 227%™, In a sense, this result complements a well-known fact about the regularity of an S-box
which states that an S-box is regular if and only if the non-zero linear combinations of its component
functions are all balanced.

Our next concern is on the differential uniformity of an S-box. In order to resist against differential
cryptanalysis, researchers started to search for S-boxes whose difference distribution tables are relatively
flat. As S-boxes with a completely flat difference distribution table have been known to be weak in resisting
against differential attacks, naturally one of the research focuses has been on designing S-boxes with a uni-
formly half-occupied difference distribution table (UHODDT), i.e., S-boxes whose differential distribution
tables contain an equal number of zero and identical non-zero entries in each of their rows (not taking into
account the top row). Previous works directly or indirectly related to this line of research include, but not
limited to, [1, 3, 15, 16, 17, 18, 19].

Defying efforts by a number of researchers, no n x m S-box with a UHODDT has emerged. This has
led to a conjecture which states that

for all m > m, there exists no n x m S-box with « UHODDT.

Some progress in proving the conjecture was made in [29] where it was shown that when n or m is even,
there exists no quadratic n x m S-box with a UHODDT (see Theorem 1 of [29]). This paper reports further
progress in proving the conjecture. In particular, we show that when n = 2m — 1, there exists no quadratic
n X m S-box with a UHODDT. We hope that this new piece of evidence can be of some contribution to
the eventual success in proving the conjecture.

The next issue addressed in this paper is on the lower bound of differential uniformity. The differential
uniformity of an S-box is defined as the largest non-zero value in the differential distribution table of the
S-box, not taking into account the first entry in the top row. For an n x m S-box, it is easy to see that its
differential uniformity is at least 2"~™. As another contribution of this paper, we will show a new tight
lower bound that considerably improves the “trivial” bound of 2*~™.

The final issue addressed in this work relates more specifically the nonlinearity of an S-box to its
difference distribution table. In particular, it shows two upper bounds on the nonlinearity of the S-box,
one for the case when the S-box is an arbitrary mapping and the other when it is regular. These two
bounds are expressed in terms of three parameters: the number of input bits, the number of output bits
and the number of nonzero entries in the entire difference distribution table or in the leftmost column of
the difference distribution table of the S-box, respectively. We also compare the second new upper bound
with previous works in the same area.

The remainder of this paper is organized as follows: Section 2 introduces formal notations and definitions
used in this paper. The difference, auto-correlation and correlation immunity distribution tables of an S-
box are defined in Section 3 where a precise relationship among the three tables is also established. An
interesting connection between the regularity of an S-box and columns of its differential distribution table
is presented in Section 4. This is followed by Section 5 where it is proved that for n = 2m — 1, there exists
no quadratic n x m S-box with a UHODDT. A tight lower bound on the differential uniformity of an S-box
is presented in Section 6, and then two upper bounds on the nonlinearity of an S-box and its difference
distribution table are proved in Section 7. Section 8 closes the paper with some concluding remarks.



2 Basic Notations and Definitions

This section is intended as a summary of the minimum amount of mathematical knowledge required in
rigorously treating issues on S-boxes to be discussed in this paper.

The vector space of n tuples of elements from GF(2) is denoted by V,,. These vectors, in ascending
alphabetical order, are denoted by ag, ay, ..., agn_1. As vectors in V,, and integers in [0,2" — 1] have a
natural one-to-one correspondence, it allows us to switch from a vector in V,, to its corresponding integer
in [0,2™ — 1], and vice versa.

Let f be a function from V,, to GF(2) (or simply, a function on V,,). The sequence of f is defined
as ((—1)f(e0), (=1)flen) | (=1)f(e2n-1)), while the truth table of f is defined as (f(ag), f(a1), ...,
f(agn_1)). fis said to be balanced if its truth table assumes an equal number of zeros and ones. We call
h(z)=a121® - @ ayz, P c an affine function, where x = (z1,...,2,) and a;,c¢ € GF(2). In particular, A
will be called a linear function if ¢ = 0. The sequence of an affine (linear) function will be called an affine
(linear) sequence.

The Hamming weight of a vector v, denoted by W(wv), is the number of ones in v. Let f and g
be functions on V,,. Then d(f,g9) = Ef(m);ég(x) 1, where the addition is over the reals, is called the
Hamming distance between f and g. Let ¢q,...,on+1_1 be the affine functions on V,,. Then N; =
min;_q _on+1_1 d(f, ;) is called the nonlinearity of f. It is well-known that the nonlinearity of f on V,,

satisfies Ny < 2771 — 92571 The equality holds if and only if f is bent (see P. 426 of [13]).
Given two sequences @ = (@1,...,a,) and b = (by,..., b, ), their component-wise product is denoted
by a * b, while the scalar product (sum of component-wise products) is denoted by (a,b).

Definition 1 Let f be a function on V,,. For a vector a € V,,, denote by {(«) the sequence of f(z & a).
Thus £(0) is the sequence of f itself and £(0) * £(a) is the sequence of f(z) & f(z @ «). Define the
auto-correlation of f with a shift a by

The Sylvester-Hadamard matriz (or Walsh-Hadamard matriz) of order 2", denoted by H,, is generated
by the recursive relation

_ Hn—l Hn—l _ _
H, = [Hn_l g ]  n=1,2,..., Hy=1.

Fach row (column) of H,, is a linear sequence of length 2".
The following two formulas are well known to the researchers.
Let £ be the sequence of a function f on V,. Then the nonlinearity of f, Ny can be calculated by

1
*Nf:2n_1_§max{|<€7£2>|70§1§2n_1} (1)

where £; is the ¢th row of H,,, 7 =0,1,...,2" — 1.
Let £ be the sequence of a function f on V,,. Then

(A(ao)v A(a1)7 s 7A(a2"—1))Hn = (<€7€0>27 <€7£1>27 T <€7€2”—1>2) (2)
where «; is the binary representation of an integer ¢ and ¢; is the ¢th row of H,, 1 =0,1,...,2" — 1.
An n x m S-box or substitution box is a mapping from V,, to V,,,, i.e., F = (f1,..., fin), where n and

m are integers with n 2 m 2 1 and each component function f; is a function on V,,. In this paper, we use
the terms of mapping and S-box interchangeably.



As can be seen from the design of many practical block ciphers, researchers are mainly concerned with
regular S-boxes only. A mapping F' = (f1,..., fm) is said to be regular if F/(z) runs through each vector
in V,, 27 times while z runs through V,, once.

The following lemma states a useful result on the regularity of an S-box. This result has appeared in
many different forms in the literature. Our description can be viewed as the binary version of Corollary
7.39 of [12].

Lemma 1 Let F = (f1,..., fm) be a mapping from V,, to V,,, where n and m are integers withn 2 m 2 1

and each f;j(z) is a function on V,,. Then F is reqular if and only if every non-zero linear combination of
Siy-- oy [m 1s balanced.

The concept of nonlinearity can be extended to the case of an S-box.

Definition 2 The standard definition of the nonlinearity of F' = (f1,..., fim) is

m
Np = ming{Nylg = @ijj, c; € GF(2),9 #0}.
j=1

Now we consider an S-box in terms of its usefulness in designing a block cipher secure against differential
cryptanalysis [4, 5]. The essence of a differential attack is that it exploits particular entries in the difference
distribution tables of S-boxes employed by a block cipher. The difference distribution table of an n x m
S-box is a 2" x 2™ matrix. The rows of the matrix, indexed by the vectors in V,,, represent the changes
in the inputs, while the columns, indexed by the vectors in V,,, represent the change in the output of the
S-box. An entry in the table indexed by («, ) indicates the number of input vectors which, when changed
by a (in the sense of bit-wise XOR), result in a change in the output by £ (also in the sense of bit-wise
XOR).

Note that an entry in a difference distribution table can only take an even value, the sum of the values
in a row is always 2", and the top row is always (27,0,...,0). As entries with higher values in the table
are particularly useful to differential cryptanalysis, a necessary condition for an S-box to be immune to
differential cryptanalysis is that it does not have large values in its differential distribution table (not taking
into account the leftmost entry in the top row).

In measuring the strength of an S-box (in terms of the security of a block cipher that employs the S-
box) against differential attacks, a useful indicator commonly used is differential uniformity whose formal
definition follows [17].

Definition 3 Let F be an n x m S-box, where n 2 m. Let § be the largest value in the differential
distribution table of the S-box (not taking into account the leftmost entry in the top row), namely,

aer‘r}naygiogggl{xl (z)® F(z @ a) = B}

Then F is said to be differentially é-uniform, and accordingly, ¢ is called the differential uniformity of F.

An important ingredient in designing cryptographic Boolean functions is bent functions whose formal
definition follows.

Definition 4 Let f be a function on V, and £ denote the sequence of f. f is called a bent function if
(€. 6)] = 2%7
1=0,1,...,2" — 1, where {; denotes the ith row of H,.

Bent functions can be characterized in various ways [2, 9, 21, 24, 27]. A characterization of particular
interest can be found in [9, 21] which states that bent functions on V,, exist only when n is even, and that
they achieve the highest possible nonlinearity on V,,, namely, 27! — 251,



3 Relationships among Three Tables
Now we introduce three more notations, k;(a), A;(a) and 7;, associated with an S-box F' = (f1,..., fin)-

Definition 5 Let F' = (fi1,..., fm) be an n x m S-box, a € V,,, 7 =0,1,...,2" — 1 and 3; = (b1,...,by)
be the vector in V,, that corresponds to the binary representation of j. In addition, set g; = @y—q by fu be
the jth linear combination of the component functions of F. Then we define

1. kj(a) as the number of times F(z) @ F(z & «) runs through 3; € V,, while x runs through V,, once,
2. Aj(a) as the auto-correlation of g; with a shift «,
3. n; as the sequence of g;.

Using the three notations, we formally define three tables/matrices related to F' = (f1,..., fm)-

Definition 6 For an S-box F' = (f1,..., fm), set

k’o(ao) k’l(ao) e k/‘gm_l(&o)
; k’o(O&l) k’l(Oél) e k‘gm_l(al)
K = .
ko(agn_l) k‘l(OéQn_l) e k‘Qm_l(OéQn_l)
Ao(ao) Al(ao) e Agm_l(ao)
D Ao(al) Al(Oél) N AQm_l(Oil)
Ao(ﬂgn_l) AI(QQ"—l) N AQm_l(OéQn_l)
and
<7707£0>2 <7717£0>2 T <772m—17£0>2
<"707€1>2 <"717£1>2 <772m—17€1>2
P= ,
<7707£2n—1>2 <7717£2"—1>2 T <772m—1’£2"—1>2

where ¢; is the ith row of H,,, 1 = 0,1,...,2" — 1. The three tables matrices K, D and P share the same
size of 2" x 2. Clearly K is the difference distribution table of F' that has already been (informally)
introduced in Section 2. The other two tables are called auto-correlation distribution table and correlation
immunity distribution table of the S-box F, respectively.

Since both 79 and £y are the all-one sequence of length 2" and ¢; is (1, —1) balanced for j > 0, we have
<770,€0> :2717 <7]0,£]> IO, ]I 1,...,2n—1. (3)

;From the definition of k;(«;), one can see that the sum of the entries in each row of K is 2", and that the
first row has the form of (27,0,...,0). Namely,

2m—1
> ki(ag)=2",i=0,1,...,2" — 1, (4)
7=0
and
ko(ao) = 2n’ k](QQ) = 0, ] = 1,. . .,2m — 1. (5)



In designing a strong S-box, many cryptographic criteria should be examined not only against compo-
nent functions, but also against their linear combinations. Such criteria include those related to nonlin-
earity, propagation characteristics [20] and difference distribution tables. The matrix K characterizes the
differential characteristics of an S-box. The matrix D indicates the auto-correlation of all linear combina-
tions of the component functions. While the matrix P represents the inner product between the sequence
of each linear combination of the component functions and each linear sequence. P is helpful in studying
the correlation immunity, as well as the nonlinearity, of each linear combination of the component functions
(see [23]).

To explore relationships between the difference distribution table and other cryptographic charac-
teristics of an S-box, first we examine a relationship between the difference distribution table and the
auto-correlations of the component functions of the S-box.

The following lemma shows an intimate relationship between the three tables K, D and P defined
above. The lemma can be easily shown to be correct by the use of a connection between the Hamming
distance between rows and the distribution of ones in the columns in a (0,1) matrix. For completeness,
a full proof for the lemma is provided in the appendix. It turns out that the lemma is very useful in
examining cryptographic properties of an S-box, and it will be used in proving many of the main results
in this paper.

Lemma 2 Let F = (f1,..., fm) be a mapping from V,, to V,,, where n and m are integers withn 2 m 2 1
and each f;(z) is a function on V,. Set g; = @n—; ¢y foy where (c1,...,¢y) is the binary representation of
an integer j, j = 0,1,...,2™ — 1. Then

()
(ko(ei),k1(as)y ... kam_1(a;))Hi = (Do), Ar(ei), ..., Agm_q1(a;))
where «a; is the binary representation of an integer ¢,
(i) D= KH,,
(ii) P=H,D,
(iii) P = H,KH,,.

Permutations are a special type of S-boxes that are used in many cryptographic algorithms. Of partic-
ular interest is to look into how the three tables of a permutation are connected to the three corresponding
tables of the inverse of the permutation. The following result is easy to verify.

Corollary 1 Let F be a permutation on V, and F~' denote the inverse of F. Let K = (k/(a;)), D =
(Ai(a;)) and P = ((n;,€;)) be the difference distribution, auto-correlation distribution and correlation
immunity distribution tables of F. Similarly, let K* = (k}(a;)), D* = (AX(a;)) and P* = ({57, {;)) be the
difference distribution, auto-correlation distribution and correlation immunily distribution tables of F71.
Then

(i) K* = KT,
(ii) P* = PT,

(isi) D* = H;'DTH,,.



4 Regularity of S-boxes and Difference Distribution Tables

Using Lemma 2, we now show that a regular S-box can be completely characterized by its difference
distribution table. This characterization nicely complements Lemma 1 which is stated in terms of the
balance of non-zero linear combinations of component functions of an S-box.

Corollary 2 Let F = (f1,..., [m) be a mapping from V,, to V,,, where n and m are integers with n 2 m 2
1 and each f; is a function on V,,. Then F is regular if and only if the sum of a column in the difference
distribution table is 2°"~™ i.e., Y ey, ki(a) = 277" 1 =10,1,...,2™ — 1.

Proof. Compare the first rows in both sides of the formula in Part (iv) of Lemma 2,

(D kola), D kila),..., > kam_q1(a))Hp = ((no.o)?, (m,Lo)?, .. ., (m2m—1,40)?). (6)

a€Vn a€Vn a€EVn
Obviously, if Y ¢y ki(a) = 22"~™ i =0,1,...,2™ — 1. then (m,£o)* = - = (nam_1,Lo)* = 0. Note
that fp is the all-one sequence of length 2. Hence gq,...,g2m_1 are balanced, where ¢y,...,gam_1 are
defined in Lemma 2. By Lemma 1, F is regular.
Conversely, suppose F is regular. By Lemma 1, gy,...,gom_q are balanced. Hence (ny,0)? = -+ =

(mam_1,£0)% = 0. Note that (ng,{g)? = 227. Rewrite (6) as

2m( Z ko(a), Z kl(&),"', Z kgm_l(a)) = (22n,0,...,0)Hm.

a€EVn a€Vn aEVn
This proves that " ,cy ki(a) = 22" ¢ =10,1,...,2™ — 1. 0

Corollary 2 has also been obtained independently by Tapia-Recillas, Daltabuit and Vega [26].
The following corollary shows the uniqueness of the leftmost column of the difference distribution table
of a regular mapping.

Theorem 1 Let F = (fi1,..., fm) be a mapping from V,, to V,,, where n and m are integers withn 2 m 2 1
and each f; is a function on'V,,. Then

(Z) EaEVn ko(a) 2 22n—m’
(ii) the equality in (i) holds if and only if F' is regular.

Proof. (i) Right-multiplying both sides of the equality in Part (iv) of Lemma 2 by el where, e denotes
the all-one sequence of length 2™. Hence we have

ko(eo)  ki(ag) ... Eam_1(ag) 9m [ Y2 (g, bo)?
" ko(ay) Ei(en) ... kom_q(ay) 0 _ Y (g, b1)?
Kolazn_1) ki(agn_1) .. kan_y(azn_i) 0 _25251@1752"—1)2
and hence
Fo(ao) Sizo (ni:lo)” ]
0 I ) Y (7)
ko(azn_1) E?:&WU;JW—W 1




Compare the two sides of equality (7), obtaining
2n_1 2m_1
2™ ) kolay) = Y (nj bo)”. (8)
1=0 7=0

Recall (3), (10,60)? = 22". From (8), we have proved Part (i) of the theorem.

(ii) Suppose Y.y, ko(a) = 22"~™ then from (8), (n1,00)? = --+ = (nam_1,4o)* = 0. Note that £, is
the all-one sequence of length 2. Hence ¢,...,gom_1 are balanced, where ¢q,...,gom_1 are defined in
Lemma 2. By Lemma 1, F is regular.

Conversely, if F is regular, then by Corollary 2, 3~ <y, ko(a)
completed. O

= 227~ The proof of the theorem is

5 Nonexistence of Certain Quadratic S-boxes

Recall that the differential uniformity é of an S-box is defined as the largest value in the differential
distribution table of the S-box (not taking into account the top row). Clearly ¢ is constrained by 277" <
6 < 2", Extensive research has been carried out to construct differentially é-uniform S-boxes with low
6 [1, 3,15, 16, 17, 18, 19]. Some constructions, in particular those based on permutation polynomials on
finite fields, are simple and elegant. However, caution must be taken with Definition 3. In particular, it
should be noted that low differential uniformity (a small §) is only a necessary, but not a sufficient condition
for immunity to differential attacks. This is shown by the fact that S-boxes constructed in [1, 15], which
have a flat difference distribution table, are extremely weak to differential attacks, despite the fact that
they achieve the lowest possible differential uniformity 6 = 2"~ [5, 6, 22].

We are particularly interested in n x m S-boxes that have the following property: for each nonzero
vector @ € V,,, F(z) & F(z & a) runs through 277 1 < ¢ < m, of the vectors in V,,, each 2"~"% {imes,
but not through the other 2 — 2™~ vectors in V,,. With each row in the difference distribution table of
such an S-box, 2™~¢ of its entries contain a value 2"~ while the remaining entries contain a value zero.
For simplicity, we say such a difference distribution table to be uniformly 2™~ *-occupied.

For n odd, n = m (i.e., permutation S-boxes) and ¢ = 1, there has been a large body of research (see
for instance [3, 15, 16, 17, 18, 19]). One of the properties of these permutations is that their differential
distribution tables are all 2-uniform, namely, half of the entries in a row contain a value zero while the
other half contain a value 2. For this reason, it is believed that these permutations achieve the highest
possible robustness against the differential attack.

As an extension of the above observation to a n x m S-box with n 2 m, one would expect that the
S-box would be highly useful in resisting differential attacks if its difference distribution table is uniformly
2™~ _occupied, i.e., each tow in the difference distribution table contains an equal number of zero and
non-zero entries with all the non-zero values being identical to 27~™%!. For simplicity, we say that such
an n X m S-box has a uniformly half-occupied difference distribution table (UHODDT).

Intuitively, an n x m S-box with a UHODDT is expected to be useful as it seems to sit nicely in
the middle of two undesirable extremes: S-boxes whose differential distribution tables contain too few
non-zero entries and S-boxes whose differential distribution tables contain too many non-zero entries. At
one extreme, the differential distribution tables contain high-valued entries which may be exploited by
differential attacks, while at the other extreme, the differential distribution tables may be so close to a flat
one that the S-box is again exploitable by differential attacks.

As we mentioned earlier, despite efforts by a number of researchers around the world, we have not
witnessed the appearance of an n x m S-box with a UHODDT, except for the case of n = m with n odd.
This has led us to a conjecture:



Conjecture 1 For all n > m, there exists no n x m S-box with « UHODDT.

The first major step towards proving the conjecture was made in Theorem 1 of [29] for a special class of
S-boxes called quadratic S-bozes whose algebraic degrees are two. In particular, it has been proved in [29]
that for n 2 4, there exists no quadratic n x m S-box with a UHODDT if n or m is even.

There are a few directions one can follow to improve the result in [29]. These directions may include
(1) proving the conjecture for higher-degree (say cubic) S-boxes, (2) proving the conjecture for quadratic
S-boxes, but with different parameters. In what follows we report our progress in the second direction.

Theorem 2 There exists no quadratic n x m S-box with a UHODDT when n 2 2m — 1.

Proof. Assume for contradiction that there exists a quadratic » x m S-box with a UHODDT, say
F=(fi,-..,fm), for n 2 2m — 1. Write all the nonzero linear combination of fi,..., fn as g1,...,g2m_1.
From the proof of Theorem 1 of [29], each nonzero vector in V,, is a linear structure of a unique g;, i.e., there
is a unique g; such that g;(z) & g;(z @ ) is a constant. It is easy to verify that for each j = 1,...,2™71,
the nonzero linear structures of g;, together with the zero vector, form a ¢;-dimensional subspace of V,, for
an integer ¢;. We denote the subspace by W;.

Note that

Vi =WiU--UWam_4 (9)
where

W0 W; = {0} if j # 6. (10)
Thus 2 4 --. 4 2%2m—1 = 27 4+ 2™ _ 2 and thus there is a jo, 1 £ jg £ 2™ — 1, such that

S 22" -2
= 2m—

2t]0 g 2n—m + 1

From this it follows that
QtJO 2 2n—m—|—1.

Now consider Wj,. From linear algebra, V,, can be expressed as a partition
Vi=UgUUL U U U (11)

satisfying

Now we focus on Uy. Since Uy N Uy = ¢, from (9), we have
Uy CWiU---UW;i_qg UW, 4 U+ U Wam_q). (12)

Note that |U;] = 2% = 27=™+1 By the assumption, we have n — m + 1 2 m. Thus |U;]| > 2™ — 1. (12)
implies that there is g, i € {1, -+, jo—1,750+1, - -,2™ =1}, such that |W;,NU;| 2 2. Let o/, " € W; NUj.



Since o/, " € Uy, from the above property (iv), we have o/ & o” € Uy = Wj,. On the other hand, since
o, € W;, and W, is a subspace, we must have o/ @ o’ € W;,. This proves that

= W, N W;,. (13)
Since i9 € {1,---,j0— 1,70+ 1,---,2™ — 1}, we have ig # jo. This contradicts (10). 0

We note that both Theorem 2 in this paper and Theorem 1 in [29] can be extended to S-boxes with
partially bent component functions introduced in [7].

6 A Lower Bound on Differential Uniformity

We turn our attention back to the differential uniformity, denoted by ¢, of an n x m S-box. Recall that
d is defined as the largest value in the differential distribution table of the S-box (not taking into account
the leftmost entry in the top row), namely,

aer‘r}naygioggzgl{xl (z) @ F(z @ a) = B}

(See Definition 3). As discussed earlier, § is bounded by 2"~ £ ¢§ £ 27, and generally speaking S-boxes
with a smaller é are desirable in designing a block cipher secure against differential attacks. This motivates
us to improve the “trivial” lower bound 2"~ on the differential uniformity 4.

The following lemma will be used in our discussions. It is identical to Lemma 2 of [28].

Lemma 3 Let real valued sequences ag, ...,a9n_1 and bg,...,bon_1 satisfy
((LQ, ey a2"—1)Hn = (bo, e 752"—1)-

For any integer p and ¢, p+q=mn, 1 S p,g<n—1, set 0; = Ziq:f)l bjsays, where j = 0,1,...,27 — 1.
Then

Qq(ao, a29,02.29,. .. ,a(gp_l)gq)Hp = (0’0, 015004, O'Qp_l). (14)
Now we prove another main result of this paper.

Theorem 3 Let F = (f1,..., fm) be an n x m S-boz, where n and m are integers with n 2 m 2 1 and
each f;(z) is a function on V,. Set g; = @I, cufu where (c1,...,¢y) is the binary representation of
an integer j, j = 0,1,...,2™ — 1. Denote by A;(a) the auto-correlation of g; with a shift o, and set
Ay = max{|A;(a)] | j=1,....,2" =1, a € V,,, a # 0}. Then we have

§> 97 L 9T mAL,

Proof. Let Aj(ay) = Apr. By Part (i) of Lemma 2, we have
277 (Ao(eir), Av(ar), ..oy Agm_y(ap))Hpy = (ko(a}), k1(a)), ... kam_1(a})) (15)
Applying Lemma 3 to (15), we get
277127 (Ag(apr), Agmi (i) ) Hi = (00,01)
gm—1

where 0; =371 -1 kjom-14s, 5 = 0,1. Hence

27 (Ao(ap) + Agm-i(ap)) = 0o
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and

27 (Ao(air) = Agm-i(ap)) = o

Thus there is a 529 + so for 0 < 59 < 2771

— 1 and jo = 0 or 1, such that
kjozagsy 2 27" (Ao(air) + Agm-1(air)).
Recall that Ag(a) = 2" for all a € V,,. So we have
kjo2atsy 2 277 (2" + Agm-1(ay)).

According to Section 5.3 of [22], the differential uniformity of F' is invariant under a nonsingular linear
transformation on the variables of F. Thus by choosing an appropriate nonsingular linear transformation
on the variables of F', we have

kjpoaqsy 2277 4+ 27" Ay

and hence
§Z 2™ L 27 Ay

ad

When Ajp; = 0, every nonzero linear combination of the components of F' is a bent function. (Such
S-boxes do exist [1, 15], but are not regular.) In this case we have § = 2”7, This indicates that the bound
in Theorem 3 is tight.

7 TUpper Bounds on Nonlinearity of S-boxes

After the discovery of differential attacks in [5], an equally notable cryptanalysis method, the linear crypt-
analytic attack, was subsequently introduced in [14]. Identifying relationships between these two types of
attacks has been an interesting research area, both from the view point of cryptanalysis and the design of
secure ciphers. We will first show a tight upper bound on the nonlinearity of a general S-box. This will be
followed by another upper bound on the nonlinearity of a regular S-box. The usefulness of such an explicit
relationship is obvious: the nonlinearity of an S-box represents a key indicator for the strength of a block
cipher that employs the S-box. We also compare our result on the relationship with a related theorem
in [8].

In studying a » x m S-box, the two parameters n and m alone are not adequate in finding out detailed
information on the S-box, except that when m = n— 1, an upper bound on nonlinearity was obtained in [8]
(but see discussions in the closing paragraph of this section.)

On the other hand, it will be too complex to take into account all the k;(a), A;(a), or (n;,¢;)?, for
j=0,1,...,2" - 1,4=10,1,...,2" — 1 and a € V,, (see Definition 5). The two theorems to be proved in
this section can be viewed as a compromise between the two approaches. These two theorems relate the
nonlinearity of an n X m S-box to three parameters, namely n, m and the number of nonzero entries in its
difference distribution table K.

7.1 General Case

Here we consider n x m S-box that is not necessarily regular. In addition, the restriction of n =2 m is not
imposed on the S-box. We first introduce Hélder’s Inequality which can be found in [10].

11



Lemma 4 Let ¢; 2 0 and d; 2 0 be real numbers, where j = 1,...,s, and let p and q satisfy 21—) + % =1
and p > 1. Then

Z )/ qu 1/q>26]
7=1

where the quality holds if and only if c; =vd;, 5 =1,...,s for a constant v 2 0.

When ¢j, d;, p and ¢ satisfy the condition that ¢; 2 0, d; = { (1) i 2] i (1) ,and p=g¢q = %, Holder’s
;=
Inequality gives
22 s(Yep)? (16)
=1 J=1
where the quality holds if and only if ¢q, ..., ¢; are all identical. The inequality (16) will be used in the

proof of the following two theorems regarding the upper bound on the nonlinearity of an S-box.

Theorem 4 Let F be an n x m S-box (F is not necessarily regular, and the restriction of n 2 m is not
imposed on it). Denote by T, the total number of all nonzero entries, except for ko(ag), in the difference
distribution table K of the S-box (see Definition 6). Then

(i) the nonlinearity of F satisfies

3 1 22n+m _23n+Tn—2122n—|—m on _ 1 2 1
IVF§2’I'LI_§( T ( ))4’

(ii) the equality in (i) holds if and only if every nonzero linear combination of the component functions
of F is a bent function.
Proof. We first prove Part (i) of the theorem. Using Part (iv) of Lemma 2, we have
P'Pp=H,KT"H'H,KH,, =2"H,KTKH,, =2"""H 'KTKH,,.

Note that the sum of entries on the diagonal of PTP is equal to the sum of entries on the diagonal of
27+t KT K. Hence

2m 1271 2m 1271
2o (mp )t =20 Y0 Y k().
7=0 =0 7=0 =0
From (3), (4) and (5) in Section 3, we have
2m 1271 2m 1271
21" + Z Yot =22 Y Y R ()
j=1 =0 7=0 =1

Now combining (4) with (16), a special form of Hélder’s Inequality, we have

2m_12n_1 2m_12n_1
Z Z ko) 2 T, Z Z ki(ai))? =T, 122 (2" — 1) (17)
Hence there is a certain jo, 1 < jg < 2™ — 1, and a certain ig, 0 < ig < 2™ — 1, such that

2n+m(22n + T,,;}QQTL(QTL _ 1)2) _ 24n
(2m — 1)27

IS
V

<77j07£2'0> =
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which implies
22n+m _ 23n + T7;‘122n+m(2n _ 1)2)%
2m — 1 '

|<77]'07£i0>| Z (

Now applying (1) we obtain Part (i) of the theorem.

Note that since T,,, < 2™(2" — 1), we have T, 1227+m (2" — 1)2 > 227(27 — 1). That is, the expression
under the fourth root is always positive.

Now we prove Part (ii). First assume that the equality in Part (i) holds. From the definition of N, as
well as (1), we have

22n—l—m _ 23n + T7;‘122n+m(2n _ 1)2 )%

i )] <
s )] < L

(18)

forall j=1,...,2" —1and i = 0,1,...,2" — 1. Returning to the proof of Part (i), we can see that (18)
implies that the equality on the left hand side of (17) must hold. Namely,

2m—-12"-1 2m—-12"-1
2 2 ke =T 3 ki(ai))™
7=0 =1 7=0 =1

Again using (16), the special form of Holder’s Inequality, there exists a constant k such that k;(o;) = k,
forall j =0,1,...,2" =1 and ¢ = 1,...,2" — 1. From (4), the constant k& must satisfy the condition of
k = 2"7™. Note also that in this case, T}, = 2"(2" — 1). Thus due to Theorem 3.1 in [15], we conclude
that every nonzero linear combination of the component functions of £’ is a bent function. A consequence
of this conclusion is that in this case, n must be even and m < %n [15].

Conversely, assume that every nonzero linear combination of the component functions of F is a bent
function. Once again employing Theorem 3.1 in [15], we have k;(a;) = 2"7" for j = 0,1,...,2" — 1 and
i =1,...,2" — 1. In this case, the total number of nonzero entries in the table K is T,, = 2™(2" — 1).
Now the inequality in Part (i) of the theorem becomes

Np <21 _95-1, (19)
On the other hand, since every nonzero linear combination of the component functions of F is a bent
function, the equality in (19) must hold i.e. the equality in Part (i) of the theorem holds. This completes
the proof of Part (ii). O

Before moving on to the next topic on regular S-boxes, we would like to stress that Theorem 4 shows a
tight upper bound on the nonlinearity of a general S-box which does not have to be regular. We also note
that an S-box that achieves the upper bound in theorem has a flat difference distribution table and hence
is weak against differential cryptanalysis.

7.2 For a Regular S-box

As we mentioned earlier, most encryption algorithms employ regular S-boxes. Hence such S-boxes play a

more important role than does a non-regular one. Our research results to be described below show that

the nonlinearity of a regular n x m S-box can be determined by n, m and a third parameter that counts

only the number of nonzero entries in the leftmost column of the difference distribution table of the S-box.
We begin with examining partitions of the leftmost column of a difference distribution table.

Lemma 5 Lel F be a mapping from V,, to V,, and K s the difference distribution table of F'. Then the
leftmost column of K is determined by a 2™ -partition of V,,, say V,, = Qg U --- U Qom_1, thal salisfies the
condition that Q; N Q; = ¢ for all 7 # 1.
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Proof. For each 3 € V,,, define Qg = {a € V,|F(a) = §}. Note that we use an integer in [0,...,2™ — 1]
and a vector in V,, interchangeably. Clearly

Vo = Upev, (20)

and Qg N Qg = ¢ if §' # B". Note that F(z) @ F(z @ a) = 0 if and only if both 2 and 2 @& a belong to
the same class, say €g.

Now we modify the mapping F' into F’ by applying an arbitrary permutation on V,, to the output of
F. Clearly the partition in (20) remains unchanged, and F'(z) & F'(z & a) = 0 if and only if both 2 and
= @ a belong to the same class in (20). This proves that the leftmost columns of the difference distribution
tables of F' and F' are the same. O

Armed with Lemma 5, we are ready to prove the following.

Theorem 5 Let F be a regular n x m S-box (For such an S-box n 2 m is necessary). Denote by t,, the
total number of nonzero entries (except for ko(ag)) in the leftmost column of the difference distribution
table K of F. Then the nonlinearity of F satisfies

B 1 23n+2m _ 24n + t,,;; . 23n+2m(2n—m _ 1)2)
2 (27 — 1)(27 — 1)

ST

Proof.  Left-multiplying the transposes of the two sides in (7), we have

( E (0360} + ( Z () 4 - ( Z (0 Lan_1)?)? = 22 z K(o) (21)

Since both 7y and £y are an all-one sequence, we have (19, {y) = 2". Recall that F' is regular. By Lemma 1,
each nonzero linear combination of the component functions of F' is balanced. Thus for 7 = 1,...,2™ — 1,
n; is (1,—1) balanced and we have (n;,{y) = 0. Also recall the definition in (3) and the fact that ¢; is
(1,—1) balanced for j > 0, we can see that (ng,{;) =0 for j =1,...,2" — 1.

Note that ko(ag) = 2. So (21) can be specialized as

2m -1 2m—1 2" -1
(D0 i€ 4o+ (D0 (s lana)?)? = 227790 — 2% 4 22747 37 () (22)
7=1 7=1 =1

By using (16)
2n—1 2n—1

Y kglen) 2 6 (Y kole)™.
Note that F' is regular and ko(ag) = 2% By using Corollary 1, 222:1_1 ko(a;) = 22"=™ — 2", Hence
2m—1

S ke 2 121 -2 - 2
=1

Thus there is an ig, 1 < 15 £ 2" — 1, such that

2m—1 n+2m n - n n n+m
S g big)? 2 (o 2 e 27 - 2T
J 2?7t = 2n_1 .

i=1

o=
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Since t,, < 2™ — 1, it is easy to verify that the expression under the square root is always positive.
Furthermore there is a jp, 1 £ jg £ 2™ — 1, such that

|<r} E >| S (23n+2m _ 24n + t;; . 2n(22n _ 2n+m)2)%
Jor ol = (27 — 1)(2m — 1)2 '

Now the theorem follows immediately from (1). O

Comparing Theorem 4 with Theorem 5, we note that while the former deals with a general S-box which
is not necessarily regular, the latter is strictly on a regular S-box. Therefore the condition that n = m is
required only in Theorem 5. In addition to n and m, both theorems employ a third parameter in upper
bounding the nonlinearity of an S-box. The third parameter 7T,, used in Theorem 4 is the total number
of nonzero entries in the entire difference distribution table of the S-box (not taking into account the first
entry in the leftmost column). In contrast, the third parameter ¢,, used in Theorem 5 is the total number
of nonzero entries in the leftmost column in the difference distribution table of the S-box (again not taking
into account the first entry in the column).

Another difference between Theorems 4 and 5 is that while the bound in the former is tight, it is unclear
whether the same can be said with the latter. This is, however, not surprising, given that identifying the
exact upper bound on the nonlinearity of a balanced function is one of the outstanding open problems in
the study of nonlinear Boolean functions.

Before closing this section, we note that a paper by Chabaud and Vaudenay [8] is a prior work most
relevant to this research. A main result in [8] is their Theorem 4 which is equivalent to stating that for
every mapping from V,, to V,,, say F, the nonlinearity of F, Np, satisfies

2027 — 1)(2"71 — 1)
2m — 1 )

D=

1
Np <271 - 532" -2 (23)
Examining the part under the square root in the expression, one can see that it is negative if m < n — 2.
Therefore, (23) is applicable only to n x m S-boxes with m 2 n — 1.

8 Concluding Remarks

We have introduced three tables associated with an S-box, and based on a relationship among the three
tables, we have established a number of results ranging from regularity, nonexistence of certain quadratic S-
boxes, to a tight lower bound on the differential uniformity and two tight upper bounds on the nonlinearity
of an S-box.

The technique used in proving the nonexistence result is essentially similar to that used in [29]. This
technique, however, seems to have its limitation in that it may not be applicable to proving the nonexistence
of higher-degree S-boxes.

In light of recent progress in interpolation [11] and high order differential cryptanalysis [25], a natural
topic that deserves immediate attention is to research into high order differential distribution tables of
S-boxes, together with connections to other cryptographic properties of S-boxes.
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Appendix: The Proof of Lemma 2

There are close relationships between the Hamming distance between rows and the distribution of ones
in the columns in a (0,1) matrix. Such relationships have been very useful in constructing linear error
correcting codes. In this appendix we review some of the relationships from the view point of Hadamard
transforms. Once the relationships are clear, the proof of Lemma 2 becomes straightforward.

Let t 2 s, and A be an s x ¢ (0,1) matrix with rank s. Set

€o
&1
A= . = (@ij) = [X0s X1+ Xt—1] (24)
55—1
where §; € V; is the ¢th row vector and x; € V; is the jth column vector of A.
We are concerned with all the linear combinations of &g, &1, ...,£s_1, denoted by ng, 71, ..., 72s_1, where
n; = @Z;%) cuéu, (co,€1,...,¢5s—1) is the binary representation of an integer 7, 7 = 0,1...,2° — 1. Now set
7o
m
B = . = (bu) = [707717"'7715—1]7 (25)
M2:—1

where B is a (0,1) matrix of order 2° x t and ; € Vs is the jth column vector of B. Replace every 0 entry
in B with 1, and every 1 entry in B with —1. Then denote by B* the new (1, —1) matrix of order 2° x ¢.
Write

L)

B* = (b*) = . = [h07h17. .. 7ht—1]7 (26)
Rasq

where R; is the ith row vector and h; is the jth column vector of B*. One can verify that each A; is a
linear sequence of length 2°.

Let B* be the matrix defined in (26), eg,e1,...,€e2:—1 be the row vectors, from the top to the bottom,
of H,. Assume that e; appears k; times in the columns of B*. We now prove

E:2%5 ife; =e;
pxpxT T — 7 ) 7
eiB"B™ €] { 0 otherwise. (27)
Write e;B* = (¢, ..., ¢;_1) where
" 2% if eZT = hy
Cu = { 0 otherwise (28)

for all w=0,...,t — 1. Similarly, write e; B* = (d,...,d;_;), where

s T —
d,* _ { 3 lf 6] hu (29)

“ otherwise

forall u=0,...,t—1.
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If e; = e, then eiB*B*Te;F = Y I7h eiel = k;2%5. On the other hand, if e; # €;, then by (28) and (29),

u=0 ~u

c; # 0 implies d} = 0, which results in eiB*B*Te;F =YL exdr = 0. This proves (27).

u=0 “u“u
As the Sylvester-Hadamard matrix H,, is symmetric, (27) can be equivalently stated as:

H,B*B*TH, = 2* diag(ko, k1, ..., kae_1). (30)

Let R; be a row of B* defined in (26) and k; the number of times a row vector e; in H appears in the
columns of B*. From (30) we have B*B*T = H, diag(ko, k1,...,kzs_1)H,. Comparing the first rows in the
two sides of the equation, we have

(<R0,R0>, <R07R1>, ey <R0,R25_1>) = (k‘o, k‘l, e ,k?gs_l)Hs. (31)

Now we are in a position to prove Lemma 2. Consider an s x { matrix A defined in (24) with s = m and
t =n. Let arow & in (24) be the truth table of fi(2)® fi(z ® o), =0,1,...,m — 1. Correspondingly, n;
in (25) denotes the truth table of ¢;(2) @ g;(z ® ), and R; in (26) denotes the sequence of g;(z) & gi(z P a),
i=0,1,...,27 — 1.

As go is the zero function, Ry is the all-one sequence. Hence (Ry, R;) is equal to the sum of the
components in R;. That is, (Ro, R;) = A;(«). Hence Part (i) of Lemma 2 follows from (31).

For a = ag,aq,...,azn_1, Part (i) of Lemma 2 gives 2" equations. These equations can be written
as Part (ii) of the lemma. Part (iii) of the lemma follows from (2). And finally Parts (ii) and (iii) of the
lemma together give Part (iv) of the lemma.
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