An Advantage of Low-Exponent RSA with
Modulus Primes Sharing Least Significant Bits

Ron Steinfeld and Yuliang Zheng

Laboratory for Information and Network Security,
School of Network Computing,
Monash University,
Frankston 3199, Australia
{ron.steinfeld,yuliang.zheng}@infotech.monash.edu.au

Abstract. Let N = pq denote an RSA modulus of length n bits. Call
N an (m — LSbS) RSA modulus if p and g have exactly m equal Least
Significant (LS) bits . In Asiacrypt ‘98, Boneh, Durfee and Frankel (BDF)
described several interesting ‘partial key exposure’ attacks on the RSA
system. In particular, for low public exponent RSA, they show how to
recover in time polynomial in n the whole secret-exponent d given only
the n/4 LS bits of d. In this note, we relax a hidden assumption in the
running time estimate presented by BDF for this attack. We show that
the running time estimated by BDF for their attack is too low for (m —
LSbS) RSA moduli by a factor in the order of 2. Thus the BDF attack is
intractable for such moduli with large m. Furthermore, we prove a general
related result, namely that if low-exponent RSA using an (m — LSbS)
modulus is secure against poly-time conventional attacks, then it is also
secure against poly-time partial key exposure attacks accessing up to 2m
LS bits of d. Therefore, if low-exponent RSA using (n/4(1 — €) — LSbS)
moduli for small € is secure, then this result (together with BDF’s result
on securely leaking the n/2 MS bits of d) opens the possibility of fast
and secure public-server-aided RSA decryption/signature generation.

1 Introduction

Let N = pq denote an RSA modulus of length n bits, with p and ¢ primes
each of length about n/2 bits. In this paper we restrict our attention to low
public exponent variants of the RSA public key system [11]. For these variants
the public exponent e is chosen to be a small value (e.g. 3), independent of the
modulus length n. Then a user generates an RSA modulus N and computes his
secret exponent d to satisfy ed = 1 mod ¢(N), where (N) =N +1— (p+q) is
Euler’s phi function evaluated at N. When used properly, low public exponent
RSA (which we hereafter refer to simply as low exponent RSA) is currently
considered secure and in fact is in wide use because the encryption operation
z +— ¢ mod N can be performed very quickly, i.e. in time quadratic rather than
cubic in n. However, the decryption operation z — z¢ mod N still needs cubic
time in n and remains a computational bottleneck when it is performed in a low

speed device such as a smart card. In many such cases, a possible solution is
to find a way for the low-speed device (which we hereafter refer to as the card)
to use a powerful but publicly observable external server to perform some of
the decryption computation, without leaking any secret knowledge (such as the
prime factors of N) to the server. Such a scheme has been called a ‘Server-Aided-
Secret-Computation’ (SASC), with the first such schemes for RSA proposed by
Matsumoto, Kato and Imai [5]. Many such schemes have been proposed, but
many have been shown to be insecure (see [7] for a recent example).

In AsiaCrypt ‘98, Boneh, Durfee and Frankel (BDF) described several in-
teresting partial key exposure attacks on the RSA system [1]. In particular, for
low exponent RSA, they show how to factor N (and hence recover the whole
secret exponent d) in time polynomial in n, given only the n/4 Least Significant
(LS) bits of d. They also showed the useful result that knowing the n/2 most
significant (MS) bits of d cannot help an attacker if low-exponent RSA is secure
(because these bits are ‘leaked’ out by the public information). In the context of
SASC, these bits can therefore be made available to the public server, which can
perform half the decryption exponentiation computation. This gives a reduction
by a factor of 2 of the computation performed by the card (possessing the LS
bits of d), compared with the unaided case when the card performs the standard
exponentiation with the full-length d (from hereon all computation saving fac-
tors will be stated with respect to this full-length exponentiation case). However,
in cases where the card is able to store the prime factors of NV, the Chinese Re-
mainder Theorem (CRT) can be used to reduce the decryption computation by
a factor of 4 without any server aid (see, for example [6], section 14.75). When
CRT is used by the card, the BDF server-aided technique does not achieve ad-
ditional savings (i.e. also gives a reduction by a factor of 4) and hence is not
useful in these cases.

In this note, we relax a hidden assumption in the running time estimate pre-
sented by BDF for their low public exponent key exposure attack (our comments
do not apply to the other attacks presented by BDF for large public exponents).
Call N = pg an m-LS bit Symmetric (or (m — LSbS) for short) RSA modulus,
if p and ¢ are primes having exactly m equal LS bits, i.e. p— ¢ = r - 2™ for some
odd integer . We show that the running time estimated by BDF for their attack
is too low for (m — LSbS) RSA moduli by a factor in the order of 2™. Thus the
BDF attack is intractable for such moduli if m increases proportionally with
n. Furthermore, we prove a general result on (m — LSbS) RSA moduli which
can have applications in fast RSA SASC, namely that if a low-exponent RSA
system using an (m — LSbS) RSA modulus is secure against arbitrary poly-time
‘conventional’ attackers (i.e. attackers having no access to secret bits), then the
system is also secure against arbitrary poly-time partial key exposure attackers
having access to up to 2m LS bits of the secret exponent d.

Therefore, if low-exponent RSA systems using (n/4(1 — €) — LSbS) moduli
with small € are secure (implying in particular that (n/4(1 —e€) — LSbS) moduli
are hard to factor), then our result, together with BDF’s result on securely
leaking the n/2 MS bits of d, opens the possibility of fast and secure RSA

SASC for decryption or signature generation. In particular, this means that
one can reveal to the public server the majority of bits of d except for the
block of about n/2 — 2m = (n/2)e ‘middle’ bits in positions n/2 — 1 down
to 2m. Since exponentiation time is linear in the length of the exponent, the
computational cost for the card is reduced by a factor of around 2/¢, which can
be very significant, especially for e < 1/2. Unlike the BDF case, this technique is
also useful when CRT is used by the card, achieving in these cases a computation
saving for the card by a factor 4/e.

2 Review of Boneh-Durfee-Frankel Attack

In this section we review the BDF partial key exposure attack on low public
exponent RSA. The attack can be simply described as it relies on the following
theorem due to Coppersmith [2], which is proved using Lattice Basis Reduction
techniques.

Theorem 1. (Coppersmith) Let N = pq denote an RSA modulus of length n
bits. In polynomial time we can factor N if we know the n/4 LS bits of p.

The BDF attack takes as input the public modulus IV of length n bit, the
low public exponent e, and an integer dy of length n/4 bits, consisting of the
n/4 LS bits of the secret exponent d, i.e. dy = d (mod 2"/*). It then computes
in turn each element of a set X = {z1,...,x)x|} of trial values for the n/4 LS
bits of p or ¢, running Coppersmith’s algorithm of Theorem 1 to try to factor IV
with each trial value x;. The set X is guaranteed by construction to contain pg
and qo, the n/4 LS bits of p and ¢ respectively. Hence by Theorem 1 (since the
algorithm terminates with failure in polynomial time even when z; # {po,qo}
(mod 27/%)), the attack factors N within time bound |X| - Tc,p(n), where |X]|
denotes the cardinality of X and T¢,p(n) is the polynomial running time bound
for Coppersmith’s algorithm.

The central part of the attack is the construction of the set X since it
must have a cardinality small enough (i.e. polynomial in n) to make the attack
tractable. It is constructed as the set of solutions to a quadratic modular equa-
tion as follows. The modular key generation equation ed = 1 mod ¢(N) implies
the integer equation ed = 1 + k¢(N) for some unique positive integer k. Since
the function f(z) = N+ 1— (z + N/z) evaluates to ¢(N) at z = p and z = ¢, it
follows that p and g are roots of the quadratic equation (ed—1)-z—k-zf(x) = 0.
Thus, using the fact that dy = d mod 2"/* is known, we see that py = p mod 2"/4
and gy = ¢ mod 2™/* are roots of the modular equation:

kx® + (edy — 1 — k(N + 1))z + kN =0 (mod 2"/%) (1)

All the parameters defining (1) can be computed by the attacker with the
exception of k. However, assuming that both e and d are smaller than ¢(NV), it
is easy to see that k € {1,2,...,e — 1}. Since e is small, this set can be searched.
So the set X of candidates is generated as follows: for each candidate k' €

{1,...,e — 1} for the true value of k, the attacker computes (in time polynomial
in n, by lifting solutions modulo 2 to solutions modulo higher powers of 2 until
the modulus 2"/ is reached) up to S(k’) solutions of (1) with the unknown k
replaced by k'. Here S(k') is an upper bound on the number of solutions to
(1) expected if k& was equal to k'. Thus the cardinality | X| = 221_:11 S(k"). The
number of solutions S(k') is found by noting that the linear coefficient of (1)
is equal to (k — k")¢(N) — k'(p + q) modulo 2"*/4, which for k = k' reduces to
—k'(p+ q), so S(k') is the number of solutions to:

E(z®>—=(p+qz+N)=0 (mod2"/*) (2)
Dividing (2) by ma (k") (where m2(z) denotes the 2-multiplicity of z) and mul-

tiplying by the multiplicative inverse of odd(k') = k:’/2m2(kl), we find that
S(k') = 27)T (my(k')), where T'(my(E')) is the number of solutions to:

2> —(p+qr+pg=0 (mod 2/1=m=(K)), (3)
Thus we have:
e—1
X| = 2 T (m,y (k) (4)
k'=1

In their paper [1], BDF make the following incorrect deduction:
T(ma(k')) <2forall k' € {1,...,e — 1} (5)

It is the estimate (5) that we wish to correct in this paper. Putting (5) in (4)
leads to the conclusion that

[logs €]

| X <2- Z 2m - (Z 1) < 2e|log, e], (6)
m=0

k'€H(m)

where the set H(m) def {k' € {1,...,e — 1} : my(k") = m}. This gives a total
running time bound 2e|log, e| - Toop(n) which is necessarily polynomial in n
since e is small.

We remark here that the above description differs slightly from that presented
by BDF to fix an independent minor problem of the analysis presented by BDF.
In particular, BDF used the same symbol to represent both the true value k
which is hidden and fixed ‘inside’ edy = 1 + k¢(N) mod 2"/4, and the trial &'
which is swept in the set {1,...,e — 1}, and hence were led to the incorrect claim
that the number of solutions to (1) with k replaced by any k' € {1,...,e — 1} is
the same as that when k = k', namely S(k') using the above notation. We fix
this without affecting the analysis by making the attacker reject a value of k' as
clearly not equal to k if for this value (1) has more than S(k') solutions (while
BDF suggested to try all solutions for each k', which would require a separate
proof that this number is not greater than S(k')).

3 A Lemma

We first present a lemma on taking square-roots modulo 27, which will be useful
in the next two sections.

Lemma 1. The set of solutions to the modular equation x> = ¢ (mod 27) is
summarised as follows. Let m = mso(c) and d = odd(c).

(i) For the case v < m, there are 27/21 solutions of the form x = r - 2[7/?]
(mod 27) for r € {0,...,217/2 — 1},

(ii) For the case vy > m, there are no solutions if m is odd. Otherwise, if m
is even, there are three subcases.

For v =m + 1 there are 2"/? solutions.

For v =m + 2, there are 2 - 2"™/? solutions if d =1 (mod 4) and none

otherwise.

For v > m + 3, there are 4 - 2™/? solutions if d =1 (mod 8) and none

otherwise.

These solutions have the form x = r - 2™/2 (mod 27), where r = £s + 0 -
27-m=l 4 4. 27"™ (mod 27™/2), § € {0,1} (§ = 0 when y = m +1), t €
{0,...,2™/2 — 1} and s is any solution to s> =d (mod 27™).

Proof. First we note that the given equation #2 = ¢ (mod 27) is equivalent to

m2(a:2 —c) >, (7)

where ms(2) denotes the 2-multiplicity of z. For the case v < m, we have ¢ =0
(mod 27), so 22 = 0 (mod 27) which is equivalent to ms(z?) = 2ma(z) > 7,
or ma(z) > [v/2], as stated. For the case v > m, it can be verified that (7) is
equivalent to the conditions (i) m(2?) = m and (ii) ma(r? —d) > v — m, where
r odd(x). From (i) we have that m is even and = = r-2"/? (mod 27) for
odd r, and (ii) has the equivalent form (iii) 7> = d (mod 27~™). Each distinct
solution ro to (iii) modulo 27~™ gives rise to exactly 2™/2 distinct solutions of
(7) modulo 27 of the form ro2™/2 +1-27-™/2 for any [€ {0,...,2™/% — 1}. For
v—m =1 and v — m = 2 one can check that (iii) has the only solutions r = 1
(mod 2) and r = £1 (mod 4) respectively, and no solutions in the latter case
if d=3 (mod 4). For v —m > 3, suppose that s is a solution of (iii). Then it
is readily verified that r = £s5+§-27"™"1 for § € {0, 1} are 4 distinct solutions
to (iii) modulo 27~™. The lack of any additional solutions and the existence of
a solution s is shown in ([10], pages 182-184). One can check that for y —m = 3,
(iii) has no solutions if d #1 (mod 8), from which the stated result follows for
v —m > 3. This completes the proof of the lemma. O

4 Correction to BDF Attack Time Estimate

We now give the correct estimate for the number of solutions T'(mz (k")) to (3).
In their analysis, BDF state correctly that (3) has at most 2 solutions modulo 2
(in fact it has exactly 1 such solution z = 1 mod 2), but then suggest the use of

Hensel lifting to show that this number of solutions is preserved modulo arbitrary
high powers of 2, including in particular gn/4—ma (k') However, for a polynomial
f(.), Hensel’s lemma(see [8]) applies only for lifting non-singular solutions z of
f(z) = 0mod 2, i.e. those for which f'(x) # 0 mod 2, where f'(.) denotes the
derivative of f(.). But in the case of (3), all solutions are singular.

Theorem 2. Define ty def ma (k') and t,_, def ma(p — q). The number of solu-
tions to Equation (3) is given by

[2te—aty if ty <n/4—2(tp,—q—1)
T(ty) = {2L(n/4tk/)/2j if tre > /4 — 2ty — 1) (8)

where v = —1 when t(k') =n/4 —2(tp—y — 1) — 1, v = 0 when t(k') = n/4 —
2(tp—g — 1) — 2, and v = +1 when t(k') <n/4—2(tp_q — 1) — 3.

Let n = n/4 — tg. In the case tp < n/4 — 2(tp—q — 1), the solutions have
the form © = ({p,q} mod 2"~ te=a) 4 ¢/ . 21=te—a (mod 2"). In the case tj >

n/4 — 2(t,_, — 1), the solutions have the form x = (p mod 2L7/21) 4 ¢ . 2[n/2]
(mod 27).

Proof. By ‘completing the square’, since p + ¢ is even, we can write (3) in the
equivalent form (x — (p + ¢)/2)? = 1/4((p+ q)® — 4pq) = ((p — ¢)/2)* mod 2.
Applying Lemma 1 with v = n/4—t; and ¢ = ((p—q)/2)?, the claimed number
of solutions follows immediately. Writing p = | + pg - 2t7-¢ and ¢ = | + qg - 2t»—¢,
where exactly one of py and gg is odd (so that [< 2f—< represents the t,_,
shared LS bits of p and ¢) we have that (p + q)/2 = | + (pu + qu) - 2tr—<7!
and (p —q)/2 = (pg — qg) - 2'»~<~!. From Lemma 1, the solutions in the case
t > n/4—2(tp—g — 1) are & = (p+q)/2 +r - 2" (mod 2") and since
r is arbitrary, we have & = (p + ¢)/2 mod 2/"/21 + ¢ . 2[7/21 " (mod 2") for
arbitrary ', which gives the stated result = = [4 ¢/ - 2[7/21 (mod 2") since
/2] < tp_q and (pg + qg)2—<1 =0 (mod 2'r—4). Similarly, for the case
tr < n/4—2(tp_y — 1), we apply Lemma 1 with the solution s = odd(p — q)
(mod 27~2(tr-a=1)) to s> = odd((p — q)?/4) (mod 27~2(tr=a=1)) giving z =
I+ (pH +qH)2tp—q_1 + (:t(pH +qH) +4- 277_2(tp—q_1)_1 +t- 277_2(tp—q_1)) .9tp—g—1
(mod 27), which simplifies to the desired result # = [+ ({pm, qm}) - 2t»—2 + (2t +
§)2"/4t-a (mod 2"). 0

With this result, we see that the BDF attack becomes intractable for (m —
LSbS) moduli with sufficiently large m = t,_,. Specifically, the running time
bound stated by BDF must be increased, and we can state the following corrected
running time estimate for the BDF attack.

Corollary 1. Given the (n/4) LS bits of d, the BDF attack factors N within
the following time bound:

2e|log, e|2tr—a T, (n) if 2(tp—g — 1) < n/4
Tspr(n) < {QeLlogi e JQ"/BTCop?n) if 2ty_yg — 1) > n/4)

Proof. Recall that Tepr(n) < |X|: Tcop(n). From (4), we have the following
bound on the cardinality of the set X constructed by the BDF attack:

llogze]
X[= > 27T (m)[l(e—1)/2"]/2] (10)

[togze]
< Y 2mT(m)(e/2™ +1)/2 (11)
m=0

llogae]

<e- Z T(m). (12)
m=0
Now from Theorem 2 we see that if 2(t,_, — 1) < n/4, then, defining ay def
min(|logze],n/4 — 2(tp—y — 1) — 1), we have:

[logae] [log=e]

a1
Y T(m)=) 2oty N ol/imm/] (13)
m=0 m=0 m=ai+1
Llogae]
< Z 2te=atl < 2|logee|2tr-att, (14)
m=0

where the second term in the right hand side of (13) is defined to be zero for a;; =
|logz€]. From (14), the first case of the corollary follows using (12). Similarly,
for the second case 2(tp—y — 1) > n/4 we have

[logze] [logze]
Z T(m) = Z ol(n/4-m)/2] (15)
m=0 m=0
llogae]
< > 28 < 2|logee |27/ (16)
m=0
This gives, using (12), the second claim, which completes the proof. O

We note that when the prime factors p and ¢ of N are chosen randomly
and independently, one would heuristically expect that Pr[t,—, = m] = 1/2™
for m > 1. Therefore in this case t,_, would be small with high probability,
so our result does not imply the intractability of the BDF attack in this (most
common) case.

The above results can be generalized in a straightforward way to the case
when the attacker is given any number z > n/4 of LS bits of d. In this case, the
number of arbitrary MS bits in the solutions to Equation (3) with n/4 replaced
by z is about z/2 when z < 2t,_, and about t,_, when z > 2t,_,. However,
since only the n/4 LS bits of the correct solutions are needed by Coppersmith’s
algorithm, only n/4 — z/2 bits and n/4 + t,_, — z bits need be searched in the
two cases, respectively, and so the power of 2 in the running time estimate for

the attack is about 2%/4=%/2 for < 2t,_, and about 2"/4ttr-a=% for 2 > 2t,_,.
Therefore, the attack requires about z = n/4 + t,_, LS bits of d in order to be
tractable.

5 Properties of (m-LSbS) RSA Moduli

In the previous section we showed that the BDF partial key exposure attack for
a low-exponent RSA system using (m — LSbS) RSA moduli is intractable (i.e.
requires time exponential in the modulus length n), if m is large, i.e. increases
proportionally to n. However, it is natural to ask whether it is possible to modify
the BDF attack or find another attack which, given the n/4 LS bits of d, factors
N in time polynomial in n even for large m. We have not found such an attack
when m < n/4(1 —€), where € is a positive constant. Such an attack may exist,
but the following result shows that finding such an attack for low-exponent RSA
systems using (m — LSbS) moduli with m > n/8 implies finding a poly-time
factoring algorithm for these (m — LSbS) moduli.

Theorem 3. Let (N,e,d) be an RSA key pair, where N = pq is a (m — LSbS)
RSA modulus of length n bits. Let A(.,.,.) denote a partial key exposure attack
algorithm that, given up to 2m LS bits of d and the public pair (N, e), factors N
in time Ta. Then we can construct a factoring algorithm F(.,.), that given only
(N,e), factors N with time bound O(n) - (e - (Ta + O(n?)) + O(n?)).

Proof. We show how to construct the factoring algorithm F(.,.). Given (N, e),
F simply computes dy, the 2m LS bits of d, and runs A on input (N, e, dy). To
find dy, F does the following. First, F guesses the number of shared bits m (at
most 1/2 guesses suffice to find the right value). Then, F solves

2> =N (mod 2™) (17)

Writing p = l+pg-2™ and ¢ = [+ qg - 2™ with [< 2™ representing the m shared
LS bits of p and ¢, we see that N = pg =1> (mod 2™). Applying Lemma 1, the
equation (17) has 4 solutions modulo 2™ of the form z = £1+62™"! (mod 2™)
with § € {0,1}. Thus I can be guessed correctly after at most 4 trials (we note
that (17) can be solved by lifting solutions modulo 2 to higher powers in time
O(m?)). Since N = (I+pg-2™)(I+qr-2™) = P+1(pg+qu)2™ +prqe2*™ then
l(pg +qu) = (N —1?)/2™ (mod 2™) and since [is odd, it has a multiplicative
inverse [~! modulo 2™. So F can compute sg def I7Y(N = 1?)/2™ = pg + qu

(mod 2™). Therefore F knows sg C sy 2m 421 = p+q (mod 22™), from
which the desired LS bits of d can be computed using dyp = e™' - (1 + k(N +1 —
s0)) mod 22™, where e~! is the multiplicative inverse of e modulo 22, which
exists since e is odd. Since it is known that k € {1,...,e — 1}, F can guess k
correctly using less than e guesses. The computation time per guessed value of
k is bounded as O(n?) + T4 (we assume that the bound T} is easily computable
by F so that it can halt A after time T4 regardless of A’s behaviour on inputs
with an incorrect trial value for dp), and the time for all other computations per

guessed value of m are bounded as O(n?). Hence, since the number of guesses
needed to find m is O(n), we conclude that F factors N within the claimed time
bound. 0

The proof of the above result shows that for low-exponent RSA, (m — LSbS)
RSA moduli ‘leak’ the 2m LS bits of d. Therefore, it is easily generalized (by
changing A from a factoring attacker to any RSA attacker) to show that under
the sole assumption that low-exponent RSA using an (m — LSbS) modulus is
secure against conventional poly-time attackers (with no access to secret bits),
the 2m LS bits of d can be made public without compromising the security of the
system against poly-time attackers, who can compute these bits by themselves
(within a small set of uncertainty).

If the assumption that low-exponent RSA with (m — LSbS) moduli is secure
holds for some m, then as mentioned in Sect. 1, this result can be useful (in
conjunction with BDF’s result that low-exponent RSA also leaks the n/2 MS
bits of d) in the construction of a fast SASC protocol for securely speeding up
the RSA decryption operation with an (m — LSbS) modulus N. To be specific,
we illustrate this for the most common SASC application, namely server-aided
signature generation by a card on a message M (in practice M would be an
element of ZZ, obtained from the real message by one-way hashing). We write
the binary representation of the secret exponent as d = Z?;J d;2%, where d; €

{0,1} repze?ents the i’th significant bit of d. Define dye. = (1/22™) 27:/3;1 d;2
€

and dpyp = d — 22md. ... The SASC protocol for computing the signature s =
M2 mod N consists of the following steps: (1) The card forwards the quadruple

(M, dpyup, m, N) to the server. (2) The server computes /3y 4l Ardpus mod N and

B2 4 2" mod N. (3) The server forwards the pair (81, (2) to the card. (4)
The card computes s def ,81,833“ mod N. (5) The card checks if s = M mod N.
If not, the card discards s and terminates with an error. (6) The card outputs the
signature s on message M. The length of the exponent in the exponentiation (4)
performed by the card is only (n/2—2m) bits. By use of CRT, this exponentiation
can be sped up by a factor of 2. The verification step (5) is required only in order
to provide security against active attacks by servers whose responses deviate from
the protocol, and can be omitted in cases when the server is trusted to respond
correctly. In any case, step (5) increases the computation for the card by only a
small fraction since e is small. The communication required by the card is about
2.5n + 2m transmitted bits and 2n received bits.

A remaining consideration is the security of low-exponent RSA with (m —
LSbS) moduli against conventional attacks, in particular factoring of the mod-
ulus. It is clear from the proof of Theorem 3 that (m — LSbS) RSA moduli also
leak the m shared LS bits of p and g. Therefore one must be careful in choosing
m small enough to prevent the use of a factoring algorithm which makes use of
this knowledge. As far as we know, the best such algorithm is that of Copper-
smith (see Theorem 1), which shows that (m — LSbS) moduli are easy to factor
when m > n/4(1 — €), where 2¢/4 is small enough to exhaustively search for
the € - n/4 unknown bits of p or ¢. In fact, Theorem 3 shows that in the case

m > n/4 one can simply guess an e relatively prime to ¢(N), compute the n/2
LS bits of d using the algorithm F above and then the n/2 MS bits of d as shown
by BDF, then knowing all of d and e, one has a multiple of ¢(NV), so it is easy
to factor N using Miller’s algorithm (see e.g. [9]). But when e is sufficiently
large so that a set of size 2¢™/4 is infeasible to search, we know of no algorithm
which can efficiently factor (n/4(1 —€)— LSbS) RSA moduli. We emphasize that
(m— LSbS) RSA moduli satisfy p— g = r-2™, which does not imply that |p—¢|
is small, a property which is known to allow easier factorization of N (see [12]
and [3]).

In practice, generating (m — LSbS) RSA moduli in the natural way, i.e. pick-
ing one of the primes (say p) randomly, and then testing candidate integers for ¢
of the form ¢ = p mod 2™ + 2™ +r-2™*! (with a randomly chosen r) for primal-
ity, is asymptotically expected to be as efficient as the ‘standard’ independent
primes generation algorithm, where each candidate is chosen as a random odd
integer. This is due to a quantitative version of Dirichlet’s Theorem (see [10]),
which implies that the density of primes less than a bound z in any arithmetic
progression ¢ = a (mod z) (with ged(a, z) = 1) converges to (z/¢(z))-(1/lnz).
For the case z = 2%, we have 2%/¢(2%) = 2 for all a > 1. Therefore, the density
of primes converges to 2/Inx for both the standard modulus generation search
(where @« = 1 and a = 1 mod 2), as well as the (m — LSbS) modulus generation
search (where @ = m + 1 and @ = p + 2™ mod 2™ *1).

Finally, we mention that Lenstra [4] discusses techniques for generating RSA
moduli with portions of the modulus bits fixed to a desired value. These tech-
niques also allow computational savings in certain cases (e.g. by using moduli
which are close to a power of 2). However, unlike the moduli discussed by Lenstra,
our proposed (m — LSbS) moduli have a potential speedup advantage by leaking
bits of d.

6 Conclusions

We have shown that the Boneh-Durfee-Frankel partial key exposure attack on
low public exponent RSA systems becomes intractable for (m — LSbS) RSA
moduli having prime factors sharing m LS bits, for sufficiently large m. We
then proved that if low exponent RSA with an (m — LSbS) modulus is secure
against conventional attacks, then it is also secure against partial key exposure
attacks accessing up to 2m LS bits of the secret exponent d. This can have
applications in fast public-server-aided RSA decryption or signature generation.
An important problem left open is to characterize the largest m for which low-
exponent RSA with an (m — LSbS) modulus is secure, since this defines the limit
on the effectiveness of the technique.

Acknowledgements. The authors would like to thank the anonymous referees
for their helpful comments.

References

1.

10.

11.

12.

D. Boneh, G. Durfee, and Y. Frankel. An Attack on RSA Given a Small Frac-
tion of the Private Key Bits. In ASIACRYPT ’98, volume 1514 of LNCS,
pages 25-34, Berlin, 1998. Springer-Verlag. See full paper, available from
http://crypto.stanford.edu/~dabo/pubs.

D. Coppersmith. Small Solutions to Polynomial Equations, and Low Exponent
RSA Vulnerabilities. J. of Cryptology, 10:233-260, 1997.

B. de Weger. Cryptanalysis of RSA with small prime difference. Cryptology ePrint
Archive, Report 2000/016, 2000. http://eprint.iacr.org/.

A. Lenstra. Generating RSA Moduli with a Predetermined Portion. In ASI-
ACRYPT 98, volume 1514 of LNCS, pages 1-10, Berlin, 1998. Springer-Verlag.
T. Matsumoto, K. Kato, and H. Imai. Speeding Up Secret Computations with
Insecure Auxiliary Devices. In CRYPTO ’88, volume 403 of LNCS, pages 497—
506, Berlin, 1989. Springer-Verlag.

A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of applied cryptography.
Discrete mathematics and its applications. CRC Press, 1997.

P. Nguyen and J. Stern. The Béguin-Quisquater Server-Aided RSA Protocol from
Crypto 95 is not secure. In ASTACRYPT ’98, volume 1514 of LNCS, pages 372—
379, Berlin, 1998. Springer-Verlag.

I. Niven, H. Zuckerman, and H. Montgomery. An Introduction to the Theory of
Numbers. John Wiley & Sons, fifth edition, 1991.

G. Poupard and J. Stern. Short Proofs of Knowledge for Factoring. In PKC 2000,
volume 1751 of LNCS, pages 147-166, Berlin, 2000. Springer-Verlag.

D. Redmond. Number Theory: an introduction. Number 201 in Monographs and
textbooks in pure and applied mathematics. Marcel Dekker, 1996.

R. L. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signa-
tures and Public-Key Cryptosystems. Communications of the ACM, 21(2):120-128,
1978.

R. Silverman. Fast Generation of Random, Strong RSA Primes. CryptoBytes,
3(1):9-13, 1997.

