Harmonizer — A Tool for Processing Information
Security Requirements in Organizations

Jussipekka Leiwo, Chandana Gamage and Yuliang Zheng

Peninsula School of Computing and Information Technology
Monash University
McMahons Road, Frankston, Vic 3199, AUSTRALIA
Phone +61-(0)3-9904 4287, Fax +61-(0)3-9904 4124
E-mail: {skylark,chandag,yuliang}@fcit.monash.edu.au

Abstract. Information Security Requirement Harmonizer (shortly, har-
monizer) is a software tool that aids information security personnel in or-
ganizations to formulate, organize and automatically harmonize various
information security requirements from various sources within the devel-
opment of information security. Various levels of abstraction are repre-
sented as the information security development organization is specified,
and various types of information security requirements are associated to
various components of the organization and transformed into the next
level of abstraction in a manner which aims at reducing internal inconsis-
tencies and therefore improving cost-efficiency and ease of the manage-
ment of information security. This paper discusses theoretical foundation
of harmonizer, as well as implementation and application details of the
tool. The software is currently working and is publicly available.

1 Introduction

Information security requirements need to be studied at a number of levels of
abstraction. Organizational information security objectives represent the highest
level of abstraction of security policies, statements describing the general prin-
ciples of how resources should be protected against various threats. Information
security objective is a statement by top management that states the general
objectives of information security in that specific organization. Highly abstract
policies and objectives are refined and enforced by various levels of more concrete
administrative, managerial, operational and technical information security poli-
cies that in concert form the backbone of information security in organizations.
Information security policies describe the requirements that must be satisfied at
each organizational level to fulfill the generic information security objectives [1].

It is clear, that lowest levels of security policies must be formal, for example
as specified in various access control models. Therefore, the essence of layered
security policies is the question of how to transform highly abstract organiza-
tional information security objectives into formally expressed security policies.
The harmonizer approaches this problem by providing a mechanism to organize
security policies according to the organization, and to automatically derive lower
level policies from various partially specified information security requirements



and harmonization functions, that are statements governing the reduction of
abstraction.

Other approaches towards computerized support for the management of in-
formation security include, for example, decision support systems to aid in the
specification of protection measures, as seen by the organizational information
security chain [7]. The core of the approach is to identify the organizational in-
formation security chain and to capture the knowledge of information security to
derive a check-list of required protection measures. As risk analysis has been the
cornerstone of the management of information security, various approaches have
been proposed to formalize the risk evaluation approach and provide software
tools to support the analysis [2]. As full risk analysis is a costly process with un-
certain results, some researchers have suggested that extensive check-lists would
be a more suitable approach towards information security in most organizations
[15]. Therefore, the above is well justified. Anyhow, check-lists have the following
disadvantages:

1. Inflexibility in adopting into different organizational needs. Since lists are
fixed and usually filled by marking those criteria that are taken into con-
sideration, the process does not provide adequate support for application of
same protection measures with different parameters.

2. Lack of support for assurance of internal consistency occurs when there is
no means to formally optimize the requirement base to minimize the set of
different measures applied, and to assure that different measures used are
not in conflict with each other.

3. Little space for scientific research. Typically, measures to provide assurance
from the security of systems have evolved from check lists through mech-
anistic engineering methods to formal modeling [4]. As returning from risk
analysis to check-lists is actually a step backwards, not a step towards formal
modeling, there is a need to develop approaches that could possible lead to
modeling of security. Harmonizer approach attempts to provide abstractions
of concepts modeled hence paving the way to formal modeling of information
security and advancing the scientific knowledge of the subject area.

Therefore, a different approach is required. The rest of this paper is dedicated
on the harmonizing approach. The next section first discusses the theoretical
foundation of the approach. The software architecture for the harmonizer tool
is the discussed in section 3. Issues related to the use of harmonizer shall be
discussed in section 4. Conclusions shall be drawn and directions highlighted for
future work in section 5.

2 Theoretical background

A formal specification for the model the harmonizer software is based on is given
in [13] and [14]. Further properties are derived in [12]. Therefore, the focus shall
not be on the re-specification of the formal model but on the discussion on the
major characteristics from the software development and application point of



view. After discussing the motivation for the modeling approach in section 2.1,
the model shall be discussed in two parts: The security development organi-
zation in section 2.2 and specification and refinement of information security
requirements in that organization on section 2.3.

2.1 Justification of modeling approach

From the early access control models, an interesting research question has been
on the derivation of secure systems from security specifications. In 1989 it was
shown by Jacob [9], as had for long being assumed to be the case, to be practically
infeasible. Another related problem has been addressing the issue of composabil-
ity of secure systems from secure components but it has proven to be feasible
only with a limited set of security properties. Anyhow, as derivation of imple-
mentation and composability only deal with a limited subset of access control
models, their applicability to the specification of comprehensive measures for
information security in organizations is limited. Both access control and cryp-
tographic policies can be expressed in various levels of abstraction, but most
notations provide only little support for organizational dealing with information
security requirements.

Various information system modeling tools, such as Z-notation for require-
ments engineering has been successfully applied in the specification of security
properties of computer systems [5, 6], and other methods circulate among ex-
pressing duties and responsibilities of users, approaches ranging from the theory
of normative positions [10] and responsibility modeling [8] to the view of in-
formation security as structures of responsibilities among systems [3]. All these
models, anyhow, fail to meet the layered nature of security policies and provide
only little support for multiple levels of abstraction of security policies.

A step towards modeling of information security has been taken by [2] where
a methodology has been developed to formulate the organizational knowledge
of the desired state of security (expressed as a policy) and the current state of
information security and to bridge the potential gap or to prepare to the future
changes in either policy or implementation. That model, anyhow, is very strongly
dependent on risk analysis. As has been discussed earlier, risk analysis has re-
cently been criticized quite heavily, and therefore the objective of this research
has been to develop a model that is not too dependent on the justification of
security, whether it being check-lists, risk analysis or some future development
in the area. The focus shall be on the capturing of the knowledge concerning
information security development organization, the desired protection and the
rules of refining the statements concerning desired protection at various busi-
ness units in the organization without loosing the guiding nature of upper level
policies. The rest of this section describes how this is achieved.

2.2 Information security development organization

Information security policies are usually hierarchical to represent typical organi-
zational structures. High levels of abstraction in the harmonizer model represent



managerial layers in organizations and low levels of abstraction those where
actual implementation and monitoring of information security measures are car-
ried out. Therefore, the components of an organization, called business units or,
shortly, units, are organized in hierarchical layers. An organization consists of
a finite number of layers, and each layer of zero or more units. Each unit must
belong to exactly one layer. Units are connected with Child-relationships, that
are abstractions of a way requirements of a unit form the basis for requirements
at a lower layer. Once there is a relation (u2,u’, ) € Child we say that there
is a requirement mapping from unit u? to unit u’_, where unit u? belongs to
layer n and unit u®) 41 to layer n + 1. Each child of a unit belonging to a layer n
must belong to layer n 4+ 1 to make sure no circular dependencies can occur.

Other components of the model are three types of requirements: harmonized
requirements, unit-specific requirements and layer-specific requirements. Harmo-
nized requirements are those that a unit passes to all of it’s Child units for being
refined. They are constituted from the harmonized requirements of that unit,
unit-specific requirements that are applied only to that unit, and layer-specific
requirements, that are applied to each unit belonging to a specific organizational
layer. harmonized requirements have the highest priority since they represent
the coordinating policy from upper layers. Next priority is with layer-specific
requirements and the lowest with unit-specific requirements. These priorities are
essential in deriving harmonized requirements as shall be discussed in the next
subsection.

2.3 Specification and harmonization of requirements

Information security requirements within the harmonizer are expressed as state-
ments of form
A; P; Q; Protocol; Algorithm; Parameters

where A is an association connecting processes P and Q). Process is an abstraction
of any organizational element, whether it represents a process inside a computer,
a computer, an information system, a business unit or entire division or other
organization. Association A then represents a communication channel between
the processes. It is assumed that communication is carried out According to
Protocol that is a set of rules regarding formatting and sequencing of messages
passed over association A. Protocol messages are then required to be protected
by a security enforcement algorithm Algorithm as governed by a parameter vector
Parameters. Parameter vector is of form

param = value; param = value; ...

where parameters that Algorithm requires are specified. The idea is to keep the
number of different protocols and algorithms as minimum and coordinate the
level of security enforced over different associations by parameters to reduce the
number of security enforcement mechanisms that need to be maintained. This
leads to an improved cost efficiency of protection.



Requirements are partially or fully specified statements of above form asso-
ciated to that specific unit or layer. The requirements can be harmonized by two
means: by merging them or by enforcing harmonization functions.

Merging of requirements is enforcement of layer specific and upper layer
requirements into requirements of other units under the merging scope. When
requirements are merged, either all units in a specific layer are altered according
to layer specific requirements, or a unit enforces it’s requirements into all of it’s
Child requirements in case they are in conflict. Types of conflicts of requirements
are as follows:

1. Association and Protocol field of requirements match, but Algorithm is dif-
ferent. This conflict is simply removed by altering the Algorithm field of the
lower priority requirement to be that of the higher priority requirement.

2. Any field of a requirement Parameters is different from a corresponding field
of another requirement’s Parameters. This conflict is removed by altering
the lower priority requirement’s value of that field according to that of the
higher priority requirement.

3. Any parameter in a requirement is non-existent in another requirement. This
conflict is removed by adding the parameter when associated to the corre-
sponding value into lower priority requirement according to the Parameters
vector of the higher priority requirement.

Once requirements are merged, they can be harmonized. Harmonization is
a process of setting criteria that the requirement base must satisfy to meet the
desired state, and enforcement of these conditions. Harmonization functions are
specified and enforced in a specific scope in the organization. They can be ap-
plied to a specific unit, all units in a specific layer, a specific units and all it’s
descendants recursively, or to all units in the organization. Harmonization func-
tions are specified as expressions

PreCondition : PostCondition
where each requirement in the given scope where PreCondition is true is altered
according to PostCondition. More formal treatment of harmonization functions
and their enforcement is given in [13]. PreCondition is one or more statements
of form
[ NOT ] field op value

connected with logical operators AND and OR. field can be any component of
a requirement, an association name, process name, protocol name, algorithm
name, or a name of a parameter. Depending on the field, op can be either equiv-
alence symbol (=), greater-than symbol (>) or less-than symbol (<). value is
any value that the value of field in each requirement on the harmonization scope.
If the field holds numeric information all three operators are acceptable, in case
of textual information, only equivalence is allowed.

PostCondition has three possible forms: A field = value is the basic form
of requirement altering harmonization. The component of a requirement with a
name field is altered to be value. For example, harmonization function

Algorithm = PGP AND kl < 1024 : A kl = 102/



can be used to inspect each requirement in the harmonization scope, and if that
requirement states that Algorithm is PGP but the parameter kl is less than
1024, then all those ki fields are altered to be exactly 1024. This example makes
sense if parameter &l is considered to be, for example, length of keys in PGP.
Requirement altering harmonization can also be used to map requirements into
lower level of abstraction, for example by giving various fields first generic names,
such as PK-Encryption before specifying the actual encryption algorithm used,
and later harmonizing away these generic names by replacing them with actual
algorithm names and adequate parameters.

The second form of harmonization is requirement removing harmonization.
In this case, the PostCondition is simply of form R. For example, harmonization
function

Protocol = SMTP AND NOT Algorithm = PGP : R
simply removes each requirement where communication protocol is SMTP (E-
mail) but requirement algorithm is not PGP.

Third is requirement generating harmonization that is used to deal with
dependencies of requirements. In these harmonization functions, PostCondition
is of form C Req where a new requirement Regq is created and attached to the
organizational component where the requirement belongs to. For example, the
harmonization function

Algorithm = RSA : C A;P;Q;Proto;DSS;kl = 2048
can be used to identify each requirement where encryption algorithm is RSA and
attaching a corresponding digital signature requirement into those requirements.

3 Software architecture

A software was developed using Java 1.1 to implement the theories described in
the previous sections. A stand-alone version and an applet are publicly available
at

http://pscit-www.fcit.monash.edu.au/"skylark/harm/

for review. This page also has links for technical documentation describing im-
plementation details and user manuals giving detailed instructions on how to
use the software.

The high level use case is illustrated in figure 1. The idea is, that secu-
rity consultant formulates the organization and various requirements as directed
by top management, and then enforces harmonization functions in that orga-
nization over the requirements. Anyhow, the knowledge of top management is
not expected to be formulated by them directly. Managerial personnel is not
expected to be familiar with details of formal presentations, even though the
notation is intuitive, and their job is rather to state the target and objective
of protection and pass it for various information security specialists for enforce-
ment. Therefore, the informal knowledge of information security objectives is
outside of the system scope. Therefore, information security requirement can be
seen as any formally expressed information security feature that a system must



satisfy to highlight the difference between informal information security objec-
tives. Information security objectives become information security requirements
once expressed using the notation described in previous sections. The use case
scenario represents a harmonization cycle, a process that produces output from
the various specifications for further consideration by security analyst. Further
processing of the information, either by further harmonization or implement-
ing desired protection measures, is then subject to the analyst’s consideration.
The intuitive knowledge regarding adequate state of a requirement base is not

modeled.
Participate in Q
/ Harmonizati on\
articipate Participate
in

Organization specification

Formulates
Q Formulates

Security requirements

Harmonization functions

<<Actor>>
T Security Analyst )
Harmonizer
Form basis for
Q Determines
Security objectives <<Actor>>
Manager

Fig. 1. A high level use case scenario for harmonizer

The high level class diagram is illustrated in figure 2. It should be noted that
the actual implementation diagram is much more complicated but implementa-
tion details are available in technical documentation at the above URL. Also,
some shortcuts have been taken in design as the current version is more a proof
of concept than a commercial final product. Precond and PostCond in harm-
Function and components of Requirement are merely represented as strings
(Parameters of Requirement as a vector of strings) instead of separate classes.
This simplifies design, even though it adds complexity of methods related to



harmonization. Anyhow, these changes are quite trivial and do not reduce the
expressiveness of harmonizer. Harmonizer software also includes a mechanism to
document organizational security levels and to specify how various requirements
can be interpreted within these levels. That is, anyhow, only for informative
purposes and the levels are not formally enforced or used in harmonization, the
structure is not included in the class diagram.

As the security development organization is strongly hierarchical, mapping it
to a class structure is considerably straightforward. The main class is Organi-
zation that is an aggregate of classes Layer and harmFunction. Class Layer
is further an aggregate of classes Unit and LayerSpecificReq that is a special-
ization of class Requirement. Class Unit is an aggregate of UnitSpecificReq
that is a specialization of Requirement.

Organization

Layers: Vector
HarmFunctions : Vector
Name: String

Setname(NewName: String) : void
InsertLayer( I: Layer) : void
InsertHarmFunc(hf: HarmFunction) : void

Load() : void
Save() : void
Layer HarmFunction
Name: String PreCondition : String

Units: Vector Layer SpecificReq PostCondition : String
Requirements : Vector R ——

BelongsTo : Layer

ConstructFromString(s : String) : void

InsertRequirement(r : Requirement) : void ToString() : String
InsertUnit(u : Unit) : void PreCondMatch(r : Requirement) : boolean
SetName(NewName : String) : void Enforce() : void
Unit

Name: String . " Requirement
RegVector : Vector UnitSpecificReq {> pos -
BelongsTo : Layer Uni ssociation : String

g & BelongsTo : Unit Processl : String
InsertRequirement(r : Reguirement) : void P“xSSZ_: String
SetName(s : String) : void Protocol : String

Algorithm : String

Parameters : String

ConstructFromString(s : String) : void
ToString() : String
AlterAccordingTo(hf : HarmFunction) : boolean

Fig. 2. High level class diagram of harmonizer

As full documentation for design, implementation and use of the software
is available on-line, there is no need to study it in more detail herein. That
documentation also justifies used language, summarizes problems identified and
discusses various implementation alternatives of various functions. Instead, the
important question of application of the software shall be addressed in the next



section.

4 Application scenarios

The basic case of application is where the organization is first specified by each
layer (identified by name), then adding units to each layer and specifying the
relationships between layers, that is specifying Child relationships. Assume, for
example, a simple three-layer organization illustrated in figure 3. Each layer is
named to represent the type of layers they represent. To improve intuitiveness of
the example, layers are named as Top, Mid and Low and each unit just numbered
with the first letter of layer name indicating the layer they belong to. Arrows
represent Child relationships in the organization.

T1
Top / \
M1 M2
Mid
L1 L2 L3
Low

Fig. 3. An example of a three-layer organization

The next step is to specify layer specific requirements for the organization.
To keep the example intuitive and simple, the encryption of Email is illustrated.
At Top layer, there is only one unit T to illustrate the top managerial layer
in the organization. Let there be an informal information security objective All
internal Email communication must be protected by suitable encryption mech-
anisms against unauthorized eavesdropping. The objective states roughly what
is to be protected (internal Email communication), how (by suitable encryption
mechanisms), and against which threats. Anyhow, there is a large amount of
space for interpretation of what exactly is meant by statements like suitable en-
cryption mechanisms and unauthorized eavesdropping. As the objective is stated
by top management and is rather descriptive than specific (even if assisted by
security specialists) it is the duty of security specialists to apply their knowledge
to identify what exactly is meant by those statements.

Therefore, at the top layer, there may be a layer specific requirement ex-
pressed as

A;P;Q;Email; Encr;kl = unspecified
that gives generic names for all components of a requirement, This require-
ment can then be merged to all units of that layer (only T1) and in this case,



that requirement becomes the only requirement of T'1. Requirements of 71 can
then be merged to those of M1 and M2. Let us assume there are no previous
requirements, so the above requirement is directly copied into both Mid layer
requirements. Anyhow, at this stage there may be more detailed knowledge of
the type of communication technology used for specific communication paths.
Assume, for example, that all E-mail communication between units M1 and M2
takes place over the Internet. There are two ways of enforcing these changes
into requirement bases of M1 and M2. Either by setting them as layer specific
requirements for Mid layer or by specifying harmonization functions with the
harmonization scope this layer only and enforcing them. As the latter is more
intuitive, even though less structured, it shall be used. As each harmonization
function only does an atomic harmonization task (alter, remove, or create), a
number of them is required to implement the required changes.

First, it is known that the communication media is the Internet. That also
means, that Email protocol is SMTP. Therefore, the two harmonization func-
tions can be enforced throughout this layer. First one expressed as

Association = A : A Association = Internet
alters the association to be Internet, and the other one
Protocol = Email : A Protocol = SMTP
sets the communication protocol used. Next, two unit specific harmonization
functions are executed for both M1 and M2. For M1 they are first
Process1 = P : A Processl = M1
and
Process2 = @Q : A Process2 = M2
and for process M2 the same, except process names are swapped. Now the re-
quirement base of M1 looks like
Internet; M1; M2; SMTP;Encr;kl = unspecified

that is of reduced level of abstraction of that of original requirements at layer
Top. Now, the next step is to specify what is the type of communication required
for Email over the Internet. An obvious requirement is that it must be a public
key method, let us say PGP. Now, more layer specific harmonization functions
can be specified to deal with requirements. First, harmonization function

Association = Internet AND Protocol = SMTP : A Algorithm = PGP
sets PGP as the protection algorithm. Further, let there be a requirement that
in case of PGP being used, minimum acceptable key length (expressed as pa-
rameter kl) is 1024 bits. This can be enforced by a harmonization function:

Algorithm = PGP AND kI < 1024 OR kl = unspecified : A kl = 102/
that goes through the requirement base and if key length is unspecified or too
short fixes it to 1024 bits. Note, that if there were a requirement (for example,
as enforced in either of the units locally) that sets key length to be more than
1024, it is left unaltered. In some cases, it may be necessary to also restrict too
large parameters to save time or processing power, or just to increase consis-
tency throughout security enforcement, and exactly one acceptable key length,
for example, is specified. To do this, a harmonization function can be specified
as



Algorithm = PGP AND NOT kl = 102} : kl = 102/

that alters each kl that is not previously 1024 to be 1024. Similarly to this, var-
ious optimizations and reductions of abstraction can be carried out at different
layers but merging requirements with other requirements and then specifying
harmonization functions to tune them up. At the end of the process, also orga-
nization wide harmonization functions can be executed to make sure there are
no inconsistencies left in any of the requirements to assure that all key issues are
taken into consideration.

As a result, each unit has it’s own specific set of requirements that must
be enforced at that layer. At upper layer the requirements are enforced directly
by setting them as primitives for lower layers and then enforcing them at those
units. As a result, each unit at technical layer should have a set of specifications
using which security enforcement measures can be implemented and the process
provides assurance from the state that all those measures are on align with
organizational objectives and all coordination is centralized through the use of
harmonization functions and requirement merging.

5 Discussion, conclusions and further work

The model and tool discussed in this paper contribute to the seamless deriva-
tion of technical security specifications from organizational information security
objectives using the organizational knowledge for mapping between levels of ab-
straction. Therefore, the content and format of those objectives are out of scope,
as are internals of security enforcement technologies. The content of security ob-
jectives can originate from check-lists, risk analysis or other managerial tools and
are independent from the work reported herein. Also, academic and industrial ef-
fort in security enforcement technologies, especially formal access control models
and cryptographic techniques has produced numerous well understood technolo-
gies to be used for secure system construction. Therefore, it can be assumed that
standard technologies can be used for the actual security enforcement.

As security always increases cost of systems and operations, the essential
research question addressed by the approach is on the optimization of security
enforcement according to organizational standards. Automation in harmoniza-
tion and merging of requirements together with the improved assurance on re-
quirements that enforcement is based on is expected to reduce cost of secure
operations. Further, it is of academic interest to take steps towards formal mod-
eling of information security, and some first steps towards formal models for
organizational information security are taken by providing means to capture
the information security know-how and formally deriving information security
requirements using that knowledge.

There are two major drawbacks in the model: First is the dependency on
the organizational hierarchy and second is the lack of intuitive modeling tools.
As the emergence of electronic commerce and new types of flexible organiza-
tional structures reduces the hierarchy traditionally seen as the requirement for
effective information security, the model may in the future need to be adjusted



into more flexible specification of organizations. On the other hand, automated
treatment of requirements and harmonization functions would assist in rapid
adaptation into changing processing environment by means of rapid alteration
of security specifications. Further, providing an organization free presentation of
common sets of typical security requirements might also increase the speed and
reduce cost of security maintenance in changing conditions. Due to the success
of extensive check-lists and baseline protection criteria, it can be assumed that
the core of security requirements are similar in many organizations, hence vari-
ous sets of operational domain specific information security requirements might
increase the cost-efficiency of information security.

Another open issue is in the development of a modeling tool to support
dealing with the model. As current mechanisms to express organizations, re-
quirements and harmonization functions are not very intuitive but depend on
the understanding the way formal treatment of them is organized, there is a
risk that the applicability of the theory suffers from this. Also, more intuitive
modeling techniques would improve the communication between various parties
involved in the process, as well as support integration of security design into
general system design. Due to the hierarchical structure of the way various com-
ponents of the model are organized, various object oriented modeling techniques
might provide good solutions for this. Early steps towards this direction have
been taken in [11] but the issue is still under active research.

References

1. M. D. Abrams and D. Bailey. Abstraction and refinement of layered security pol-
icy. In Information Security. An Integrated Collection of Essays, pages 160-170.
IEEE Computer Society Press, 1995.

2. A. Anderson, D. Longley, and L. F. Kwok. Security modelling for organizations.
In 2nd ACM Conference on Computer and Communications Security, pages 241 —
250, Fairfax, VA, USA, 1994. ACM Press.

3. J. Backhouse and G. Dhillon. Structures of responsibility and security of informa-
tion systems. Furopean Journal of Information Systems, 5(1):2 — 9, 1996.

4. R. Baskerville. Information systems security design methods: Implications for in-
formation systems development. ACM Computing Surveys, 25(4):375-414, Decem-
ber 1993.

5. A. Boswell. Specification and validation of a security policy model. IEEE Trans-
actions on Software Engineering, 21(2):63 — 68, February 1995.

6. E. Dubois and S. Wu. A framework for dealing with and specifying security re-
quirements in information systems. In Proceedings of the IFIP TC11 11th Inter-
national Conference on Information Systems Security. Chapmann & Hall, 1996.

7. T. Finne. A DSS for information security analysis: Computer support in a com-
pany’s risk management. In 1996 IEEE International Conference on Systems, Man
and Cybernetics vol. 1 of 4, pages 193-198, Beijing, China, 1996.

8. R. Grimm. A model of security in open telecooperation. In Proceedings of the
IFIP TC6/WG6.5 International Conference on Upper Layer Protocols, Architec-
tures and Applications, IFIP Transactions C: Communication Systems, pages 425
— 440, Vancouver, B.C., Canada, 1992. North-Holland.



10.

11.

12.

13.

14.

15.

J. Jacob. On the derivation of secure components. In 1989 IEEE Symposium on
Research in Security and Privacy, pages 242 — 247. IEEE Computer Society Press,
1989.

A. J. 1. Jones and M. Sergot. Formal specification of security requirements using
the theory of normative positions. In Computer Security — ESORICS92. Second
FEuropean Symposium on Research in Computer Security, number 648 in Lecture
Notes in Computer Science, pages 103 — 121, Toulouse, France, 1992. Springer-
Verlag.

J. Leiwo, C. Gamage, and Y. Zheng. An object—oriented modeling approach into
the management of information security. In Proceedings of the IFIP TC11 14th
International Conference on Information Systems Security, Vienna, Austria and
Budapest, Hungary, September 1996. Chapman & Hall.

J. Leiwo, C. Gamage, and Y. Zheng. A mandatory access control policy model
for information security requirements. In Computer Science. Proceedings of the
21st Australasian Computer Science Conference, ACSC’98, Australian Computer
Science Communications Vol. 20 Nr. 1, pages 527 — 538, Perth, WA | Australia,
1998. Springer.

J. Leiwo and Y. Zheng. A formal model to aid documenting and harmonizing of
information security requirements. In Information Security in Research and Busi-
ness. Proceedings of the IFIP TC11 18th International Conference on Information
Security, pages 25 — 38, Copenhagen, Denmark, 1997. Chapmann & Hall.

J. Leiwo and Y. Zheng. A framework for the management of information security.
In Information Security — Proceedings of the First International Workshop, number
1396 in Lecture Notes in Computer Science, pages 232-245. Springer—Verlag, 1997.
R. vonSolms. Information security management: The second generation. Comput-
ers & Security, 15(4):281 — 288, 1996.

This article was processed using the I#TEX macro package with LLNCS style



