

A Compact Authentication & Key Distribution Protocol Based on a Broadcast Control Channel

Yuliang Zheng Monash University Melbourne, Australia

Email: yzheng@fcit.monash.edu.au

Outline of the Talk

- Security issues in mobile computing
- Encryption and digital signature
- Identifying 2 problems with Beller, Chang & Yacobi's 5-step protocol (1993)
- Introducing a new 1.5 step protocol
 conclusion

Cells in Mobile Comp & Comm

neighbouring cells use different frequencies

Issues in Mobile Computing

- Confidentiality of data
- Identification of a mobile user
- authentication of a base station
- prevention of insider attacks
- hand-over of authentication info.
- anonymity of a mobile station
- comp. and comm. cost for achieving the above

Issues in Mobile Comp (cnt'd)

light weight of a mobile station small batteries Iow computing power can only carry out relatively simple computing tasks ! some contradict one another ! Iow computing power <---> high-level confidentiality and integrity identification <---> anonymity

Two Major Issues

Private key cipher

Public Key Cryptosystem

Hybrid Cryptosystem (1)

Hybrid cryptosystem (2)

Digital Signature (for long doc)

© 1996 by Yuliang Zheng

Notable Protocols for Mobile Comp & Comm

- GSM, 1990
- Cellular Digital Packet Data (CDPD) in USA, 1994
- Aziz-Diffie, 1994
- Molva-Samfat-Tsudik, 1994
- Asokan, 1994
- Herzberg et al, 1994
- Samfat-Molva-Asokan, 1995
- Mu-Varadharajan, 1996
- Beller-Chang-Yacobi, 1993

Beller, Chang & Yacobi Protocol (or BCY protocol)

- Based on two hard problems:
 discrete logarithm on finite fields
 factorisation of integers (Rabin's digital signature)
- Assumes the existence of a certification authority CA (or authentication centre)

4 Types of Parameters in BCY

Public to all

- for Certification Authority
- for a base station b
- for a mobile station m

Parameters public to all

- N: a large prime
- g: a generator for GF(N)*
- 1-way hash function: hash

Parameters for Cert. Auth.

secret data: 2 large primes

• public data: their product N_{ca}

Parameters for Base b

$$sig_{ca,b} \equiv \sqrt{hash(b, N_b, P_b)(\text{mod } N_{ca})}$$

Parameters for Mobile m

• secret data: S_m • public data: $P_m \equiv g^{S_m} \pmod{N}$ $sig_{ca,m} \equiv \sqrt{hash(m, P_m)} \pmod{N_{ca}}$

5 Steps in BCY Protocol

Mobile m

Base b

$$b, N_b, P_b, sig_{ca,b}$$

Hi

$$e_2 \equiv x^2 \pmod{N_b}, e_3 = DES_x(m, P_m, sig_{ca,m})$$

$$DES_{sk}(m)$$

 $DES_{sk}(b)$

© 1996 by Yuliang Zheng

5 Steps in BCY Protocol (cnt'd)

Mobile m

Hi

Base b

This is my certificate.

I checked your cert. It's OK. Here is my cert. encrypted using DES. The key for DES is sealed using your public key.

I checked your cert. It's OK. Here is my name sealed using DES with the new session key

I can recover your name. Here is my name sealed using DES with the same session key

© 1996 by Yuliang Zheng

2 Problems with BCY Protocol

5 steps --- very inefficient ! vulnerable to replay attacks !

Why all the 5 Steps are needed

- An attacker can obtain a mobile station's public data

 i.e. the ID of the mobile
 P_m ≡ *g^{S_m}* (mod *N*)
 - $sig_{ca,m} \equiv \sqrt{hash(m, P_m)} \pmod{N_{ca}}$
- He will then be able to successfully masquerade Mobile m, and pass Steps 1, 2 and 3 !

Why all the 5 Steps are needed (cnt'd)

Although it's very unlikely that the attacker can derive the valid session key sk,
 Steps 4 & 5 are absolutely necessary for the genuine Mobile and Base to confirm the consistency of their session keys.

Replay Attacks --- Potentially More Serious

- Consider an attacker malicious towards Mobile m
 - Records the 5 steps between Mobile m and Base b.
 - Some time later, initiates a communication session with Base b.
 - Replays the data previously sent by m to b
 - Passes all the 5 steps !!!

Cause financial loss to Mobile m

- Assume that the 5 steps are followed by a destination address encrypted using the session key. Now, as the attacker malicious towards Mobile m does not have the session key, he cannot choose a destination address as he wishes.
- But he can simply send a random ciphertext to Base b.

Cause financial loss to Mobile m

- Now, the attacker waits to see if a connection between him and another address decrypted from his random ciphertext can be established.
 If it is established (AND the address
 - happens to be, say, a fax number), the attacker may be able to send, unidirectionally, a large amount of data to the address !

A New Proposal with 1.5 Steps

Main Ideas:
 Using a broadcast control channel
 Using
 Certification Authority (such as X.500 directory services), and
 public key cryptography.

3 Types of Channels

Functions of a **Broadcast (Control) Channel**

- For the network to propagate to mobile stations various types of control information: synch parameters available services
 Current network time Base station ID etc
- (Each mobile station keeps on monitoring the BCC)

Goods & Bads of Broadcast

Bads

Everybody can hear

Encryption is required to provide confidentiality

Goods

Everybody can hear !

Base:

needs to say once only (no need to repeat)

can propagate certificate, time and even nonce

Mobile: can choose to ignore if not interested

4 Types of Parameters

Public to all
for Certification Centre
for a base station b
for a mobile station m

Parameters public to all

- p: a large prime
- q: a large prime factor of p-1
- g: has order q mod p
- 1-way hash function: hash

Use DSS (digital signature standard), but others (e.g. Schnorr's) are OK too.

Parameters for Cert. Auth.

• secret data: x_{ca}

• public data:

$$y_{ca} \equiv g^{x_{ca}} \pmod{p}$$

Parameters for Base b

 X_h secret data: • public data: $\Rightarrow y_b \equiv g^{x_b} \pmod{p}$ $sig_{ca,b} \equiv (r_b, s_b)$ $r_{k} \equiv (g^{k_{b}} \mod p) \pmod{q}$ where $s_h \equiv (h(M_h) + x_{ca} \cdot r_h) / k_h \pmod{q}$ $A M_{b} = (b, y_{b}, expire date, ...)$

Parameters for Mobile m

 X_m • secret data: • public data: $\Rightarrow y_m \equiv g^{x_m} \pmod{p}$ $sig_{ca,m} \equiv (r_m, s_m)$ $r_m \equiv (g^{k_m} \mod p) (\mod q)$ where $s_m \equiv (h(M_m) + x_{ca} \cdot r_m) / k_m \pmod{q}$

 $M_m = (m, y_m, expire date, ...)$

0.5 Step: Base --> Mobile

 Base b uses part of the capacity of a Broadcast Control Channel (BCC) to propagate, regularly, the following info to all mobile stations in the cell:

b, *y*_{*b*}, *sig*_{*ca,b*}, *current_time / nonce*, *etc*

 Note: Information on Certification Authority may also be broadcast, at a less frequent rate.

0.5 Step: Base --> Mobile (cnt'd)

- When Mobile m roams into the cell of Base b, or a user switches it on, it records, at the background, the following info in the BCC: \diamond the certificate information, current time / nonce **≫etc** Mobile m then checks the
- authenticity of the certificate, *at the* background.

Why we say it's "0.5" Steps

It can be done
 at the background, and
 well before an actual session is started, and
 once only for a cell (or less, depending the certificate verification strategy chosen)

Base <--- Mobile

When Mobile wishes to initiate a communication session with Base b, it sends the following to Base b:

 (c_1, c_2)

How (c_1, c_2) are defined

•
$$(c_1, c_2)$$
 are defined as
 $c_1 \equiv g^x \pmod{p}$ for random x
 $c_2 = DES_k(sk, t / n, m, y_m, sig_{ca,m}, \dots, sig_m)$
 $k = y_b^x \mod p$
 $sig_m = Mobile m's signature on$
 $(sk, t / n, m, y_m, sig_{ca,m}, \dots)$

Checking by Base

- operations by Base b upon receiving c₁ and c₂ from Mobile b: k = c₁^{x_b} mod p
 Decrypting c₂ by the use of k
 - verifying the freshness of time-stamp t, or nonce
 - verifying the certification authority's signature
 - verifying Mobile's signature

Checking by Base (cnt'd)

Base accepts K as a valid session key only all the checkings are OK

Mobile Station

Properties of the 1.5 Protocol

- Consistency of session keys is guaranteed.
- As time-stamp/nonce is involved, replay attacks are avoided.
- only 1.5 steps ---> efficient !
- Anonymity of Mobile against an onlooker
- Pre-computation by Mobile is possible

Properties of the 1.5 Protocol (cnt'd)

- Masquerade of Mobile, even by the base station, is prevented
- Currently under investigation ----

Applicable to distributed computing

broadcast is inherent in virtually all current LANs or WANs, especially in those based on Ethernet technology

Possible improvements

- Let Certification Authority use a signature with light-weight verification (such as Rabin)
- Let Base sign time-stamp or nonce
- Simplifying the protocol (?)
- Security proof

formal proof (based on logic), OR

<u>exact security</u> initiated by Bellare & Rogaway

Other issues under consideration

- Strategies for pre-computation by Mobile m
 - to shorten the time to establish a connection
- Information transfer assocaited with roaming

 Identified 2 problems with Beller, Chang & Yacobi's protocol
 \$5 steps --- inefficient
 \$re-play attacks possible
 A new 1.5 step protocol

And finally ...

Q&C?