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Abstract� The connections among the various nonlinearity criteria is currently an
important topic in the area of designing and analyzing cryptographic functions� In
this paper we show a quantitative relationship between propagation characteristics
and nonlinearity� two critical indicators of the cryptographic strength of a Boolean
function� We also present a tight lower bound on the nonlinearity of a cryptographic
function that has propagation characteristics�
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� Introduction

Data Encryption Standard or DES is a cryptographic algorithm most widely
used by industrial� �nancial and commercial sectors all over the world �NBS����
DES is also the root of many other data encryption algorithms proposed in
the past decade� including LOKI �BKPS���� FEAL �Miy�	� and IDEA �LM�	�
LaSM�	� Lai�
�� A core component of these encryption algorithms are the so�
called S�boxes or substitution boxes� each essentially a tuple of nonlinear Boolean
functions� In most cases� these boxes are the only nonlinear component in an
underlying encryption algorithm� The same can be said with one�way hashing
algorithms which are commonly employed in the process of signing and authen�
ticating electronic messages �ZPS��� Riv�
� NIST���� These all indicate the vital
importance of the design and analysis of nonlinear cryptographic Boolean func�
tions�

Encryption and authentication require cryptographic �Boolean� functions
with a number of critical properties that distinguish them from linear �or ane�
functions� Among these properties are high nonlinearity� high degree of propaga�
tion� few linear structures� high algebraic degree etc� These properties are often
called nonlinearity criteria� An important topic is to investigate relationships
among the various nonlinearity criteria� Progress in this direction has been made
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in �SZZ��d�� where connections have been revealed among the strict avalanche
characteristic� di�erential characteristics� linear structures and nonlinearity� of
quadratic functions�

In this paper we carry on the investigation initiated in �SZZ��d� and bring
together nonlinearity and propagation characteristic of a function �quadratic or
non�quadratic�� These two cryptographic criteria are seemly quite separate� in
the sense that the former indicates the minimum distance between a Boolean
function and all the ane functions whereas the latter forecasts the avalanche
behavior of the function when some input bits to the function are complemented�

In particular we show that if f � a function on Vn� satis�es the propagation
criterion with respect to all but a subset � of Vn� then the nonlinearity of f
satis�es Nf � 
n�� � 
n�

�
�
���� where � is the maximum dimension a linear

sub�space contained in f�g � �Vn ��� can achieve�
We also show that 
n�� is the tight lower bound on the nonlinearity of f if f

satis�es the propagation criterion with respect to at least one vector in Vn� As
an immediate consequence� the nonlinearity of a function that ful�lls the SAC
or strict avalanche criterion is at least 
n���

Two techniques are employed in the proofs of our main results� The �rst
technique is in regard to the structure of �� the set of vectors where the function
f does not satisfy the propagation criterion� By considering a linear sub�space
with the maximum dimension contained in f�g � �Vn � ��� together with its
complementary sub�space� we will be able to identify how the vectors in � are
distributed� The second technique is based on a novel idea of re�ning Parseval�s
equation� a well�known relationship in the theory of orthogonal transforms� A
combination of these two techniques together with some careful analyses proves
to be a powerful tool in examining the relationship among nonlinearity criteria�

The organization of the rest of the paper is as follows� Section 
 introduces ba�
sic notations and conventions� while Section � presents background information
on the Walsh�Hadamard transform� The distribution of vectors where the prop�
agation criterion is not satis�ed is discussed in Section �� This result is employed
in Section � where a quantitative relationship between nonlinearity and propaga�
tion characteristics is derived� This relationship is further developed in Section �
to identify a tight lower bound on nonlinearity of functions with propagation
characteristics� The paper is closed by some concluding remarks in Section ��

� Basic De�nitions

We consider Boolean functions from Vn to GF �
� �or simply functions on Vn��
Vn is the vector space of n tuples of elements from GF �
�� The truth table of
a function f on Vn is a ��� 	��sequence de�ned by �f����� f����� � � �� f���n�����
and the sequence of f is a �	��	��sequence de�ned by ���	�f����� ��	�f�����
� � �� ��	�f���n����� where �� � ��� � � � � �� ��� �� � ��� � � � � �� 	�� � � �� ��n���� �
�	� � � � � 	� 	�� The matrix of f is a �	��	��matrix of order 
n de�ned by M �
���	�f��i��j��� f is said to be balanced if its truth table contains an equal number
of ones and zeros�

An a�ne function f on Vn is a function that takes the form of f�x�� � � � � xn� �
a�x� � � � � � anxn � c� where aj� c � GF �
�� j � 	� 
� � � � � n� Furthermore f is
called a linear function if c � ��
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De�nition�� The Hamming weight of a ��� 	��sequence s� denoted by W �s��
is the number of ones in the sequence� Given two functions f and g on Vn�
the Hamming distance d�f� g� between them is de�ned as the Hamming weight
of the truth table of f�x� � g�x�� where x � �x�� � � � � xn�� The nonlinearity of
f � denoted by Nf � is the minimal Hamming distance between f and all ane
functions on Vn� i�e�� Nf � mini����������n�� d�f� �i� where ��� ��� � � �� ��n�� are
all the ane functions on Vn�

Note that the maximum nonlinearity of functions on Vn coincides with the
covering radius of the �rst order binary Reed�Muller code RM �	� n� of length 
n�

which is bounded from above by 
n�� � 

�
�
n�� �see for instance �CKHFMS�����

Hence Nf � 
n��� 

�
�
n�� for any function on Vn� Next we introduce the de�n�

ition of propagation criterion�

De�nition�� Let f be a function on Vn� We say that f satis�es

	� the propagation criterion with respect to � if f�x� � f�x � �� is a balanced
function� where x � �x�� � � � � xn� and � is a vector in Vn�


� the propagation criterion of degree k if it satis�es the propagation criterion
with respect to all � � Vn with 	 � W ��� � k�

f�x��f�x��� is also called the directional derivative of f in the direction ��
The above de�nition for propagation criterion is from �PLL��	�� Further work
on the topic can be found in �PGV�	�� Note that the strict avalanche criterion
�SAC� introduced by Webster and Tavares �Web��� WT��� is equivalent to the
propagation criterion of degree 	 and that the perfect nonlinearity studied by
Meier and Sta�elbach �MS��� is equivalent to the propagation criterion of degree
n where n is the number of the coordinates of the function�

While the propagation characteristic measures the avalanche e�ect of a func�
tion� the linear structure is a concept that in a sense complements the former�
namely� it indicates the straightness of a function�

De�nition�� Let f be a function on Vn� A vector � � Vn is called a linear
structure of f if f�x� � f�x � �� is a constant�

By de�nition� the zero vector in Vn is a linear structure of all functions
on Vn� It is not hard to see that the linear structures of a function f form a
linear sub�space of Vn� The dimension of the sub�space is called the linearity
dimension of f � We note that it was Evertse who �rst introduced the notion of
linear structure �in a sense broader than ours� and studied its implication on
the security of encryption algorithms �Eve����

A �	��	��matrixH of order m is called a Hadamard matrix if HHt � mIm�
where Ht is the transpose of H and Im is the identity matrix of order m� A
Sylvester�Hadamard matrix of order 
n� denoted by Hn� is generated by the
following recursive relation

H� � 	� Hn �

�
Hn�� Hn��

Hn�� �Hn��

�
� n � 	� 
� � � � � �	�

Let �i� � � i � 
n�	� be the i row of Hn� By Lemma 
 of �SZZ��a�� �i is the
sequence of a linear function �i�x� de�ned by the scalar product �i�x� � h�i� xi�
where �i is the ith vector in Vn according to the ascending order�
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De�nition�� Let f be a function on Vn� The Walsh�Hadamard transform of f
is de�ned as

�f��� � 
�
n
�

X
x�Vn

��	�f�x��h��xi

where � � �a�� � � � � an� � Vn� x � �x�� � � � � xn�� h�� xi is the scalar product of �
and x� namely� h�� xi �

Ln

i�� aixi� and f�x��h�� xi is regarded as a real�valued
function�

The Walsh�Hadamard transform� also called the discrete Fourier transform�
has numerous applications in areas ranging from physical science to communi�
cations engineering� It appears in several slightly di�erent forms �Rot��� MS���
Dil�
�� The above de�nition follows the line in �Rot���� It can be equivalently
written as

� �f ����� �f ����� � � � � �f���n���� � 
�
n
� �Hn

where �i is the ith vector in Vn according to the ascending order� � is the
sequence of f and Hn is the Sylvester�Hadamard matrix of order 
n�

De�nition�� A function f on Vn is called a bent function if its Walsh�Hadamard
transform satis�es

�f ��� � �	

for all � � Vn�

Bent functions can be characterized in various ways �AT��� Dil�
� SZZ��a�
YH���� In particular the following four statements are equivalent�

�i� f is bent�

�ii� h�� �i � �

�
�
n for any ane sequence � of length 
n� where � is the sequence

of f �
�iii� f satis�es the propagation criterion with respect to all non�zero vectors in

Vn�
�iv� M � the matrix of f � is a Hadamard matrix�

Bent functions on Vn exist only when n is even �Rot���� Another important
property of bent functions is that they achieve the highest possible nonlinearity

n�� � 


�
�
n���

� More on Walsh�Hadamard transform and Nonlinearity

As the Walsh�Hadamard transform plays a key role in the proofs of main results
to be described in the following sections� this section provides some background
knowledge on the transform� More information regarding the transform can be
found in �MS��� Dil�
�� In addition� Beauchamp�s book �Bea��� is a good source
of information on other related orthogonal transforms with their applications�

Given two sequences a � �a�� � � � � am� and b � �b�� � � � � bm�� their component�
wise product is de�ned by a 	 b � �a�b�� � � � � ambm�� Let f be a function on Vn�
For a vector � � Vn� denote by ���� the sequence of f�x � ��� Thus ���� is the
sequence of f itself and ���� 	 ���� is the sequence of f�x� � f�x � ���

139



Set
���� � h����� ����i�

the scalar product of ���� and ����� ���� is also called the auto�correlation of
f with a shift �� Obviously� ���� � � if and only if f�x�� f�x��� is balanced�
i�e�� f satis�es the propagation criterion with respect to �� On the other hand� if
j����j � 
n� then f�x��f�x��� is a constant and hence � is a linear structure
of f �

Let M � ���	�f��i��j�� be the matrix of f and � be the sequence of f � Due
to a very pretty result by R� L� McFarland �cf� Theorem ��� of �Dil�
��� M can
be decomposed into

M � 
�nHn diag�h�� ��i� � � � � h�� ��n��i�Hn �
�

where �i is the ith row of Hn� a Sylvester�Hadamard matrix of order 
n�
Clearly

MMT � 
�nHn diag�h�� ��i
�� � � � � h�� ��n��i

��Hn� ���

On the other hand� we always have

MMT � ����i � �j���

where i� j � �� 	� � � � � 
n � 	�
Comparing the two sides of ���� we have

������������� � � � �����n���� � 
�n�h�� ��i
�� � � � � h�� ��n��i

��Hn�

Equivalently we write

������������� � � � �����n����Hn � �h�� ��i
�� � � � � h�� ��n��i

��� ���

In engineering� ��� is better known as �a special form of� the Wiener�Khintchine
Theorem �Bea���� A closely related result is Parseval�s equation �Corollary ��
p� �	� of �MS����

�n��X
j��

h�� �ji
� � 
�n

which also holds for any function f on Vn�
Let S be a set of vectors in Vn� The rank of S is the maximum number of

linearly independent vectors in S� Note that when S forms a linear sub�space of
Vn� its rank coincides with its dimension�

The distance between two functions f� and f� on Vn can be expressed as
d�f�� f�� � 
n�� � �

� h��� ��i� where �� and �� are the sequences of f� and f�
respectively� �For a proof see for instance Lemma � of �SZZ��a��� Immediately
we have�

Lemma�� The nonlinearity of a function f on Vn can be calculated by

Nf � 
n�� �
	



maxfjh�� �iij� � � i � 
n � 	g

where � is the sequence of f and ��� � � �� ��n�� are the rows of Hn� namely� the
sequences of the linear functions on Vn�
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The next lemma regarding splitting the power of 
 can be found in �SZZ��d�

Lemma�� Let n � 
 be a positive integer and p��q� � 
n where both p � � and
q � � are integers� Then p � 


�
�
n and q � � when n is even� and p � q � 


�
�
�n���

when n is odd�

In the next section we examine the distribution of the vectors in ��

� Distribution of �

Let f be a function on Vn� Assume that f satis�es the propagation criterion
with respect to all but a subset � of Vn� Note that � always contains the zero
vector �� Write � � f�� ��� � � � � �sg� Thus j�j � s � 	�

Set �c � Vn � �� Then f satis�es the propagation criterion with respect to
all vectors in �c�

Consider the set of vectors f�g��c� Then f�g is a linear sub�space contained
in f�g��c� When jf�g��cj 	 	� f�� �g is a linear sub�space for any nonzero vec�
tor in �c� We are particularly interested in linear sub�spaces with the maximum
dimension contained in f�g � �c� For convenience� denote by � the maximum
dimension and by W a linear sub�space in f�g��c that achieves the maximum
dimension�

Obviously� f is bent if and only if � � n� and f does not satisfy the propa�
gation criterion with respect to any vector if and only if � � �� The case when
	 � � � n � 	 is especially interesting�

Now let U be a complementary sub�space of W � namely U �W � Vn� Then
each vector � � Vn can be uniquely expressed as � � � � 
� where � � W and

 � U � As the dimension of W is �� the dimension of U is equal to n� �� Write
U � f�� 
�� � � � � 
�n����g�

Proposition�� �
W � f�g and �
�W�
j� �� �� whereW�
j � f��
jj� �
Wg� j � 	� � � � � 
n�� � 	�

Proof� � 
W � f�g follows from the fact that W is a sub�space of f�g � �c�
Next we consider � 
 �W � 
j��

Clearly�
Vn � W � �W � 
�� � � � � � �W � 
�n������

In addition�
W 
 �W � 
j� � �

for j � 	� � � � � 
n�� � 	� and

�W � 
j� 
 �W � 
i� � �

for any j �� i� Assume for contradiction that � 
 �W � 
j�� � � for some j��
	 � j� � 
n�� � 	� Then we have W � 
j� � �c� In this case W � �W � 
j��
must form a sub�space of Vn� This contradicts the de�nition that W is a linear
sub�space with the maximum dimension in f�g � �c� This completes the proof�

ut

The next corollary follows directly from the above proposition�

Corollary�� The size of � satis�es j�j � 
n�� and hence the rank of � is at
least n � �� where � is the maximum dimension a linear sub�space in f�g � �c

can achieve�
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� Relating Nonlinearity to Propagation Characteristics

We proceed to the discussion of the nonlinearity of f � The main diculty lies in
�nding a good approximation of h�� �ii for each i � �� � � � � 
n� 	� where � is the
sequence of f and �i is a row of Hn�

First we assume that

W � f�j� � �a�� � � � � a�� �� � � � � ��� ai � GF �
�g ���

U � f�j� � ��� � � � � �� a���� � � � � an�� ai � GF �
�g ���

where W is a linear sub�space in f�g��c that achieves the maximumdimension
� and U is a complementary sub�space of W � The more general case where ���
or ��� is not satis�ed can be dealt with after employing a nonsingular transform
on the input of f � This will be discussed in the later part of this section�

Recall that � � f�� ��� � � � � �sg and ���� � h����� ����i� where ���� is the
sequence of f�x � ��� Since ���� �� � for each � � � while ���� � � for each
� � �c � Vn � �� ��� is specialized as

������������ � � � ����s��Q � �h�� ��i
�� � � � � h�� ��n��i

��� ���

where � is the sequence of f � �i is the ith row of Hn and Q comprises the �th�
��th� � � �� �sth rows of Hn� Note that Q is an �s � 	� 
n matrix�

Let � be the �th row of Hn� where � � �� Note that � can be uniquely
expressed as � � �� 
� where � � W and 
 � U � Let �� be the �th row of H�

and ��� be the 
th row of Hn��� As Hn � H� Hn��� � can be represented by
� � ��  ���� where  denotes the Kronecker product�

From the construction of Hn��� we can see that the 
th row of Hn�� is an
all�one sequence of length 
n�� if 
 � �� and a balanced �	��	��sequence of
length 
n�� if 
 �� ��

Recall that � 
W � f�g �see also Proposition ��� There are two cases as�
sociated with � � � � 
 � �� � � � and � �� �� In the �rst case� � � ��  ���

is the all�one sequence of length 
n� while in the second case� we have 
 �� �
which implies that ��� is a balanced �	��	��sequence of length 
n�� and hence
� � ��  ��� is a concatenation of 
� balanced �	��	��sequences of length 
n���

Therefore we can write Q � �Q�� Q�� � � � � Q������ where each Qi is a �	��	��
matrix of order �s�	�
n��� It is important to note that the top row of each Qi

is the all�one sequence� while the rest are balanced �	��	��sequences of length

n���

With Q�� we have

������������ � � � ����s��Q� � �h�� ��i
�� � � � � h�� ��n����i

���

Let �� be the all�one sequence of length 
n��� Then

������������ � � � ����s��Q��
T
� � �h�� ��i

�� � � � � h�� ��n����i
���T� �

This causes

������������ � � � ����s��

�
���

n��

�
���
�

�
��� �

�n����X
j��

h�� �ji
�
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and
�n����X
j��

h�� �ji
� � 
n������ � 
n���n � 
�n���

Similarly� with Qi� i � 	� � � � � 
� � 	� we have

�n����X
j��

h�� �j�i�n��i
� � 
�n���

Thus we have the following result�

Lemma��� Assume that f � a function on Vn� satis�es the propagation criterion
with respect to all but a subset � of vectors in Vn� Set �c � Vn � � and let W
be a linear sub�space with the maximum dimension �� in f�g � �c� and U be
a complementary sub�space of W � Assume that W and U satisfy ��� and ���
respectively� Then

�n����X
j��

h�� �j�i�n��i
� � 
�n��

for all i � �� 	� � � � � 
� � 	� where � is the sequence of f and each �k is a row of
Hn�

Lemma 	� can be viewed as a re�nement of Parseval�s equation
P�n��

j�� h�� �ji
� �


�n� It implies that jh�� �jij � 
n�
�
�
� for all j � �� � � � � 
n � 	� Therefore by

Lemma � we have Nf � 
n�� � 
n�
�
�
����

So far we have assumed that W and U satisfy ��� and ��� respectively� When
this is not the case� we can always �nd a nonsingular n  n matrix A whose
entries are from GF �
� such that the sub�spaces W � and U � associated with
f ��x� � f�xA� have the required forms� f � and f have the same algebraic degree
and nonlinearity �see Lemma 	� of �SZZ��b��� This shows that the following
theorem is true�

Theorem��� For any function on Vn� the nonlinearity of f satis�es Nf �


n��� 
n�
�
�
���� where � is the maximum dimension of the linear sub�spaces in

f�g � �c�

Theorem 		 indicates that the nonlinearity of a function is determined by
the maximum dimension that a linear sub�spaces in f�g � �c can achieve� but
not by the size of �c�

In �SZZ��e�� we have proved that Nf � 
n���

�
�
�n�t���� where t is the rank

of �� By Corollary �� we have t � n � �� This implies that 
n�� � 
n�
�
�
��� �


n���

�
�
�n�t���� Thus Theorem 		 is an improvement to the result in �SZZ��e��

This improvement can be demonstrated by a concrete example� In �SZZ��e�� the
following function on V�

f��x�� x�� x�� x	� x�� � �	� x���	� x��x� � �	� x��x�x	 �

x��	� x���x� � x	�� x�x��x	 � x��
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has been shown to satisfy the propagation criterion with respect to all but the
following �ves vectors in V��

� � f��� �� �� ����� ��������� 	�� ����� �� 	� ��� ��� �� 	������ ��� ��	�	� 	�g�

The rank t of � is equal to �� By using the result of �SZZ��e�� Nf� � 
��� �



�
�
������� � 
	�
� � �� On the other hand� we can setW � f�a�� a�� a�� a	� a��jai �

GF �
�� a�� a� � a� � �g� W is a four�dimensional sub�space in f�g��c� Using

Theorem 		 with � � �� we have Nf� � 
��� � 
��
�
�
��� � 
	 � 
� � 	
 	 ��

�Note that according to �CKHFMS���� the maximumnonlinearity a function on
V� can achieve is 	
� Hence we have Nf� � 	
��

� A Tight Lower Bound on Nonlinearity of Functions with

Propagation Characteristics

By Theorem 		� Nf � 
n��� 
n�
�
� if f � a function on Vn� satis�es the propaga�

tion criterion with respect to at least one vector in Vn� This section shows that
this lower bound can be signi�cantly improved� Indeed we prove that Nf � 
n��

and also show that it is tight�

Theorem��� If f � a function on Vn� satis�es the propagation criterion with
respect to one or more vectors in Vn� then the nonlinearity of f satis�es Nf �

n���

Proof� As in the previous sections� we denote by � the set of vectors in Vn
with respect to which the propagation criterion is not satis�ed by f � We also
let �c � Vn � �� and W be a linear sub�space in f�g � �c that achieves the
maximum dimension ��

By Theorem 		� the theorem is trivially true when � 	 	� Next we consider
the case when � � 	� We prove this part by further re�ning the Parseval�s
equation�

As in the proof of Lemma 	�� without loss of generality� we can assume that

W � f�j� � �a�� �� � � � � ��� a� � GF �
�g ���

U � f�j� � ��� a�� � � � � an�� ai � GF �
�g ���

Similarly to Lemma 	�� we have

�n����X
j��

h�� �
j�i��n�� i

� � 
�n��� i � �� 	� �	��

where � is the sequence of f and �k is a row of Hn�
Comparing the �rst row of �
�� we have

�a�� a�� � � � � a�n��� � 
�n�h�� ��i� � � � � h�� ��n��i�Hn

or equivalently�


n�a�� a�� � � � � a�n��� � �h�� ��i� � � � � h�� ��n��i�Hn �		�
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where each aj � �	 and �a�� a�� � � � � a�n��� is the �rst row of the matrix M
described in �
��

Rewrite �i� the ith row of Hn� as ���i�� where �i is the binary representation
of an integer i in the ascending alphabetical order� Set

N � �h�� ���i � �j�i�� � � i� j � 
n � 	�

N is a symmetric matrix of order 
n with integer entries� In �Rot���� Rothaus
has shown that NN � NNT � 
�nI�n � We can split N into four sub�matrices
of equal size� namely

N �

�
N� N�

N� N�

�

where each Nj is a matrix of order 
n��� As NN � 
�nI�n � we have N�N� � ��
Let �c����� c����� � � � � c���n������ be an arbitrary linear sequence of length


n��� Then

�c����� c����� � � � � c���n������ c����� c����� � � � � c���n������

is a linear sequence of length 
n� and hence a row of Hn� Thus from �		�� we
have

�n����X
j��

c��j�h�� ���j�i�
�n����X
j��

c��j�h�� ���j � 
n���i � �
n�

Hence

�
�n����X
j��

c��j�h�� ���j�i�
�n����X
j��

c��j�h�� ���j � ��n���i�
� � 
�n� �	
�

Rewrite the left hand side of �	
� as

�
�n����X
j��

c��j�h�� ���j�i�
� � �

�n����X
j��

c��j�h�� ���j � ��n���i�
�

� 
�
�n����X
j��

c��j�h�� ���j�i��
�n����X
j��

c��j�h�� ���j � ��n���i�

where

�
�n����X
j��

c��j�h�� ���j�i��
�n����X
j��

c��j�h�� ���j � ��n���i�

�
�n����X
t��

�n����X
j��

c��j�h�� ���j�ic��j � �t�h�� ���j � �t � ��n���i� �	��

As �c����� c����� � � � � c���n������ is a linear sequence� c��j�c��j��t� � c��t��
Hence �	�� can be written as

�n����X
t��

c��t�
�n����X
j��

h�� ���j�ih�� ���j � �t � ��n���i�

145



Since N�N� � ��

�n����X
j��

h�� ���j�ih�� ���j � �t � ��n���i � ��

This proves that �	�� is equal to zero and hence

�
�n����X
j��

c��j�h�� ���j�i�
� � �

�n����X
j��

c��j�h�� ���j � ��n���i�
� � 
�n�

By Lemma ��

�n����X
j��

c��j�h�� ���j�i � � or �
n� �	��

Since �c����� c����� � � � � c���n������ is an arbitrary linear sequence of length

n�� and each linear sequence of length 
n�� is a column of Hn��� from �	�� we
have

�h�� ��i� � � � � h�� ��n��i�Hn�� � 
n�b�� � � � � b�n����� �	��

where bj � � or �	� Therefore

�h�� ��i� � � � � h�� ��n��i�

�
�
���n�Hn�� � 


�
�
�n����b�� � � � � b�n������

Recall that a matrix A of order s is said to be orthogonal if AAT � Is� It is easy
to verify that 


�
�
���n�Hn�� is an orthogonal matrix� Thus

�n��X
j��

h�� ��j
i� � 
n��

�n����X
j��

b�j �

On the other hand� by �	�� we have

�n��X
j��

h�� ��j
i� � 
�n���

Hence
�n����X
j��

b�j �
�n����X
j��

jbjj � 
n���

Now let ���i� denote the ith row of Hn��� where �i � Vn�� is the binary
representation of i� i � �� 	� � � �� 
n�� � 	� From �	���

�h�� ��i� � � � � h�� ��n��i�Hn�����i�
T � 
n�b�� � � � � b�n��������i�

T � �	��

Note that

h���i�� ���j�i �

�

n�� if j � i
� if j �� i

146



Thus

Hn�����i�
T �

�
����������

�
���
�


n��

�
���
�

�
����������

�	��

where 
n�� is on the ith position of the column vector�
Write ���i� � �d�� d�� � � � � d�n������ Then

�b�� � � � � b�n��������i�
T �

�n����X
j��

djbj�

As dj � �	� we have

j
�n����X
j��

djbjj �
�n����X
j��

jbjj � 
n��� �	��

From �	��� �	�� and �	��


n��jh�� �iij � 
n
�n����X
j��

jbjj � 
�n��

and hence
jh�� �iij � 
n��

where i is an arbitrary integer in ��� � � � � 
n��� 	�� Similarly�

jh�� �iij � 
n��

holds for all i � 
n��� 
n�� � 	� � � � � 
n � 	� By Lemma �� the nonlinearity of f
satis�es

Nf � 
n�� � 
n�� � 
n���

This completes the proof� ut

As an immediate consequence� we have

Corollary��� Let f be a function on Vn� Then the following statements hold	


� if the nonlinearity of f satis�es Nf  
n��� then f does not satisfy the
propagation criterion with respect to any vector in Vn�

�� if f satis�es the SAC� then the nonlinearity of f satis�es Nf � 
n���
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Finally we show that the lower bound 
n�� is tight� We achieve the goal
by demonstrating a function on Vn whose nonlinearity is equal to 
n��� Let
g�x�� x�� � x�x� be a function on V�� Then the nonlinearity of g is Ng � 	�
Now let f�x�� � � � � xn� � x�x� be a function on Vn� Then the nonlinearity of f
is Nf � 
n��Ng � 
n�� �see for instance Lemma � of �SZZ��c��� f satis�es the
propagation criterion with respect to all vectors in Vn whose �rst two bits are
nonzero� which count for three quarters of the vectors in Vn� It is not hard to
verify that

f��� �� �� � � � � ��� �	� �� �� � � �� ��� ��� 	� �� � � �� ��� �	� 	� �� � � �� ��g

is the linear sub�space that achieves the maximum dimension � � 
�
Thus we have a result described as follows�

Lemma�	� The lower bound 
n�� as stated in Theorem 
� is tight�

� Conclusion

We have shown quantitative relationships between nonlinearity� propagation
characteristics and the SAC� A tight lower bound on the nonlinearity of a func�
tion with propagation characteristics is also presented�

This research has also introduced a number of interesting problems yet to
be resolved� One of the problems is regarding the size and distribution of �c�
the set of vectors where the propagation criterion is satis�ed by a function on
Vn� For all the functions we know of� �c is either an empty set or a set with at
least 
n�� vectors� We believe that any further understanding of this problem
will contribute to the research into the design and analysis of cryptographically
strong nonlinear functions�
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