Reusing Shares in Secret Sharing Schemes

Yuliang Zheng
Thomas Hardjono
Jennifer Seberry

The Centre for Computer Security Research
Department of Computer Science
University of Wollongong
Wollongong, NSW 2522 Australia

E-mail: yuliang/thomas/jennie@cs.uow.edu.au
Phone: +61 42 21 4327
Fax: +61 42 21 4329

Submission for The Computer Journal



Reusing Shares in Secret Sharing Schemes

Abstract

A (t,w) threshold scheme is a method for sharing a secret among w shareholders
so that the collaboration of at least ¢ shareholders is required in order to reconstruct
the shared secret. This paper is concerned with the re-use of shares possessed by
shareholders in threshold schemes. We propose a simple (¢, w) threshold scheme based
on the use of cryptographically strong pseudo-random functions and universal hash
functions. A remarkable advantage of the scheme is that a shareholder can use a single
string in the share of many different secrets, in particular, a shareholder need not be
given a new share each time a new secret is to be shared.

Keywords:  Cryptography, Information Security, Secret Sharing.

1 Introduction

The problem of maintaining a secret among w shareholders whereby at least ¢ of them are
required to cooperate before the secret can be reproduced was first posed by Shamir [10]
and Blakley [3]. Since then a number of (¢,w) threshold schemes have been suggested by
researchers in the field of cryptography [12]. These schemes provide the property that by
using any t or more pieces of the shared secret, which are called shares hereafter, the whole
shared secret can be derived, while at the same time maintaining that any ¢ — 1 or less
shares will be insufficient to derive the shared secret. The shared secret itself can be a
master key to a cryptographic system, a vault-lock combination, or even a decision which
must be arrived at by at least ¢ members in an organisation.

A common drawback of these proposed schemes is that each time when a shared secret is
recovered, all shares of the secret including those which did not participate in the recovering
process become useless. Therefore each shareholder has to be given a new share when a new
secret is to be shared. In this paper we propose a simple (¢, w) threshold scheme based on the
use of the pseudo-random function family [5] and the universal hash function family [4, 13].
This scheme can remedy the above mentioned drawback. Another remarkable advantage
of the scheme is that a shareholder can use a single string in the share of many different
secrets.

This paper is organised as follows. Section 2 will discuss the background in the basic
constructs necessary for the foundation of the secret sharing scheme. In particular, this will
consist of the definitions of pseudo-random function families and universal hash function
families. Using these basic constructs, the secret sharing scheme is presented in Section 3,
which is followed by an example of the scheme in Section 4. Section 5 discusses security
and recycleability of the scheme and Section 6 compares the scheme with that suggested by
Shamir [10] together with a discussion on the advantages and disadvantages of the scheme.
The paper is closed by some remarks and conclusion in Section 7.

2 Basic Constructs

Denote by N the set of all positive integers, 3 the alphabet {0,1} and #S the number of
elements in a set S. Denote by n an integer in A that determines many parameters such



as the length of a shared secret, the length of shares, the security level of a secret sharing
scheme and so on. In the literature such an interger n is called a security parameter. By
TERS we mean that z is chosen randomly and uniformly from the set S. The composition
of two functions f and g is defined as f o g(z) = f(g(z)). Throughout the paper £ and m
will be used to denote polynomials from N to N.

We are concerned with collections of functions induced by the security paraneter n. In
particular, we are interested in F' = J,c Fp, an infinite family of functions, where F,, is
a collection of functions from X% to ™™ namely, F, = {f|f : 2™ — pmM} We
call F' a function family mapping £(n)-bit input to m(n)-bit output strings. F' is said to be
polynomial time computable if there is a polynomial time (in n) algorithm that computes
all f € F, and samplable if there is a probabilistic polynomial time algorithm that on input
n € N outputs uniformly at random a description of f € F,,. Note that if F = [, Fy,
is samplable, then the description of a function in Fj, is “compact” in the sense that the
length of the description is bounded by a polynomial in n.

2.1 Pseudo-random Function Families

This subsection introduces the concept of pseudo-random functions. Intuitively, a function
family ¥ = U,cn Frn is a pseudo-random function family (PRFF) if to a probabilistic
polynomial time algorithm, the output of a function f chosen randomly and uniformly from
F,,, whose description is unknown to the algorithm, appears to be totally uncorrelated to the
input of f, even if the algorithm can choose input for f. The formal definition is described
in terms of (uniform) statistical tests for functions. A (uniform) statistical test for functions
is a probabilistic polynomial time algorithm A that, given n as input and access to an oracle
Oy for a function f : »in) 5 55m(n) | outputs a bit 0 or 1. The algorithm A can query the
oracle only by writing on a special tape some z € $") and will read the oracle answer f (x)
on a separate answer-tape. The oracle prints its answer in one step.

Definition 1 Let F' = |J,cn F be an infinite family of functions, where F, = {f|f :
i) Em(")}. Assume that F is both polynomial time computable and samplable. F is a
pseudo-random function family iff for any statistical test A, for any polynomial Q, and for
all sufficiently large n,

Ipl, =l < 1/Q(n) (1)
where p{fb denotes the probability that A outputs 1 on input n and access to an oracle Oy
for fErF, and p] the probability that A outputs 1 on input n and access to an oracle O,
for a function r chosen randomly and uniformly from the set of all functions from Tt™) o
2™™) . The probabilities are computed over all the possible choices of f, r and the internal
coin tosses of A.

The concept of pseudo-random functions were first introduced by Goldreich, Goldwasser
and Micali in [5]. In the same paper they have also shown that pseudo-random function
families can be constructed from pseudo-random string generators [5]. By a result of Im-
pagliazzo, Levin and Luby [7, 6], the existence of one-way functions is sufficient for the
construction of pseudo-random function families.

We are interested in a particular type of pseudo-random function families F' = | J,,c»r Frs
where F,, can be represented by F,, = {fia|ide € X", figs : nin) Zm(")}. For such a



pseudo-random function family, each function in F), is uniquely indexed by an n-bit string
in X". Thus to select a function from F,, uniformly at random, we only have to choose a
random n-bit string.

In practice, such a pseudo-random function family can be easily constructed from a
strong data encryption algorithm, plus a bit imagination. The most widely used data en-
cryption algorithm is perhaps the Data Encryption Standard (DES) proposed by FIPS [1].
DES is a strong encryption algorithm that transforms a 64-bit plaintext into a 64-bit ci-
phertext using a 56-bit key. Without knowing the key, the output of DES appears to be
indistinguishable with a random 64-bit string. We can consider DES as a set of functions,
DESs¢ = {des;q|idz € Sigma®®, des;dz : %% — ¥4}, each of which is uniquely specified
by a 56-bit string and implements a mapping from Sigma® to Sigma%. To finish the
construction, we can assume that there is an infinite family of DES-like algorithms, say
DES;, ..., DESg5, DES56, DESs7, ..., where each DES; is an encryption algorithm that
is designed using the same priciples as for designing DES (=DESs4), and transforms an
(¢ + 8)-bit plaintext into an (¢ + 8)-bit ciphertext using an i-bit key.

2.2 Universal Hash Function Families

Universal hash function families (UHFFs) [4, 13] play an essential role in many recent major
results in cryptography and theoretical computer science [6, 7, 9]. Let H = U,cn Hy, be
a family of functions mapping #(n)-bit input into m(n)-bit output strings. For two strings
z,y € 2" with z # y, we say that z and y collide with each other under h € H,, or z and
y are siblings under h € H,,, if h(x) = h(y).

Definition 2 Let H = |J,,cnr Hy be a family of functions that is polynomial time com-
putable, samplable and maps £(n)-bit input into m(n)-bit output strings. Let D, = {z €
»/™|3h € H,,3y € ™™ such that h(z) = y} and R, = {y € ¥"™|3h € H,, 3z €
) such that y = h(z)}. Let k > 2 be a positive integer. H is a (strongly) k-universal
hash function family if for all n, for all k (distinct) strings x1,xo,...,2x € Dy and all k
Strings y1,Y2, - - -, Yk € Ry, there are #Hn/(#Rn)k functions in H,, that map z1 to y1, xo
to yo, ..., and xp to yg.

An equivalent definition for the (strongly) k-universal hash function family is that for
all k£ (distinct) strings x1,z9,...,2x € D,, when h is chosen uniformly at random from
H,, the concatenation of the k resultant strings y; = h(x1),y2 = h(z2),...,yx = h(zk)
is distributed randomly and uniformly over the k-fold Cartesian product Rfl of R,. The
following collision accessibility property is a useful one.

Definition 3 Let H = U, cn Hn be a family of functions that is polynomial time com-
putable, samplable and maps £(n)-bit input into m(n)-bit output strings. Let k > 1 be a
positive integer. H has the k-collision accessibility property, or simply the collision acces-
sibility property, if for all n and for all 1 < i < k, given any set X = {x1,x9,...,2;}
of i strings in XM it is possible in probabilistic polynomial time to select randomly and
uniformly functions from H.X, where HX C H, is the set of all functions in H, that map
T1, T2, ..., and x; to the same strings in nm(n)



k-universal hash function families with the collision accessibility property can be ob-
tained from polynomials over finite fields [4, 13]. First we note that there is a natrual
one-to-one correspondence between strings in ") and elements in GF(2)"). This allows
us to interchange a £(n)-bit string and an element in GF(2)“™). Now denote by P, the
collection of all polynomials over GF (24(”)) with degrees less than £, i.e.,

P, = {ao +ar+---+ ak,lxk*1|a0, al,...,0k_1 € GF(Zé(n))} (2)

For each p € P,, let h), be the function obtained from p by chopping the first £(n) — m(n)
bits of the output of p whenever ¢(n) > m(n), or by appending a fixed m(n)—£(n)-bit string
to the output of p whenever ¢(n) < m(n). Let H, = {hp|p € P,}, and H = ,,cr Hn. Then
H is a strongly k-universal hash function family, which maps #(n)-bit input into m(n)-bit
output strings and has the collision accessibility property.

3 A New Secret Sharing Scheme

This section describes a new (¢, w) threshold scheme for w = O(log n), where n is the length
of a secret to be shared. We assume that each secret K to be shared has a serial number Ng.
We also assume that the w shareholders have identities I Dy, I D>, ..., ID,, respectively. For
simplicity the w shareholders will be denoted by Uy, Us, ..., U, respectively. In describing
the scheme, we assume that there is a trusted dealer who holds a secret K to be shared.
The scheme will be described in terms of the following three aspects:

1. Initial Status of the dealer and the w shareholders.

2. Dispersing Phase in which the dealer splits the secret K into w pieces, each of which
corresponds to a shareholder, in such a way that at least ¢ of the pieces are required
to reconstruct the shared secret K.

3. Recovering Phase in which ¢ or more shareholders work together in order to reconstruct
the shared secret K.

3.1 Initial Status

Initially, the dealer holds an n-bit secret K to be shared and each shareholder U; has a n-bit
secret key K; which is randomly chosen by the shareholder. The dealer should determine a
pseudo-random function family F' = {F,|n € N'} where F,, = {figz|idz € X", figy : 1) —
¥"} and each function f;4, € F, is specified by an n-bit string idz. The dealer should
also determine a z-universal hash function family H = {H,|n € N} which is based on
polynomials over finite fields and maps an n-bit input into n-bit output strings and has the
collision accessibility property (see Section 2.2), where z, which is to be determined below,
denotes the total number of combinations of the w shareholders taken at least ¢ at a time.



3.2 Dispersing Phase

Recall that the number of ways to choose an i-element subset (0 < i < w) from a w-element,

set is '
C(w,i)z(?)zm (3)

From this equation, the number of combinations of the w shareholders taken at least t at a
time will consist of the following summation:

()l (m) e

Denote by By, Bs, ..., B, the z different combinations of the w shareholders taken at
least ¢ at a time. Note that w = O(logn) and that z = O(2%) = 0(2¢'6™) = O(n°) for some
constant c¢. For each B;, we associate it with a w-bit identity G;. The j-th bit (1 < j < w)
of G; corresponds to the shareholder Uj, and it is set to 1 if and only if U; is a member of
B;.

The core part of the secret sharing scheme is the following steps taken by the dealer:

1. For each set B; (1 < i < z), merge the keys Ki,, Ki,,..., K;; of the shareholders
Uiy, Uiy, .., Ui; in B; together by the use of the following bit-wise exclusive-OR op-
eration:

Xi = fr;, (Tiiy) @ iy, (Liin) © -+ @ [y (Tiiy) (5)

where j denotes the number of shareholders in B;, each f K, (I;;,) is provided to the
dealer by shareholder U;,, and I;;, is the concatenation of ID;,, G; and Nk (i.e.
Li;, = ID;, || Gi || Nk). It is assumed that the length in bits of I;; is £(n). Note
that the secret key K; of shareholder U; is used as an index to specify a function
in F,,. One reason for the need to use the function f is to ensure that only actual
shareholders are able to derive the string X;. Hence an element of authenticity, in
that only shareholder U; knows Kj, is introduced into the scheme. The key K; held
by shareholder U; represents a share of the shared secret K.

2. Choose uniformly and randomly from H,, a function h such that the z resulting values
X1,X5,...,X, corresponding to the sets By, Ba,..., B, are mapped to the secret K,
ie.

h(X1) =h(X2) = =nX,;)=K (6)

3. Make the function h public along with the fact that h is associated with the shared
secret with serial number Ng.

3.3 Recovering Phase

When the shareholders U;,,U,,, ..., Ui; in the set B; want to reconstruct the shared secret
K, they put together fr, (Zi,), fK,, (Lijin)s-- - ,fKij (1ii;), and calculate

Xi = f&;, (i) @ frei, (Lii) © -+ © fre; (Liiy) (7)



Then they calculate
K = h(X;) (8)

which is the shared secret to be recovered.

Using this method any combination of at least ¢ out of the w shareholders can get
together corresponding to one of the sets B; (i < z) while maintaining secret their own
keys through the use of f. After the shared key K has been used, and thus known to the
shareholders in set B;, it is discarded and a new key K’ is selected together with a new
function A’ from H,, that maps X{, X),..., X to K'. Here X{, X},..., X represents the
new values derived from f due to the change in the serial number N to the new serial
number Ng+. More details on these issues are presented in Section 5.

4 An Example

This section presents a practical example that employs the encryption algorithm DES as
a pseudo-random function. We consider the case where w = 4 shareholders Uy, Uy, U3 and
Uy are involved in a t = 2 secret sharing scheme. The total number of combinations of four
shareholders taken (at least) two at a time will be

z=i<2ii>:<§>+<§>+<j>=6+4+1=11. (9)

More specifically, we have the following eleven different groups By, Bo, ..., Bi1:

By = {U1,Us}, Gy = 1100
By = {Uy, U3}, G = 1010
By = {U1, Uy}, G5 = 1001
By = {Us,Us}, G4 = 0110
Bs = {Us, Uy}, G5 = 0101
Bg = {Us, Uy}, Gg = 0011
B; = {Ul, Us, U3}, G7=1110
Bg = {U1,Us, Uy}, Gy = 1101
By = {Uy,Us, Uy}, Go = 1011

Bio = {Ug, Us, U4}7 G1p = 0111
By = {U1,U,U3,Us} Gy = 1111.

In the above table Gy, Go,...,G11 are the idenitities of the groups.

Each shareholder U;, 1 < i < 4, selects a 56-bit random string K; and keeps it secret.
K1, K>, K3 and K, will participate in the secret sharing and recovering procedure.

Now suppose that the dealer has a 64-bit key K which he wants to disperse into the four
shareholders in such a way that two or more of the shareholders can recover the secret key
K at a later stage. We further suppose that K has a 10-bit serial number Ng associated
with it, and each shareholder U; has a unique 50-bit identity I D;. Thus the length of the
concatenation of a 50-bit shareholder identity, a 4-bit group identity and a 10-bit serial
number is precisely 64 bits.



The dealer initiates the secret sharing procedure by informing the four shareholders the
10-bit serial number Ng. Note that Uy is a member of

Bla B?a B33B7a BSaBQa Blla
Us a member of
Bla B43B5a B?a BSaBIOaBlla

Us a member of
Bs, By, Bg, B7, By, B1g, Bi1,

and Uy a member of
B3, Bs, B, Bg, By, Big, B11.

Upon recieving Ng from the dealer, the four shareholders use the encryption algorithm
DES to calculate the following 64-bit strings and pass them over to the dealer.
U1:

X11 = desk,(ID1]|G1]|Nk)
X12 = desk,(ID1]|G2||Nk)
X13 = desk,(ID1]|G3||Nk)
Xi7 = desk,(ID1]|G7||Nk)
Xis = desk,(ID1]|Gs||Nk)
X19 = desk,(ID1]|Gy||Nk)
X111 = desk, (ID1]|G11||Nk)
Us:
Xo1 = desk,(ID2]||G1||Nk)
Xo4 = desk,(IDs||G4||Nk)
Xo5 = desk,(IDs||G5||Nk)
Xo7 = desk,(IDs]||G7||Nk)
Xog = desk,(IDs||Gs||Nk)
Xo10 = desk,(ID3||G1o||Nk)
Xo11 = desk,(IDo||G11||NK)
Us:

X392 = desk,(IDs||Ga||Nk)
X34 = desk,(IDs3||G4||Nk)
X36 = desk,(IDs||Gg||Nk)
X37 = desk,(IDs||G7||Nk)
X39 = desg,(ID3||Go||Nk)
X310 = deskg,(IDs]|G1ol|NK)
Xz = deskg,(ID3]|G11||Nk)
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Xa0 = desk,(ID4||G1o]|Nk)
X411 = desg,(ID4||G11||Nk)

Xy3 = desk,(ID4||G5||Nk)
Xy5 = desk,(ID4||G5||Nk)
X4 = desg,(ID4||Gs||NK)
X8 = desg,(ID4||Gs||NK)
Xu9 = desg,(ID4||Gy||NK)
(
(

After recieving all the 28 strings from the four shareholders, the dealer derives from
them eleven new strings, each corresponds to one of the eleven groups:
X1 = X119 X9,
Xo = X120 X3
X3 = X130 Xy3
Xy = Xos® X34
X5 = Xos® Xup

Xe = X36@ Xup
X7 = X170 Xo7® X37
Xg = X138® Xog® Xug
X9 = Xi19® X390 Xy
X0 = X210 D X310 D X410
X1 = X110 X1 @ X311 D Xs11

Since there are eleven different combinations (groups), the dealer chooses a 11-universal
hash function family H = {H,|n € N} with the collision accessibility property. As is
mentioned earlier, this can be done by letting H,, be the set of all uni-variable polynomials
on GF(2") with degree not larger than ten. Now the dealer chooses from Hgy a random

function h(z) = ag + a1z + --- + a1ox'® such that the eleven results X;, Xo,..., X, are
mapped to K in the following way:
h(X1) =h(X3)=---=h(X11) =K. (10)
In determinating h, the dealer should consider two cases: (1) the eleven strings X1, X, ...
are distinct. (2) the eleven strings Xy, Xo,..., X1 are not distinct.
In the first case, the function h(z) = ag + ayx + - - - + a19x'? is uniquely determined by
solving the following linear equations on ag, a1, ..., a1p:
a0+a1X1+---+a10X110 = K
ap+ a1 Xo 4+ +apXy® = K
ap + a1X11 + -+ aloXII? = K

, X11



As the eleven strings X1, Xo,..., X1 are distinct, the linear equations have a unique solu-
tion.

In the second case, not all the eleven strings X, Xs,..., X1 are distinct. Without loss
of generality, suppose that only the first 1 < r < 11 strings X1, Xs,..., X, are distinct.
The dealer now chooses 11 — random 64-bit strings X, ,..., X]; so that X, Xo,..., X;,
X/, 1,...,X]; are all distinct. Then the dealer uses the same method as for the first
case to solve a set of eleven linear equations on ag, a1, ..., ajg. This give the function
h(z) = ag + ayx + - - + a1or'’.

Once the function h is determined, the dealer passes over the description of h, namely
the eleven coeeficients ag, a1, ..., a1g, to all the four shareholders. This completes the
dispersing phase.

Later when two or more shareholders, say U; and Us, want to recover the shareed secret
key K, they put together

X1,1 = desKl (ID1||G1||NK)

and
X1 = desk, (ID2||G1]|Nk)

and compute
X1 =X, Xo;1.

Now the secret key can be recovered by calculating
K = h(Xy).

After the key K is recovered, X1, Xo, ..., Xq1 all become un-wanted strings. Never-
therless, shareholder U;’s secret string K7 which has participated in the sharing procedure
of the key K remains un-copromised and is only known to U;. Similarly, Ko, K3 and K4
remain known to Uy, U3 and Uy respectively. Hence K7, K9, K3 and K4 can be used in the
sharing of the dealer’s new secret keys.

5 Security and Recycleability of the Scheme

This section discusses the following two issues on the scheme: security and recycleability.
Security is mainly concerned with the uncompromisability of the shared secret against
the illegal collaboration of ¢ — 1 shareholders, while recycleability is concerned with the
unpredictability of the keys of shareholders after the reconstruction of the shared secret.
Researchers distinguish two levels of security of a secret sharing scheme. One is called
information theoretic security, and the other computational security. A (t,w) threshold
scheme is information theoretically secure if the collaboration of ¢ — 1 shareholders does not
reveal any additional information on the shared secret in the sense of Shannon [11]. Note
that in this definition no limitation is imposed on the computational power of sharehold-
ers. For this reason, information theoretic security is also called unconditional security or
perfect security. For many practical applications, a looser security, computational security,
is enough. A formal definition of computational security is introduced in the following.
Consider a (¢, w) threshold scheme, where w = w(n), 1 < ¢t = t(n) < w and n is the
security parameter. Denote by /C, the key space indexed by n and D, the probability

10



distribution over K, according to which keys from I, are chosen. Assume that the com-
putational power of shareholders is bounded by probabilistic polynomial time. Let K be a
shared secret which is chosen from K, according to D,,. Denote by p;(D,,) the probability
that ¢ (1 <4 < t) shareholders succeed in extracting the shared secret K by collaboration,
and by po(D),) the maximum probability that a probabilistic polynomial time algorithm,
which is aware of the probability distribution D,,, succeeds in obtaining K on input n. ,
Informally, a threshold scheme is computationally secure if the difference between the prob-
abilities p; and py is negligible. In other words, the illegal collaboration of ¢ < ¢t shareholders
brings no advantage in the extraction of the shared secret K.

Definition 4 Let D,, be a probability distribution on a key space KC,. A (t,w) threshold
scheme is computationally secure with respect to D, if for any polynomial @, for any
1 <i < t and for all sufficiently large n, |p;(Dy) — po(Dyn)| < 1/Q(n). A (t,w) threshold
scheme is computationally secure if it is computationally secure with respect to the uniform
distribution on the key space ICy,.

Our secret sharing scheme uses one-way functions in an essential way, therefore it can
not be information theoretically secure. We now prove that it is computationally secure.

Theorem 1 The (t,w) threshold scheme presented in Section 3 is computationally secure
for w = O(logn).

Proof : Note that for this scheme, the key space is I;, = 3". Therefore, when a shared
secret K is chosen uniformly at random from /C,,, we have po(D,,) = 1/2", where D,, denotes
the uniform distribution on K,,. Now we show that for any ¢ < n and for any polynomial
Q we have p;(D,) < 1/Q(n) for all sufficiently large n. Suppose for contradiction that
there are 7 < t shareholders who can extract by collaboration the shared secret K with
probability 1/Q(n). Since instances of the UHFF based on polynomials over finite fields
are easily invertible, the 7 shareholders can obtain the exclusive-OR of the outputs of f
specified by keys unknown to the 7 shareholders. (These keys are possessed by shareholders
not collaborating with the 7 shareholders.) This contradicts the un-predictability of the
PRFF. From po(Dy) = 1/2" and pi(Da) < 1/Q(n) we have [pi(Dn) — po(Da)| < 1/Q(n).
This completes the proof. |

A secret sharing scheme has recycleability property if no information on the keys of
shareholders is released after the re-construction of shared secrets. The recycleability prop-
erty of our secret sharing scheme follows from the fact that the outputs of instances of
PRFF on different inputs look un-correlated to probabilistic polynomial time algorithms.
Note that recycleability is equivalent to the property that shareholders can use the same
keys in sharing different secrets simultaneously.

6 Comparison with Shamir’s Scheme

The scheme suggested by Shamir [10] consists of the division of a shared secret K into w
pieces K1, Ko, ..., K, and the use of a polynomial

p(z) =ag+ a1z + ayr® + - +ap_1zt7! (1)

11



of degree t — 1 to disperse the pieces. By placing a¢p = K and evaluating
Ky =p(1),Ky =p(2),..., K, = p(w) (12)

any subset of ¢ (f < w) of the K; values can be used to find the coefficients of p(z) by
interpolation and the shared secret K contained in ag can then be recovered by simply
calculating p(0) = ap = K. The calculations are done modulo a prime P where P > w and
P > K, and the coefficients of the polynomial are chosen randomly from the elements of
the finite field GF(P).

In our scheme the concept of sharing a secret that is only retrievable by the collaboration
of at least ¢ shareholders is fundamentally the same as that suggested by Shamir. However,
an important difference lies in the fact that the shareholders do not hold pieces of the secret
in the sense of Shamir’s scheme. Rather, each shareholder holds a key, any ¢ (at least) of
which can be combined together to recreate the shared secret. The keys of the shareholders
are maintained as a secret by each shareholder in the same manner that he or she would
maintain the secrecy of his or her share in Shamir’s scheme. Inherent in our approach is
the advantage that the secret key of a shareholder can be selected by him or her, and can
be used many times independent of the shared secret.

Another advantage of our approach is the variable length in bits of the shared secret K.
In general the shared secret K can be polynomially longer than that of the secret key K; of
each shareholder U;. This compares favorably with Shamir’s scheme where the shared key
K and the key K; of the shareholder U; are of equal length.

A further advantage lies in the fact that our scheme can be easily adapted to a general
access structure. The notion of a general access structure refers to the situation where a
secret can be divided among a set of shareholders such that any “qualified subset” of the
shareholders can reconstruct the secret while the unqualified subsets cannot [8, 2]. The
(t,w) threshold scheme is in fact only a special case of the general access structure. It is
not clear how Shamir’s threshold scheme can be adapted to a general access structure.

Our scheme has a disadvantage in the small number of shareholders w, namely w =
O(logn), where n is the length in bits of the shared secret K. Recall that the number of
combinations of the w shareholders taken at least ¢ at a time is

w—t w
z = ; ( i ) (13)
which is of order O(2%). In general, for a z-universal hash function family H = {H,|n € N},
the size of a description of a function h € H, is of order O(n°z) = O(n“2") which grows
exponentially with w, where c is a constant. For practical purposes we must maintain the
size of the description of & to be of order O(n?) for some constant d. This means that we
must keep w to be of order w = O(logn) for the scheme to be practical. However, this
restriction does not render the scheme unusable since many practical situations require a
small number of shareholders. This is particularly true in the case of a vault in a bank
where the authority to open the vault of a bank director may be distributed among a small
number of w managers in the form of shares of the key K to the vault. Then at least ¢ of
the w (¢ < w) managers would be required in order to open the vault when the director is
unavailable.
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7 Conclusion and Remarks

In this paper we have presented a simple secret sharing scheme based on the pseudo-random
function family (PRFF) [5] and on the universal hash function family (UHFF) [4]. The
scheme employs combinations of w shareholders taken at least ¢ at a time. These different
combinations form a number of sets of shareholders, each of which represents an individual
input to an instance of the universal hash function family which maps the inputs to the
desired shared secret. The advantage of our approach lies in the freedom of each shareholder
to choose his or her own secret key (corresponding to his or her “piece” of the shared secret)
and in the re-usability of his or her secret key which is not compromised even when the
shared secret is recreated by ¢ or more shareholders.

Our approach to secret sharing has opened a number of avenues for further research.
These include research into finding schemes that will remove the restrictions on the size
of w and into other mathematical constructs suitable for the formation of secret sharing
schemes having recycleable shares.
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