Security Properties of Software Components

Khaled Khan, Jun Han, Yuliang Zheng

Peninsula School of Computing and Information Technology.
Monash University
McMahons Road, Frankston
VIC 3199 Australia.
Fax: +61-3-99044124

{khaled, jhan,yuliang}@mars.pscit.monash.edu.au

Abstract. This paper classifies security properties of software compo-
nents into two broad categories: (1) non-functional security (NFS) prop-
erties, and (2) properties as security function (SF). Non-functional secu-
rity properties are codified and embedded with the component function-
ality, whereas, properties as security functions are employed as external
protection to the component. In most cases, users may add additional
external protection to the binary form of the component. This classi-
fication could be used to determine how much the overall security of
the component is dependent on the non-functional security properties of
the component and to what extent the additional external protections
are required in order to use the component in their specific application
environment.

Keywords. Software component, Security properties, Component func-
tionality

1 Motivation

Software component security is concerned with the protection of the resources,
data, and computational properties of individual components and the enclos-
ing system. The security of software component is very much dependent on the
role that the component plays in a specific application environment. Software
components need to be customised with the application environment where it
is deployed. In most cases, third-party software components need external pro-
tection employed by the users to meet their specific application requirements.
Due to the binary representation of the component, software composers are not
able to modify the security properties that are embedded at the implementation
level. We believe that overall security properties of software components should
be classified into two categories, and this information should be available for
users’ inspection before a candidate component is selected.

There is a growing concern on the issue of characterising the component security
properties in recent days as expressed in [?], [?], [?], [?] ,[?], [?]- The purpose
of this paper is to identify various sources of security features that are codi-
fied with the component functionality. Most of the research conducted in recent
days related to component security are involved in detecting and removing the

security flaws of components. We believe that security of component should be
considered differently than the case of application systems because of the dis-
tributed usage of the component. In this paper, we are not going to propose any
new security technique or assessment, rather we define different types of security
properties that are placed various ways enforcing certain security objective of
the component.

2 Classes of component security properties

In this section, we define two distinguished classes of security properties related
to software components such as properties as security function (SF) and non-
functional security (NES) properties.

Properties as security functions (SF) are those that provide secure encas-
ing to the components, protecting the component from any security threat from
the outside of its boundary. External security features can be added to compo-
nents as functions. We call them security functions (SF). On the other hand,
non-functional security (NFS) properties are inherited in the internal imple-
mentation of the component, that is, some security features are codified with
the functionality that the component provides. We term these features as non-
functional security properties (NFS). Usually, NFS properties are some security
enforcement mechanisms that are already embedded in various forms with the
functionality of the component at the implementation level. NFS properties are,
in fact, the implementation of highly abstract security objectives that are in-
tended to counter certain security threats. NFS properties are attached with
various aspects of the component functionality in different layers of implementa-
tion, each representing a specific level of abstraction to achieve certain security
objective. Whereas, SFs are considered some kind of external protection mecha-
nisms of components which are not directly related to the component function-
ality. SFs can be designed and added to the existing component. For example,
a wrapper can be written to protect the component from a potential security
threat. The authentication of component origin and identity is considered as a
SF. This type of SF protects the enclosing system from being assembled with an
unauthorised component. Particularly in a dynamic assembly scenario, a target
component may be located in a remote server whose identities may or may not
be authenticated.

NFS properties are embedded with the component functionality to prevent the
threat of usage violation. A component may employ certain NFS properties to
guard its sensitive data and functionality from being violated by other unautho-
rised entities. The NFS properties embedded with the component’s functionality
may have substantial impact on the entire security mechanism of the composed
system. It is not enough to make a system secure by adding SF such as encryp-
tion technology or secure protocols for data transmission to the component if
the implementation of the component has security flaws. A great effort in de-
signing SFs such as a strong authentication and access control mechanism can

be easily ruined by a single security flaw embedded with the functionality [?].
If there is a weak NFS property in a sensitive operation, the rest of the strong
SFs may not help much to protect the component. Authorisation mechanisms
such as access control cannot always be guaranteed in a single access control
mechanism, instead further protection may be required in terms of NFS prop-
erties to protect the functionality and the internal data of the component. In
the next section, we will see how these two types of security properties enforce
certain security objectives in various ways. To illustrate these two phenomena
of component security properties we analyse a simple example in the following
section.

3 An example

In our example, a medical system used by the medical practitioners is dynamically
assembled with a software component time to time as needed. The component
caters the diagnosis reports on patients to the legitimate users. ONLY selected
users have access to the reports of his/her own patients although they may have
access to the other services provided by the component.

The service of the component in which we are interested in is a set of opera-
tions supported by an interface structure. The interface name and its associated
attributes are visible to the users, but the operations are not. The various layers
of SF and NFS properties identified in the example are illustrated in Fig. ?7?.
We show in this figure how different security properties enforce certain security
objectives by analysing the execution behaviour of the cited example. The circles
denote various layers of security properties both as SF and NFS, and the arrows
show the sequence of the execution behaviour of the component.

aComponent:: getDiagnosisReport

evel 1 (SF): checkPassword()

evel 2 (NFS): checkDataType

User's
application [,
system

Level 3 (NFS): checkA uthorisation

Functionality: evel 4 (NFS):Y ||
eadReport(initialise() /)

Fig. 1. SF and NFS Properties at Various levels

3.1 Identifying security properties

In the top level of the layer, we can find a SF concerning with the authentication
and access control of the user to the component. The function is implemented by
the operation checkPassword(), and used to protect the component from being
accessed by any unauthorised entities. The function allows the user to assemble
the component with the application system. It is not related to the functionality
of the user system or the component, hence labeled as SF. Second level of the
security is provided in terms of a NFS property implemented by the operation
checkDataType(). This operation is closely related with the component function-
ality since it computes the output based on the input received from the user
system. For a smooth processing, this NFS property is used to ensure that all
input data values must be in correct type and range, but it has also a secu-
rity side-effect that was not designed intentionally for security purposes. It is
often reported that incompatibilities of the input values may lead to undesir-
able security problems of the component. Next level security in the hierarchy
is provided by the operation checkAuthorisation() just before the main function
readReport() of the component is executed. This operation does not employ any
authentication or password to verify the authorisation, rather a tuple associated
with the patientID in the database file verifies this. If the patient tuple in the
database entry does not contain the userID value, the system would not autho-
rise the user to read the data associated with the patientID. Finally, the security
property supported by the operation initialiseAllVariables() in the layer 4 is a
NFS that simply initialises all internal variables to enforce certain security ob-
jective, because users may leave a trail of data shadow with the contents of the
data they manipulated [?].

3.2 Observations
We observe following characteristics from this simple example.

— some operations are implemented as underlying logical framework into the
component functionality, and act as security side effects

— security properties propagate from high level to the low level security prop-
erties

— users interact directly with the SF

— users do not have direct interaction with the NFS properties

— users are unaware of the presence of the NFS properties unless any of their
actions violates the NFS properties

— SF property acts as an external protection to the component

— NFS properties protect the internal data and operations as well as the func-
tionality of the component.

— some of the NFS properties were not intentionally programmed for security
purposes.

However, it is quite possible to uncover more NSF properties from this exam-
ple if we analyse the implementation details of the operations, like call sequences,
parameter passing, file permissions, and so on.

4 Summary and further work

In addition to the characterisation, all these extracted SF and NFS properties
could be further assessed in terms of their strength and weakness. The presence of
several SF and NFS properties in a functionality do not dictate that the function
is secure, rather their relative strength and implementation mechanisms must be
taken into active consideration. The characterisation and assessment of SF and
NFS properties can be augmented with the functional and assurance require-
ments defined in the Common Criteria for the Information Technology Security
Evaluation, version 2.0 ISO/IEC 15408 [?]. If we can manage to characterise the
SF and NFS properties, and use them as component label with proper sealing
technique using a digital signature, it may increase the user confidence on the
component technology. The security characteristics on the label can also guide
the user to decide whether a component would be able to meet the specific se-
curity requirements of their application or not. The NFS information published
on the component label would assist the user to design and add additional se-
curity protection to the component to meet their specific security requirements.
Simply adding security functions onto an existing component may not be as
effective as if they were embedded with the component functionality. It is the
internal computing properties that determine the ultimate behaviour of the com-
ponent. We are currently exploring the possibility of applying Common Criteria
requirements to software components to characterise the security properties of
components. Such an effort may lead to defining a formal characterisation model
that would help us to specify properly all SF and NFS properties of software
components. Our research objective is to formalise a concrete characterisation
framework, which could be used as the basis of software component certification.

