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Abstract. Signcryption is a new paradigm in public key cryptography
that simultaneously fulfills both the functions of digital signature and
public key encryption in a logically single step, and with a cost signifi-
cantly lower than that required by the traditional “signature followed by
encryption” approach. This paper summarizes currently known construc-
tion methods for signcryption, carries out a comprehensive comparison
between signcryption and “signature followed by encryption”, and sug-
gests a number of applications of signcryption in the search of efficient
security solutions based on public key cryptography.

Keywords

Authentication, Digital Signature, Encryption, Key Distribution, Secure Mes-
sage Delivery/Storage, Public Key Cryptography, Security, Signcryption.

1 Introduction

To avoid forgery and ensure confidentiality of the contents of a letter, for cen-
turies it has been a common practice for the originator of the letter to sign
his/her name on it and then seal it in an envelope, before handing it over to a
deliverer.

Public key cryptography discovered nearly two decades ago [9] has revolution-
ized the way for people to conduct secure and authenticated communications. It
is now possible for people who have never met before to communicate with one
another in a secure and authenticated way over an open and insecure network
such as the Internet. In doing so the same two-step approach has been followed.
Namely before a message is sent out, the sender of the message would sign it
using a digital signature scheme, and then encrypt the message (and the signa-
ture) using a private key encryption algorithm under a randomly chosen message
encryption key. The random message encryption key would then be encrypted
using the recipient’s public key. We call this two-step approach signature-then-
encryption.
? An invited lecture at the 1997 Information Security Workshop (ISW’97), Lecture

Notes in Computer Science, Vol.1397, pp.291-312, Springer-Verlag, 1998.



Signature generation and encryption consume machine cycles, and also in-
troduce “expanded” bits to an original message. Symmetrically, a comparable
amount of computation time is generally required for signature verification and
decryption. Hence the cost of a cryptographic operation on a message is typically
measured in the message expansion rate and the computational time invested
by both the sender and the recipient. With the current standard signature-then-
encryption approach, the cost for delivering a message in a secure and authen-
ticated way is essentially the sum of the cost for digital signature and that for
encryption.

In [30], we addressed a question on the cost of secure and authenticated mes-
sage delivery, namely, whether it is possible to transfer a message of arbitrary
length in a secure and authenticated way with an expense less than that required
by signature-then-encryption. In the same paper, we also presented a positive
answer to the question. In particular, we discovered a new cryptographic primi-
tive termed as “signcryption” which simultaneously fulfills both the functions of
digital signature and public key encryption in a logically single step, and with a
cost significantly smaller than that required by signature-then-encryption. More
specifically, it has been shown in [30] that for the minimum security parameters
recommended for the current practice (size of public moduli = 512 bits), sign-
cryption costs 58% less in average computation time and 70% less in message
expansion than does signature-then-encryption based on the discrete logarithm
problem, while for security parameters recommended for long term security (size
of public moduli = 1536 bits), it costs on average 50% less in computation time
and 91% less in message expansion than does signature-then-encryption using
the RSA cryptosystem. The saving in cost grows proportionally to the size of
security parameters. Hence it will be more significant in the future when larger
parameters are required to compensate theoretical and technological advances
in cryptanalysis.

The following section is an exposition on how signcryption can be imple-
mented by the use of so-called shortened ElGamal based digital signature schemes.

2 Digital Signcryption — A More Economical Approach

Intuitively, a digital signcryption scheme is a cryptographic method that fulfills
both the functions of secure encryption and digital signature, but with a cost
smaller than that required by signature-then-encryption. Using the terminology in
cryptography, it consists of a pair of (polynomial time) algorithms (S,U), where
S is called the signcryption algorithm, while U the unsigncryption algorithm.
S in general is probabilistic, while U is most likely to be deterministic. (S, U)
satisfy the following conditions:

1. Unique unsigncryptability — Given a message m of arbitrary length, the al-
gorithm S signcrypts m and outputs a signcrypted text c. On input c, the al-
gorithm U unsigncrypts c and recovers the original message un-ambiguously.

2. Security — (S,U) fulfill, simultaneously, the properties of a secure encryption
scheme and those of a secure digital signature scheme. These properties



mainly include: confidentiality of message contents, unforgeability, and non-
repudiation.

3. Efficiency — The computational cost, which includes the computational time
involved both in signcryption and unsigncryption, and the communication
overhead or added redundant bits, of the scheme is smaller than that re-
quired by the best currently known signature-then-encryption scheme with
comparable parameters.

The rest of this section is devoted to seeking for concrete implementations of
signcryption.

Since its publication in 1985, ElGamal digital signature scheme [11] has re-
ceived extensive scrutiny by the research community. In addition, it has been gen-
eralized and adapted to numerous different forms (see for instance [26, 4, 23, 25]
and especially [14] where an exhaustive survey of some 13000 ElGamal based sig-
natures has been carried out.)

In [30], a method for shortening an ElGamal based signature is shown. Ap-
plying the shortening method to Digital Signature Standard (DSS) yields two
different shortened signature schemes. These two schemes are summarized in Ta-
ble 1, and are denoted by SDSS1 and SDSS2 respectively. As a side note, both
SDSS1 and SDSS2 are preferable to DSS in the sense that they admit a shorter
signature and provable security (albeit under a strong assumption).

Shortened
schemes

Signature (r, s)
on a message m

Verification of
signature

Length of
signature

SDSS1
r = hash(gx mod p,m)
s = x/(r + xa)mod q

k = (ya · gr)s mod p
check whether hash(k,m) = r

|hash(·)|+ |q|

SDSS2 r = hash(gx mod p,m)
s = x/(1 + xa · r)mod q

k = (g · yr
a)s mod p

check whether hash(k,m) = r
|hash(·)|+ |q|

p: a large prime (public to all),
q: a large prime factor of p− 1 (public to all),
g: an integer with order q modulo p chosen randomly from [1, . . . , p−1] (public
to all),
hash: a one-way hash function (public to all),
x: a number chosen uniformly at random from [1, . . . , q − 1],
xa: Alice’s private key, chosen uniformly at random from [1, . . . , q − 1],
ya: Alice’s public key (ya = gxa mod p).

Table 1. Examples of Shortened and Efficient Signature Schemes



Parameters public to all:
p — a large prime
q — a large prime factor of p− 1
g — an integer with order q modulo p chosen randomly from [1, . . . , p− 1]
hash — a one-way hash function whose output has, say, at least 128 bits
KH — a keyed one-way hash function
(E, D) — the encryption and decryption algorithms of a private key cipher

Alice’s keys:
xa — Alice’s private key, chosen uniformly at random from [1, . . . , q − 1]
ya — Alice’s public key (ya = gxa mod p)

Bob’s keys:
xb — Bob’s private key, chosen uniformly at random from [1, . . . , q − 1]
yb — Bob’s public key (yb = gxb mod p)

Table 2. Parameters for Signcryption

2.1 Implementing Signcryption with Shortened Signature

An interesting characteristic of a shortened ElGamal based signature scheme
obtained in the method described above is that although gx mod p is not ex-
plicitly contained in a signature (r, s), it can be recovered from r, s and other
public parameters. This motivates us to construct a signcryption scheme from a
shortened signature scheme.

We exemplify our construction method using the two shortened signatures
in Table 1. The same construction method is applicable to other shortened sig-
nature schemes based on ElGamal. As a side note, Schnorr’s signature scheme,
without being further shortened, can be used to construct a signcryption scheme
which is slightly more advantageous in computation than other signcryption
schemes from the view point of a message originator.

In describing our method, we will use E and D to denote the encryption and
decryption algorithms of a private key cipher such as DES [22] and SPEED [31].
Encrypting a message m with a key k, typically in the cipher block chaining
or CBC mode, is indicated by Ek(m), while decrypting a ciphertext c with k
is denoted by Dk(c). In addition we use KHk(m) to denote hashing a message
m with a keyed hash algorithm KH under a key k. An important property of
a keyed hash function is that, just like a one-way hash function, it is computa-
tionally infeasible to find a pair of messages that are hashed to the same value
(or collide with each other). This implies a weaker property that is sufficient
for signcryption: given a message m1, it is computationally intractable to find
another message m2 that collides with m1. In [1] two methods for constructing
a cryptographically strong keyed hash algorithm from a one-way hash algorithm
have been demonstrated. For most practical applications, it suffices to define
KHk(m) = hash(k,m), where hash is a one-way hash algorithm.

Assume that Alice has chosen a private key xa from [1, . . . , q− 1], and made



public her matching public key ya = gxa mod p. Similarly, Bob’s private key is
xb and his matching public key is yb = gxb mod p. Relevant public and private
parameters are summarized in Table 2.

As shown in Table 3, the signcryption and unsigncryption algorithms are
remarkably simple. The signcrypted version of a message m is composed of three
parts c, r and s from which the recipient can recover the original message. Note
that in the table, ∈R indicates an operation that chooses an element uniformly
at random from among a set of elements.

Signcryption of m
by Alice the Sender

Unsigncryption of (c, r, s)
by Bob the Recipient

x ∈R [1, . . . , q − 1]
(k1, k2) = hash(yx

b mod p)
c = Ek1(m)
r = KHk2(m)
s = x/(r + xa)mod q

if SDSS1 is used, or
s = x/(1 + xa · r)mod q

if SDSS2 is used.

⇒ c, r, s ⇒

(k1, k2) = hash((ya · gr)s·xb mod p)
if SDSS1 is used, or

(k1, k2) = hash((g · yr
a)s·xb mod p)

if SDSS2 is used.
m = Dk1(c)
Accept m only if KHk2(m) = r

Table 3. Example Implementations of Signcryption

With the signcryption algorithm described in the left column of the ta-
ble, the output of the one-way hash function hash used in defining (k1, k2) =
hash(yx

b mod p) should be sufficiently long, say of at least 128 bits, which guar-
antees that both k1 and k2 have at least 64 bits. Also note that in practice,
(k1, k2) can be defined in a more liberal way, such as (k1, k2) = yx

b mod p and
(k1, k2) = fd(yx

b mod p), where fd denotes a folding operation.
The unsigncryption algorithm works by taking advantages of the property

that gx mod p can be recovered from r, s, g, p and ya by Bob.
In the following we use SCS1 and SCS2 to denote the two signcryption

schemes constructed from SDSS1 and SDSS2 respectively.

2.2 Name Binding

In some applications such as electronic cash payment protocols, the names/identifiers
of participants involved may need to be tightly bound to messages exchanged.
This can be achieved by explicitly including their names into the contents of a
message. Alternatively, data related to participants’ names, such as public keys
and their certificates, may be included in the computation of r in the signcryp-
tion algorithm. Namely, we may define

r = KHk2(m, bind info)



where bind info may contain, among other data, the public keys or public key
certificates of both Alice the sender and Bob the recipient. The corresponding
unsigncryption algorithm can be modified accordingly. Compared with an ex-
ponentiation modulo a large integer, the extra computational cost invested in
hashing bind info is negligible.

Involving the recipient’s public key yb or his public key certificate in the
computation of r is particularly important. To see this point, let (c, r, s) be a
signcrypted text of m (from Alice to Bob) where the computation of r does not
involve identification information on Bob the recipient, and consider a situation
where m represents a committment/statement for Alice to transfer a certain
amount of money (or valuable goods) to the recipient of the message. Assume
that a third participant Cathy has xc as her private key and yc = gxc mod p
as her matching public key. Furthermore, assume that Bob and Cathy are a
pair of collusive and dishonest friends, and that their private keys are related
by xb = w · xc mod q. Then a modified text (c, r, s∗), where s∗ = w · smod q,
may represent a perfectly valid message from Alice to Cathy, and hence it
might be obligatory for Alice to pay the same of amount money to both Bob
and Cathy ! Clearly, such a collusive attack can be easily thwarted by defining
r = KHk2(m, yb, etc).

2.3 Extensions

Signcryption schemes can also be derived from ElGamal-based signature schemes
built on other versions of the discrete logarithm problem such as that on elliptic
curves [16]. In addition, Lenstra’s new method for constructing sub-groups based
on cyclotomic polynomials [17] can also be used to implement signcryption even
more efficiently.

There is also a marginally less efficient version of signcryption schemes in
which Alice’s private key xa participates in the computation of k. Taking SCS1
as an example, we can re-define the computation of k by Alice in the signcryption
algorithm as k = hash(yx+xa

b mod p), and correspondingly, the computation of k

by Bob in the unsigncryption algorithm as k = hash((y(s+1)·xb
a ) ·(gr·s·xb)mod p).

3 Cost of Signcryption v.s. Cost of Signature-Then-
Encryption

The most significant advantage of signcryption over signature-then-encryption
lies in the dramatic reduction of computational cost and communication over-
head which can be symbolized by the following inequality:

Cost(signcryption) < Cost(signature) + Cost(encryption).

The purpose of this section is to examine the advantage in more detail. The
necessity of such an examination is justified by the facts that the computational
cost of modular exponentiation is mainly determined by the size of an exponent,



and that RSA and discrete logarithm based public key cryptosystems normally
employ exponents that are quite different in size.

For readers who are not interested in technical details in the comparison,
Table 4 summarizes the advantage of SCS1 and SCS2 over discrete logarithm
based signature-then-encryption, while Table 5 summarizes that over RSA based
signature-then-encryption.

security parameters saving saving in
|p| |q| |KH·(·)| average comp. cost comm. overhead
512 144 72 58% 70.3%
1024 160 80 58% 81.0%
1536 176 88 58% 85.3%
2048 192 96 58% 87.7%
4096 256 128 58% 91.0%
8192 320 160 58% 94.0%
10240 320 160 58% 96.0%

saving in average comp. cost = (5.17−2.17) modular exponentiations
5.17 modular exponentiations = 58%

saving in comm. cost = |hash(·)|+|q|+|p|−(|KH·(·)|+|q|)
|hash(·)|+|q|+|p|

Table 4. Saving of Signcryption over Signature-Then-Encryption Using Schnorr
Signature and ElGamal Encryption

3.1 A Comparison with Signature-Then-Encryption Using Schnorr
Signature and ElGamal Encryption

Saving in computational cost With the signature-then-encryption based on
Schnorr signature and ElGamal encryption, the number of modular exponen-
tiations is three, both for the process of signature-then-encryption and that of
decryption-then-verification.

Among the three modular exponentiations for decryption-then-verification,
two are used in verifying Schnorr signature. More specifically, these two exponen-
tiations are spent in computing gs ·yr

a mod p. Using a technique for fast computa-
tion of the product of several exponentials with the same modulo which has been
attributed to Shamir (see [11] as well as Algorithm 14.88 on Page 618 of [21]),
gs·yr

a mod p can be computed, on average, in (1+3/4)|q|modular multiplications.
Since a modular exponentiation can be completed, on average, in about 1.5|q|
modular multiplications when using the classical “square-and-multiply” method,
(1 + 3/4)|q| modular multiplications is computationally equivalent to 1.17 mod-
ular exponentiations. Thus with “square-and-multiply” and Shamir’s technique,
the number of modular exponentiations involved in decryption-then-verification



security parameters advantage in advantage in
|p|(= |na| = |nb|) |q| |KH·(·)| average comp. cost comm. overhead

512 144 72 0% 78.9%
1024 160 80 32.3% 88.3%
1536 176 88 50.3% 91.4%
2048 192 96 59.4% 93.0%
4096 256 128 72.9% 95.0%
8192 320 160 83.1% 97.0%
10240 320 160 86.5% 98.0%

advantage in average comp. cost = 0.375(|na|+|nb|)−3.25|q|
0.375(|na|+|nb|)

advantage in comm. cost = |na|+|nb|−(|KH·(·)|+|q|)
|na|+|nb|

Table 5. Advantage of Signcryption over Signature-Then-Encryption based on
RSA with Small Public Exponents

can be reduced from 3 to 2.17. The same reduction techniques, however, cannot
be applied to the sender’s computation. Consequently, the combined computa-
tional cost of the sender and the recipient is 5.17 modular exponentiations.

In contrast, with SCS1 and SCS2, the number of modular exponentiations
is one for the process of signcryption and two for that of unsigncryption re-
spectively. Since Shamir’s technique can also be used in unsigncryption, the
computational cost of unsigncryption is about 1.17 modular exponentiations.
The total average computational cost for signcryption is therefore 2.17 modular
exponentiations. This represents a

5.17− 2.17
5.17

= 58%

reduction in average computational cost.

Saving in communication overhead The communication overhead measured
in bits is |hash(·)|+ |q|+ |p| for the signature-then-encryption based on Schnorr
signature and ElGamal encryption, and |KH·(·)| + |q| for the two signcryption
schemes SCS1 and SCS2, where |x| refers to the size of a binary string, hash is
a one-way hash function and KH is a keyed hash function. Hence the saving in
communication overhead is

|hash(·)|+ |q|+ |p| − (|KH·(·)|+ |q|)
|hash(·)|+ |q|+ |p|

Assuming that the one-way hash function hash used in the signature-then-
encryption scheme and the keyed hash function KH used in the signcryption
scheme share the same output length, the reduction in communication overhead



is |p|. For the minimum security parameters recommended for use in current
practice: |KH·(·)| = |hash(·)| = 72, |q| = 144 and |p| = 512, the numerical value
for the saving is 70.3%. One can see that the longer the prime p, the larger the
saving.

3.2 A Comparison with Signature-Then-Encryption Using RSA

Advantage in computational cost With RSA, it is a common practice to
employ a relatively small public exponent e for encryption or signature verifica-
tion, although cautions should be taken in light of recent progress in cryptanal-
ysis against RSA with an small exponent (see for example [8, 7]). Therefore the
main computational cost is in decryption or signature generation which generally
involves a modular exponentiation with a full size exponent d, which takes on
average 1.5` modular multiplications using the “square-and-multiply” method,
where ` indicates the size of the RSA composite involved. With the help of the
Chinese Remainder Theorem, the computational expense for RSA decryption
can be reduced, theoretically, to a quarter of the expense with a full size expo-
nent, although in practice it is more realistic to expect the factor to be between
1/4 and 1/3. To simplify our discussion, we assume that the maximum speedup
is achievable, namely the average computational cost for RSA decryption is
1.5
4 ` = 0.375` modular multiplications.

For the signature-then-encryption based on RSA, four (4) modular exponen-
tiations are required (two with public exponents and the other two with private
exponents). Assuming small public exponents are employed, the computational
cost will be dominated by the two modular exponentiations with full size pri-
vate exponents. When the Chinese Remainder Theorem is used, this cost is on
average 0.375(|na|+ |nb|) modular multiplications, where na and nb are the RSA
composites generated by Alice and Bob respectively.

As discussed earlier, the two signcryption schemes SCS1 and SCS2 both in-
volve, on average, 2.17 modular exponentiations, or equivalently 3.25|q| modular
multiplications, assuming the “square-and-multiply” method and Shamir’s tech-
nique for fast computation of the product of exponentials with the same modulo
are used. This shows that the signcryption schemes represent an advantage of

0.375(|na|+ |nb|)− 3.25|q|
0.375(|na|+ |nb|)

in average computational cost over the RSA based signature-then-encryption.
For small security parameters, the advantage is less significant. This situation,
however, changes dramatically for large security parameters: consider |na| =
|nb| = |p| = 1536 and |q| = 176 which are recommended to be used for long
term (say more than 20 years) security, the signcryption schemes show a 50.3%
saving in computation, when compared with the signature-then-encryption based
on RSA.

The advantage of the signcryption schemes in computational cost will be
more visible, should large public exponents be used in RSA.



Advantage in communication overhead The signature-then-encryption based
on RSA expands each message by a factor of |na| + |nb| bits, which is multiple
times as large as the communication overhead |KH·(·)|+ |q| of the two signcryp-
tion schemes SCS1 and SCS2. Numerically, the advantage or saving of the sign-
cryption schemes in communication overhead over the signature-then-encryption
based on RSA is as follows:

|na|+ |nb| − (|KH·(·)|+ |q|)
|na|+ |nb|

For |na| = |nb| = 1536, |q| = 176 and |KH·(·)| = 88, the advantage is 91.4%.
The longer the composites na and nb, the larger the saving by signcryption.

Note that we have chosen not to compare the signcryption schemes with
unbalanced RSA recently proposed by Shamir [28]. The main reason is that while
the new variant of RSA is attractive in terms of its computational efficiency, its
security has yet to be further scrutinized by the research community.

4 More on Signcryption v.s. Signature-then-Encryption

In the previous section we concentrated on saving in computation and commu-
nication offered by signcryption schemes. A natural question is why signcryption
schemes can achieve the savings. To search for a possible answer to the ques-
tion, we have further compared signcryption with “signature-then-encryption”
and “signature-then-encryption-with-a-static-key”, in terms of key management,
forward secrecy, past recovery, repudiation settlement and users’ “community”
or world orientation.

We use the following encryption algorithm as an example of “signature-then-
encryption-with-a-static-key”: (c, r, s) where c = Ek(m), k = KHSV (r, s), SV is
a static key shared between Alice and Bob, and (r, s) is Schnorr’s signature on
m. Typical examples of SV include (a) a pre-shared random string between Alice
and Bob, (b) the Diffie-Hellman key gxaxb mod p, and (c) a shared key generated
by an identity-based key establishment scheme such as the key pre-distribution
scheme [19].

4.1 Static Key Management

We focus narrowly on the way a static key SV between two users is generated
and stored. If SV is defined as a pre-shared random string between Alice and
Bob, then first of all there is a cost associated with distributing the key before
a communication session takes place. In addition, storing it in secure memory
incurs a burden to a user, especially when the number of keys to be kept securely
is large. (These problems contributed to the motivation for Diffie and Hellman
to discover public key cryptography [9].)

On the other hand, if SV is defined as the Diffie-Hellman key gxaxb mod p,
then prior to using the value, a modular exponentiation is required on both
Alice and Bob’s sides. Alice and Bob may save the exponentiation by computing



SV = gxaxb mod p and storing it in secure memory. But then they face the same
problem with secure storage as that for a pre-shared random string. Similar
discussions apply to the case where SV is defined as a shared key using the key
pre-distribution scheme.

Now it becomes clear that static key generation/storage is a problem for
“signature-then-encryption-with-a-static-key”, but not for signcryption or “signature-
then-encryption”.

4.2 Forward Secrecy

A cryptographic primitive or protocol provides forward secrecy with respect to
a long term private key if compromise of the private key does not result in
compromise of security of previously communicated or stored messages.

With “signature-then-encrytpion”, since different keys are involved in signa-
ture generation and public key encryption, forward secrecy is in general guaran-
teed with respect to Alice’s long term private key. (Nevertheless, loss of Alice’s
private key renders her signature forgeable.) In contrast, with the signcryption
schemes, it is easy to see that knowing Alice’s private key alone is sufficient
to recover the original message of a signcrypted text. Thus no forward secrecy
is provided by the signcryption schemes with respect to Alice’s private key.
A similar observation applies to “signature-then-encryption-with-a-static-key”
with respect to Alice’s shared static key.

Forward secrecy has been regarded particularly important for session key
establishment [10]. However, to fully understand its implications to practical
security solutions, we should identify (1) how one’s long term private key may
be compromised, (2) how often it may happen, and (3) what can be done to
reduce the risks of a long key being compromised. In addition, the cost involved
in achieving forward secrecy is also an important factor that should be taken
into consideration.

There are mainly three causes for a long term private key being compromised:
(1) the underlying computational problems are broken; (2) a user accidentally
loses the key; (3) an attacker breaks into the physical or logical location where
the key is stored.

As a public key cryptosystem always relies on the (assumed) difficulty of
certain computational problems, breaking the underlying problems renders the
system insecure and useless. Assuming that solving underlying computational
problems is infeasible, an attacker would most likely try to steal a user’s long
term key through such a means as physical break-in.

To reduce the impact of signcryption schemes’ lack of forward secrecy on cer-
tain security applications, one may suggest users change their long term private
keys regularly. In addition, a user may also use techniques in secret sharing [27]
to split a long term private key into a number of shares, and keep each share in
a separate logical or physical location. This would significantly reduce the risk
of a long term key being compromised, as an attacker now faces a difficult task
to penetrate in a larger-than-a-threshold number of locations in a limited period
of time.



4.3 Past Recovery

Consider the following scenario: Alice signs and encrypts a message and sends it
to Bob. A while later, she finds that she wants to use the contents of the message
again.

To satisfy Alice’s requirement, her electronic mail system has to store some
data related to the message sent. And depending on cryptographic algorithms
used, Alice’s electronic mail system may either (1) keep a copy of the signed and
encrypted message as evidence of transmission, or (2) in addition to the above
copy, keep a copy of the original message, either in clear or encrypted form.

A cryptographic algorithm or protocol is said to provide a past recovery
ability if Alice can recover the message from the signed and encrypted message
alone using her private key.

Obviously a cryptographic algorithm or protocol provides past recovery if
and only if it does not provide forward secrecy with respect to Alice the sender’s
long term private key.

Thus both signcryption and “signature-then-encryption-with-a-static-key”
provide past recovery, while “signature-then-encrytpion” does not.

In terms of past recovery, one may view “signature-then-encrytpion” as an
information “black hole” with respect to Alice the sender: whatsoever Alice
drops in the “black hole” will never be retrieval to her, unless a separate copy is
properly kept. Therefore signcryption schemes are more economical with regard
to secure and authenticated transport of large data files. It is even more so when
Alice has to broadcast the same message to a large number of recipients. (See
also Section 6 for more discussions on broadcasting).

4.4 Repudiation Settlement

Now we turn to the problem of how to handle repudiation. With signature-then-
encryption, if Alice denies the fact that she is the originator of a message, all
Bob has to do is to decrypt the ciphertext and present to a judge (say Julie)
the message together with its associated signature by Alice, based on which the
judge will be able to settle a dispute.

With digital signcryption, however, the verifiability of a signcryption is in
normal situations limited to Bob the recipient, as his private key is required for
unsigncryption. Now consider a situation where Alice attempts to deny the fact
that she has signcrypted and sent to Bob a message m. Similarly to signature-
then-encryption, Bob would first unsigncrypt the signcrypted text, and then
present the following data items to a judge (Julie): q, p, g, ya, yb, m, r, and
s. One can immediately see that the judge cannot make a decision using these
data alone. To solve this problem, Bob and the judge have to engage in an
interactive zero-knowledge proof/argument protocol. Details will be discussed in
Section 5.3.

At the first sight, the need for an interactive repudiation settlement procedure
between Bob and the judge may be seen as a drawback of signcryption. Here we



argue that interactive repudiation settlement will not pose any problem in prac-
tice and hence should not be an obstacle to practical applications of signcryption.
In the real life, a message sent to Bob in a secure and authenticated way is meant
to be readable by Bob only. Thus if there is no dispute between Alice and Bob,
direct verifiability by Bob only is precisely what the two users want. In other
words, in normal situations where no disputes between Alice and Bob occur, the
full power of universal verifiability provided by digital signature is never needed.
(For a similar reason, traditionally one uses signature-then-encryption, rather
than encryption-then-signature. See also [6] for potential risks of forgeability ac-
companying encryption-then-signature.) In a situation where repudiation does
occur, interactions between Bob and a judge would follow. This is very similar to
a dispute on repudiation in the real world, say between a complainant (Bob) and
a defendant (Alice), where the process for a judge to resolve the dispute requires
in general interactions between the judge and the complainant, and furthermore
between the judge and an expert in hand-written signature identification, as the
former may rely on advice from the latter in correctly deciding the origin of a
message. The interactions among the judge, Bob the recipient and the expert in
hand-written signature identification could be time-consuming and also costly.

4.5 “Community” or World Orientation

With the signcryption schemes, both Alice and Bob have to use the same p and
g. So they basically belong to the same “community” defined by p and g. Such
a restriction does not apply to “signature-then-encryption”.

Similar restrictions apply to “signature-then-encryption-with-a-static-key”
where the static key is derived from the Diffie-Hellman key gxaxb mod p, or a key
pre-distribution scheme [19]. Such restrictions seem to be inherent with cryp-
tographic protocols based on the Diffie-Hellman public key cryptosystem [9]. A
recent example of such protocols is an Internet key agreement protocol based on
ISAKMP and Oakley [13].

In the case where a static key is a pre-shared random string between Alice
and Bob, whether or not Alice and Bob belong to the same “community” will be
determined by the underlying protocol for distributing the pre-shared random
string.

In theory, the requirement that both Alice and Bob belong to the same “com-
munity” does limit the number of users with whom Alice can communicate using
a signcryption scheme. In reality, however, all users belong to several “commu-
nities”, and they tend to communicate more with users in the same group than
with outsiders: users (including banks and individuals) of a certain type of dig-
ital cash payment system, employees of a company and citizens of a country, to
name a few. Therefore the “community” oriented nature of signcryption schemes
may not bring much inconvenience to their use in practice.

Table 6 summarizes all the comparisons we have carried out in this section.



Various
Dimensions

Signcryption
Sign-then-Enc

with a Static Key
Sign-then-Enc

Cost in Comp.
& Comm.

≈ Cost(signature) ≈ Cost(signature)
Cost(signature) +
Cost(encryption)

Static key
Management

N/A
Distribution,
Derivation,

Secure storage
N/A

Forward Secrecy No No Yes

Past Recovery Yes Yes No

Repudiation
Settlement

Interactive Non-interactive Non-interactive

World No Yes & No Yes
Orientation (see Section 4.5)

Table 6. Other Aspects of Signcryption v.s. Signature-then-Encryption

4.6 Why Can Signcryption Save ?

Now we come back to the question of why signcryption has a cost similar to that
of Schnorr signature. At the first sight, one might think that a possible answer
would lie in the fact that with signcryption, forward secrecy is lost with respect
to the sender’s long term private key. However, signcryption offers past recovery
which cannot be achieved by “signature-then-encryption”. In other words, past
recovery is not something for free. So perhaps loss of forward secrecy does not
directly contribute to the low cost of signcryption. Rather, one may consider
that the cost for forward secrecy has been somehow transformed to achieve past
recovery.

It seems more likely that the loss of non-interactive repudiation settlement,
together with the fact that users are all confined to the same “community”
defined by p and g, has contributed to the low cost of signcryption.

5 Unforgeability, Non-repudiation and Confidentiality of
Signcryption

Like any cryptosystem, security of signcryption in general has to address two
aspects: (1) to protect what, and (2) against whom. With the first aspect, we
wish to prevent the contents of a signcrypted message from being disclosed to
a third party other than Alice, the sender, and Bob, the recipient. At the same
time, we also wish to prevent Alice, the sender, from being masquerade by other
parties, including Bob. With the second aspect, we consider the most powerful
attackers one would be able to imagine in practice, namely adaptive attackers
who are allowed to have access to Alice’s signcryption algorithm and Bob’s
unsigncryption algorithm.



We say that a signcryption scheme is secure if the following conditions are
satisfied:

1. Unforgeability — it is computationally infeasible for an adaptive attacker
(who may be a dishonest Bob) to masquerade Alice in creating a signcrypted
text.

2. Non-repudiation — it is computationally feasible for a third party to settle a
dispute between Alice and Bob in an event where Alice denies the fact that
she is the originator of a signcrypted text with Bob as its recipient.

3. Confidentiality — it is computationally infeasible for an adaptive attacker
(who may be any party other than Alice and Bob) to gain any partial infor-
mation on the contents of a signcrypted text.

The following sub-sections are devoted to discussions of the security of the
signcryption schemes SCS1 and SCS2.

5.1 Unforgeability

Regarding forging Alice’s signcryption, a dishonest Bob is in the best position
to do so, as he is the only person who knows xb which is required to directly
verify a signcrypted text from Alice. In other words, the dishonest Bob is the
most powerful attacker we should look at. Given the signcrypted text (c, r, s) of
a message m from Alice, Bob can use his private key xb to decrypt c and obtain
m = Dk2(c). Thus the original problem is reduced to one in which Bob is in
possession of (m, r, s). The latter is identical to the unforgeability of SDSS1 or
SDSS2.

SDSS1 and SDSS2 can be shown to be unforgeable. Therefore we conclude
that both signcryption schemes SCS1 and SCS2 are unforgeable against adap-
tive attacks, under the assumption that the keyed hash function behaves like a
random function.

5.2 Confidentiality

Next we consider the confidentiality of message contents. We use SCS1 as an
example, as discussions for SCS2 are similar. Given the signcrypted text (c, r, s)
of a message m from Alice, an attacker can obtain u = (ya · gr)s = gx mod p.
Thus to the attacker, data related to the signcrypted text of m include: q, p, g,
ya = gxa mod p, yb = gxb mod p, u = gx mod p, c = Ek1(m), r = KHk2(m), and
s = x/(r + xa)mod q.

We wish to show that it is computationally infeasible for the attacker to
find out any partial information on the message m from the related data listed
above. We will achieve our goal by reduction: we will reduce the confidentiality
of another encryption scheme to be defined shortly (called Ckh for convenience)
to the confidentiality of SCS1.

The encryption scheme Ckh is based on ElGamal encryption scheme. With
this encryption scheme, the ciphertext of a message m to be sent to Bob is



defined as ( c = Ek1(m), u = gx mod p, r = KHk2(m) ) where (1) x is chosen
uniformly at random from [1, . . . , q− 1], and (2) (k1, k2) = k = hash(yx

b mod p),
It turns out Ckh is a slightly modified version of a scheme that has received
special attention in [29, 3]. (See also earlier work [33].) Using a similar argument
as that in [29, 3], we can show in the following that for Ckh, it is computationally
infeasible for an adaptive attacker to gain any partial information on m.

5.3 Non-repudiation

As discussed in Section 4, signcryption requires a repudiation settlement proce-
dure different from the one for a digital signature scheme is required. In partic-
ular, the judge would need Bob’s cooperation in order to correctly decide the
origin of the message. In what follows we describe three possible repudiation
settlement procedures, each requiring a different level of trust on the judge’s
side.

With a Trusted Tamper-Resistant Device — If a tamper-resistant de-
vice is available, a trivial settlement procedure starts with the judge asking Bob
to provide the device with q, p, g, ya, yb, m, c, r, s and his private key xb,
together with certificates for ya and yb. The tamper-resistant device would fol-
low essentially the same steps used by Bob in unsigncrypting (c, r, s). It would
output “yes” if it can recover m from (c, r, s), and “no” otherwise. The judge
would then take the output of the tamper-resistant device as her decision. Note
that in this case, Bob puts his trust completely on the device, rather than on
the judge.

By a Less Trusted Judge — Another possible solution would be for Bob
to present v = uxb mod p, rather than xb, to the judge. Bob and the judge then
engage in a zero-knowledge interactive/non-interactive proof/argument protocol
(with Bob as a prover and the judge as a verifier), so that Bob can convince the
judge of the fact that v does have the right form. (A possible candidate protocol
is a 4-move zero-knowledge proof protocol developed in [5].)

Bob has to be aware of the fact that with this repudiation settlement pro-
cedure, the judge can obtain from v, r, s and yb the Diffie-Hellman shared key
between Alice and Bob, namely kDH,ab = gxaxb mod p (= v1/sy−r

b mod p for
SCS1). With kDH,ab, the judge can find out v∗ for other communication ses-
sions between Alice and Bob, and hence recover the corresponding messages
(v∗ = ks∗

DH,aby
r∗·s∗
b mod p for SCS1). Therefore Bob may not rely on this re-

pudiation settlement procedure if the judge is not trusted by either Alice or
Bob.

By any (Trusted/Untrusted) Judge — Now we describe a repudiation
settlement procedure that works even in the case when the judge corrupts and is
not trusted. The procedure uses techniques in zero-knowledge proofs/arguments
2 and guarantees that the judge can make a correct decision, with no useful
information on Bob’s private key xb being leaked out to the judge.
2 The main difference between a proof and an argument in the context of zero-

knowledge protocols is that, while an argument assumes that a prover runs in poly-
nomial time, a proof works even if a prover has unlimited computational power.



First Bob presents following data to the judge: q, p, g, ya, yb, m, c, r, s and
certificates for ya and yb. Note that Bob does not hand out xb, k or v = uxb mod p.
The judge then verifies the authenticity of ya and yb. If satisfied both with
ya and yb, the judge computes u = (ya · gr)s mod p when SCS1 is used, and
u = (g · yr

a)s mod p when SCS2 is used instead. Bob and the judge then engage
in a zero-knowledge interactive protocol, with Bob as a prover and the judge as
a verifier.

The goal of the protocol is for Bob to convince the judge of the fact that he
knows a satisfying assignment z = xb to the following Boolean formula ϕ:

ϕ(z) = (gz mod p == yb) ∧ (Dk1(c) == m) ∧ (KHk2(Dk1(c)) == r)

where k1 and k2 are defined by (k1, k2) = hash(uz mod p), and == denotes
equality testing.

ϕ is clearly a satisfiable Boolean formula in the class of NP. There are a large
number of zero-knowledge proof/argument protocols for NP statements in the
literature. An example of such protocols is a 4-move protocol recently proposed
in [2].

Properties of such a zero-knowledge repudiation settlement procedure in-
clude: (1) the judge always correctly announces that (c, r, s) is originated from
Alice when it is indeed so; (2) the probability is negligibly small for the judge to
declare that (c, r, s) is originated from Alice when in fact it is not; (3) no useful
information on Bob’s private key xb is leaked to the judge (or any other parties).

Two remarks on the interactive repudiation settlement procedure follow.
First, the message m may be dropped from the data items handed over to the
judge, if Bob does not wish to reveal the contents of m to the judge. Second,
Bob may include k into the data handed over to the judge if k is defined as
k = hash(yx

b mod p) in which a one-way hash function hash is involved. This
will reduce the computation and communication load involved in the interac-
tions without compromising the security of xb, especially when hash is a cryp-
tographically strong function that does not leak information on its input.

Finally we note that if Bob and the judge share a common random bit string,
then the number of moves of messages between Bob and the judge can be min-
imized to 1, by the use of a non-interactive zero-knowledge proof protocol such
as the one proposed in [15].

6 Signcryption for Multiple Recipients

So far we have only discussed the case of a single recipient. In practice, broad-
casting a message to multiple users in a secure and authenticated manner is an
important facility for a group of people who are jointly working on the same
project to communicate with one another. In this scenario, a message is broad-
cast through a so-called multi-cast channel, one of whose properties is that all

A zero-knowledge argument suffices for most cryptographic applications, including
repudiation settlement in signcryption.



recipients will receive an identical copy of a broadcast message. Major concerns
with broadcasting to multiple recipients include security, unforgeability, non-
repudiation and consistency of a message. Here consistency refers to that all
recipients recover an identical message from their copies of a broadcast message,
and its aim is to prevent a particular recipient from being excluded from the
group by a dishonest message originator.

With the traditional signature-then-encryption, the standard practice has
been to encrypt the message-encryption key using each recipient’s public key
and attach the resulting ciphertext to the signed and also encrypted message.
RFC1421 [18] details a standard based on RSA. A similar scheme for multiple
recipients can be defined using cryptographic schemes based on the discrete
logarithm problem, such as “Schnorr signature-then-ElGamal encryption”.

Now we show that a signcryption scheme can be easily adapted to one for
multiple recipients. We assume that there are t recipients R1, R2, . . ., Rt. The
private key of a recipient Ri is a number xi chosen uniformly and independently
at random from [1, . . . , q − 1], and his matching public key is yi = gxi mod p.

Table 7 details how to modify SCS1 into a multi-recipient signcryption scheme
which we call SCS1M. SCS2M is constructed similarly from SCS2, and hence
not shown in the Table. The basic idea is to use two types of keys: the first type
consists of only a single randomly chosen key (a message-encryption key) and
the second type of keys include a key chosen independently at random for each
recipient (called a recipient specific key). The message-encryption key is used
to encrypt a message with a private key cipher, while a recipient specific key is
used to encrypt the message-encryption key.

Having specified SCS1M, a signcryption for multiple recipients, next we pro-
ceed to examining other major issues with the scheme: message consistency,
confidentiality, unforgeability, non-repudiation and efficiency.

As we discussed earlier, a message delivery scheme for multiple recipients
is said to be consistent if messages recovered by the recipients are identical.
Such a requirement is essential in the case of multiple recipients, as otherwise
Alice the sender may be able to exclude a particular recipient from the group
of recipients by deliberately causing the recipient to recover a message different
from the one recovered by other recipients. With a signature-then-encryption
scheme for multiple recipients, message consistency is not a problem in general.
With SCS1M message consistency is achieved through the use of two techniques:
(1) a message m is encrypted together with the hashed value h = KHk(m),
namely c = Ek(m,h). (2) m and k are both involved in the formation of ri

and si through ri = KHki,2(m,h). These two techniques effectively prevent a
recipient from being excluded from the group by a dishonest message originator.

Similarly to the case of a single recipient, identification information on each
recipient Ri can be tied to a signcrypted text by involving Ri’s public key in the
computation of ri (see Section 2.2).

Next we examine the efficiency of the schemes.
Comparison with a Discrete Logarithm Based Scheme — We com-

pare SCS1M and SCS2M with the signature-then-encryption for multiple recip-



Signcryption by Alice the Sender for Multi-Recipients

An input to this signcryption algorithm for multi-recipients consists of a message m
to be sent to t recipients R1, . . . , Rt, Alice’s private key xa, Ri’s public key yi for all
1 ≤ i ≤ t, q and p.

1. Pick a random message-encryption key k, calculate h = KHk(m), and encrypt
m by c = Ek(m, h).

2. Create a signcrypted text of k for each recipient i = 1, . . . , t:
(a) Pick a random number vi from [1, . . . , q−1] and calculate ki = hash(yvi

i mod
p). Then split ki into ki,1 and ki,2 of appropriate length.

(b) ci = Eki,1(k).
(c) ri = KHki,2(m, h).
(d) si = vi/(ri + xa)mod q.

Alice then broadcasts to all the recipients (c, c1, r1, s1, . . . , ct, rt, st).

Unsigncryption by Each Recipient

An input to this unsigncryption algorithm consists of a signcrypted text
(c, c1, r1, s1, . . . , ct, rt, st) received through a broadcast channel, together with a re-
cipient Ri’s private key xi where 1 ≤ i ≤ t, Alice’s public key ya, g, q and p.

1. Find out (c, ci, ri, si) in (c, c1, r1, s1, . . . , ct, rt, st).
2. ki = hash((ya · gri)si·xi mod p). Split ki into ki,1 and ki,2.
3. k = Dki,1(ci).
4. w = Dk(c). Split w into m and h.
5. check if h can be recovered from KHk(m) and ri recovered from KHki,2(w).

Ri accepts m as a valid message originated from Alice only if both h = KHk(m) and
ri = KHki,2(w) hold.

Table 7. SCS1M — A Signcryption Scheme for Multiple Recipients

ients based on Schnorr signature and ElGamal encryption. Saving by SCS1M
(and by SCS2M) in computational cost and communication overhead can be
summarized as follow: the number of modular exponentiations is reduced (1) for
Alice the sender, from 2t+1 to t (i.e., by a factor of larger than 50%), and (2) for
each recipient, from 2.17 to 1.17 (i.e., by a factor of 45.2% on average, assuming
Shamir’s fast eveluation of the product of exponentials is used), while the com-
munication overhead measured in bits is reduced from t·(|k|+|p|)+|hash(·)|+|q|
to t·(|k|+|KH·(·)|+|q|)+|KH·(·)|. As |p| is in general far larger than |KH·(·)|+|q|
(compare |p| = 512 with |KH·(·)| = 72 and |q| = 144), the saving in commu-
nication overhead is significant. To summarize the above discussion, SCS1M
and SCS2M are far more efficient than the signature-then-encryption based on
Schnorr signature and ElGamal encryption, both in terms of computational cost



and communication overhead.
Comparison with RFC1421 — RFC1421 [18] relies on RSA. As the dis-

crete logarithm and factorization problems are of equal complexity with our
current knowledge, we assume that |na| = |nb| = |p|. First, two observations on
computational costs can be made:

(1) For Alice the sender — The number of modular exponentiations is t + 1
with RFC1421, as against t with SCS1M and SCS2M. Among the r+1 exponen-
tiations with RFC1421, one is for RSA signature generation which involves a full
length exponent, and the remaining are for RSA public key encryption which
generally only involves small exponents. The t exponentiations with SCS1M and
SCS2M all involve exponents from [1, . . . , q − 1]. In addition, both SCS1M and
SCS2M involve more hashing, modular multiplications and additions. Hence it
is fair to say that from Alice the sender’s point of view, neither SCS1M nor
SCS2M shows an advantage in computational cost over CFR1421.

(2) For a recipient Ri — The number of modular exponentiations is two with
RFC1421, and on average 1.17 with SCS1M and SCS2M. Since one of the two
exponentiations with RFC1421 is invested in RSA decryption which involves a
full size exponent, SCS1M and SCS2M are faster than RFC1421 from Ri’s point
of view.

A significant advantage of SCS1M and SCS2M over RFC1421, however, lies
in its low communication overhead: RFC1421 expands a message by |na| +∑

i=1,...,t |ni| bits, which is a number of times larger than t·(|k|+|KH·(·)|+|q|)+
|KH·(·)|, the communication overhead of SCS1M and SCS2M. In conclusion, the
following can be said: SCS1M and SCS2M share a similar computational cost
with the scheme in RFC1421, but they have a significantly lower communication
overhead than RFC1421.

A final note follows: comparisons between the new schemes and RSA or
discrete logarithm based schemes in other aspects, including key management,
forward secrecy, past recovery, repudiation settlement and users’ group or world
orientation, are similar to the case of a single recipient, and hence are ommitted
here.

7 Applications of Signcryption

The proposed signcryption schemes are compact and particularly suitable for
smart card based applications. We envisage that they will find innovative appli-
cations in many areas including digital cash payment systems, EDI and personal
heath cards. Currently, we are working on signcryption based efficient solutions
to the following problems: (1) secure and authenticated key establishment in a
single small data packet [32], (2) secure multicasting over the Internet [20], (3)
authenticated key recovery [24], (4) secure ATM networks [12], and (5) secure
and light weight electronic transaction protocols.
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