
A Signcryption Scheme Based on Integer
Factorization

Ron Steinfeld and Yuliang Zheng

Laboratory for Information and Network Security,
School of Network Computing,

Monash University,
Frankston 3199, Australia

{ron.steinfeld,yuliang.zheng}@infotech.monash.edu.au

Abstract. Signcryption is a public-key cryptographic primitive intro-
duced by Zheng, which achieves both message confidentiality and non-
repudiatable origin authenticity, at a lower computational and communi-
cation overhead cost than the conventional ‘sign-then-encrypt’ approach.
We propose a new signcryption scheme which gives a partial solution
to an open problem posed by Zheng, namely to find a signcryption
scheme based on the integer factorization problem. In particular, we
prove that our scheme is existentially unforgeable, in the random ora-
cle model, subject to the assumption that factoring an RSA modulus
N = pq (with p and q prime) is hard even when given the additional pair
(g, S), where g ∈ ZZ∗N is an asymmetric basis of large order less than a
bound S/2 ¿ √

N .

1 Introduction

Confidentiality and non-repudiatable origin authenticity of transmitted infor-
mation are important requirements in many applications of cryptography. The
conventional approach to meeting these goals is the ‘sign-then-encrypt’ tech-
nique, where the message originator produces a digital signature on the message
using his secret key and then encrypts the signed message with the recipient’s
public key.

Several years ago, Zheng [17] introduced a public-key cryptographic primitive
called signcryption, which achieves both confidentiality and non-repudiatable
origin authenticity at a lower computational and communication overhead cost
than the ‘sign-then-encrypt’ technique. The original signcryption schemes were
based on the discrete logarithm problem DLP (p, q) in a multiplicative subgroup
of prime order q in ZZ∗p, for p prime. These signcryption schemes are currently
regarded as secure because there is no known efficient algorithm for solving
DLP (p, q). However, the fact that DLP (p, q) is currently not a provably dif-
ficult problem (and hence vulnerable to algorithmic breakthroughs) motivates
the search for signcryption schemes based on other difficult problems which
are computationally independent of DLP (p, q). Consistent with this approach,

Zheng posed, in his original paper [17], the open problem of finding a signcryp-
tion scheme based on the integer factorization problem, which appears to be
computationally independent of DLP (p, q).

In this paper, we propose a partial solution to Zheng’s open problem. In
particular, we modify an efficient signature scheme recently proposed [11] by
Pointcheval to obtain a new signcryption scheme heuristically based on the
Composite Discrete Logarithm problem CDLP (N, g, S, y) with suitably chosen
parameters, namely: Given (N, g, S, y), where N is a composite RSA modulus
N = pq (with p and q large primes, p−1 and q−1 non-smooth), g is an element
of ZZ∗N satisfying 1 ¿ OrdZZ∗

N
(g) < S/2 ¿ √

N (with OrdZZ∗
N

(g) having no
small prime factors besides 2) and m2(OrdZZ∗

p
(g)) 6= m2(OrdZZ∗

q
(g)) (where

m2(z) denotes the largest α such that 2α divides z), y ∈< g > (where < g >
denotes the multiplicative subgroup of ZZ∗N generated by g), find x ∈ IN such
that gx = y mod N .

For the above choice of parameters, CDLP (N, g, S, y) is harder than the
problem of factoring N given (N, g, S) because (by Lemma 6 in Appendix) a
non-zero multiple of OrdZZ∗

N
(g) reveals the factorization of N , and it is easy

to compute such a multiple using an oracle which solves CDLP (N, g, S, y). We
conjecture that, assuming the symmetric cipher and one-way hash functions used
by our scheme have no individual weaknesses, any security break of our scheme
is harder than factoring N . To support this claim, we prove, in the random
oracle model, that under the assumption that factoring N given (N, g, S) is
intractable, our scheme is existentially unforgeable under an adaptively chosen
message attack. The confidentiality of our scheme is based on the Diffie-Hellman
problem in ZZ∗N with base g, which is also believed to be harder than factoring
N .

We call our proposal a ‘partial’ solution to Zheng’s problem for the following
reasons:

(1) Our scheme’s unforgeability is proven with respect to a non-standard
factorization problem, due to the additional knowledge of the element g ∈ ZZ∗N
whose order is large but smaller than a known bound S ¿ √

N . However, with a
suitable choice of parameters to make direct CDLP attacks infeasible, the prob-
lem appears to be as hard as the standard RSA modulus factorization problem.

(2) Our scheme’s security is proven with respect to the problem of factoring
a common public modulus N shared by all users. On the other hand, generating
the common public parameters of our scheme requires knowledge of (p, q), the
factors of N . Therefore the authority generating the common parameters must
be trusted by all users to not be a potential attacker and to not reveal (p, q) to
any potential attacker. We remark that this constraint is much weaker than that
imposed by ‘identity’ schemes based on factorization (eg Fiat-Shamir [6]) since
in our scheme (p, q) need not be kept by the trusted authority for generating
secret keys for new ‘identities’.

The rest of the paper is organized as follows. In Sect. 2 we review related
past work. In Sect. 3, we detail our new signcryption scheme SCF . In Sect. 4, we
suggest practical values our scheme’s parameters and compare its efficiency with

earlier schemes. In Sect. 5, we present definitions of security notions for general
signcryption schemes, and state these properties for our particular scheme. Due
to lack of space some proofs are omitted and included in the full paper, available
from the authors. Finally, Sect. 6 contains concluding remarks.

2 Background

In 1989, Schnorr [15] proposed well-known efficient 3-move zero-knowledge iden-
tification and a corresponding signature scheme based on the difficulty of com-
puting discrete logarithms in a subgroup of ZZ∗p (for p a public prime) gener-
ated by public element g ∈ ZZ∗p of public prime order q. We quickly review
the Schnorr signature here to allow the following schemes to be explained. The
signer Alice picks a random secret key sA ∈ ZZ∗q and publishes her public key
vA = g−sA mod p. To sign a message m, Alice picks a random r ∈ ZZ∗q and
computes the signature consisting of the pair (e, y), with e = H(m, gr mod p),
and y = r + e · sA mod q, where H(.) denotes a ‘one-way’ hash function. Bob
verifies that the pair (e′, y′) is Alice’s signature on message m′ by checking that
e′ = H(m′, gy′ve′

A). An attractive feature of Schnorr’s scheme is its low on-line
computational cost, since the time-consuming modular exponentiation gr mod p
is message-independent and can be performed off-line.

In 1991, Girault [8] proposed a variant of Schnorr’s scheme, replacing the
group ZZ∗p by the group ZZ∗N , where N = pq (p,q prime). In addition, Gi-
rault proposed the use of a subgroup generator g ∈ ZZ∗N of maximal order
λ(N) = lcm(p− 1, q − 1). Since Miller’s factoring algorithm (see [14]) factors N
efficiently when a multiple of λ(N) is known, the order of the public generator g
must be kept secret from all users. This has the implication for the signing algo-
rithm that the modular reduction in the computation of y cannot be performed.
Indeed, Girault proposed to eliminate the modular reduction so y is computed
in the integers. This further improves the on-line computational efficiency at the
expense of a longer resulting signature. In 1998, Poupard and Stern [13] anal-
ysed Girault’s scheme and proved its security relative to the discrete logarithm
problem in the subgroup < g > of ZZ∗N . However (see Sect. 4), their proof does
not appear to apply to the efficient variants they propose, in which the size of
the secret key space S is much smaller than

√
N . In PKC 2000, Pointcheval [11]

proposed a new variant of Girault’s scheme in which S ¿ √
N yielding an ef-

ficient scheme as before, but g is chosen differently to allow a proof of security
relative to factorization. In particular, Pointcheval proposed to reduce the order
of g from λ(N) to a large value less than S/2, so that at least two secret keys are
mapped to each public key. Then the reduction from factorization to breaking
the scheme could be performed (in the random oracle model, with Pointcheval
and Stern’s forking technique [12]) using a variant of Miller’s factoring algorithm
(which requires an additional condition on the choice of g) and the fact that an
attacker cannot distinguish between signatures made, respectively, with two keys
mapping to the same public key (i.e. the scheme is witness indistinguishable).
Our signcryption scheme is based on Pointcheval’s approach.

3 New Signcryption Scheme

In this section we present informally our new signcryption scheme SCF . As in
the original signcryption schemes, the basic idea, roughly, is that, similar to the
ElGamal encryption scheme [4], the sender Alice chooses a random ‘session se-
cret’ and uses the resulting Diffie-Hellman shared key with the recipient Bob to
encrypt the message. But instead of simply appending the public exponential
of the ‘session secret’ to the ciphertext (with a signature on the message per-
formed separately), the public exponential is used also as the ‘commitment’ for a
Schnorr-like signature scheme. The ‘commitment’ is recoverable by the recipient
Bob from the signature (saving the communication overhead of appending it in
the ElGamal scheme), and with a modification to the signature part, the sender
Alice need not even compute the ‘commitment’ explicitly, allowing a saving of
computation.

More precisely, the signcryption scheme SCF is defined as follows. In the
following, when we say X ‘large’ we mean that log(X) = b · k where b is a
positive constant and k is the security parameter.

To set up a cryptographic ‘community’ using the scheme SCF , a trusted
authority generates and publishes three parameters:

Common Parameters Published by Trusted Authority

(1) A large RSA modulus N = pq with p and q random primes of approxi-
mately equal length.

(2) A large secret-key bound S ¿ √
N .

(3) An element g ∈ ZZ∗N of large order 1 ¿ OrdZZ∗
N

(g) ≤ S/2, which is an
asymmetric basis in ZZ∗N , i.e. the multiplicity of 2 in OrdZZ∗

p
(g) is not equal

to the multiplicity of 2 in OrdZZ∗
q
(g).

We note that the element g is easy to generate by a trusted authority if it gen-
erates p and q appropriately — A recommended common parameter generation
algorithm is outlined in Sect. 4. We remark that Pointcheval’s [11] definition of
an asymmetric basis in ZZ∗N is a special case of our more relaxed definition.

Then user Alice generates a secret/public key-pair as follows:

Key-pair generation by user Alice

(1) Alice picks her secret key integer sA randomly and uniformly in the in the
interval {0, ..., S − 1}.

(2) Alice computes and publishes her public key vA = g−sA mod N .

User Bob generates his key-pair sB and vB in the same way.
When Alice wishes to send Bob a confidential message m such that Bob can

verify that Alice is its originator, Alice follows the following steps:

Signcryption of m by Alice the Sender

Step A.1 Alice picks uniformly at random an element r from the set of integers
{0, ..., R− 1}, where R is such that 2k′ def= R/(2|KH|S) is large.

Step A.2 Alice obtains a trusted copy of Bob’s public key, computes x =
vr

B mod N and then ‘splits’ this into the pair (x2, x1) = H1(x), where H1(.)
denotes a ‘one-way’ hash function, which maps arbitrarily long inputs into
a string of length |H1| bits.

Step A.3 Alice uses a secure symmetric encryption algorithm E (with match-
ing decryption algorithm D) to encrypt m using key x1 to obtain the ci-
phertext c = E(x1,m).

Step A.4 Alice uses her secret key to compute the pair (e, y) defined by e =
KH(x2,m, bind) and y = r + e · sA (note absence of modular reduction),
where KH(., .) denotes a ‘keyed’ hash function of output length |KH| bits,
with first argument being the key. In bind Alice inserts her own and Bob’s
public keys.

Step A.5 Alice sends the ‘signcryptext’ triple (c, e, y) to Bob.

The recipient Bob receives (c′, e′, y′) (which may not be equal to (c, e, y) due to
modification by an attacker), and follows the following steps:

UnSigncryption of (c′, e′, y′) by Bob the Recipient

Step B.1 Bob uses a trusted copy of Alice’s public key and his own secret key
to compute x′ = (gy′ve′

A)−sB mod N and then, using the same procedure
followed by Alice to split x, Bob splits x′ into (x′2, x

′
1) = H1(x′).

Step B.2 Bob decrypts c′ using the symmetric key x′1 into m′ = D(x′1, c
′).

Step B.3 Bob accepts message m′ as being originated from Alice if and only
if e′ = KH(x′2,m

′, bind).

We note that a simple way for Alice to perform the split at (Step A.2) is to
set x1 = HL

1(x) and x2 = HU
1 (x), where HL

1(x) and HU
1 (x) denote the |HL

1| least-
and |HU

1 | most- significant bits of H1(x) respectively, with |HL
1|+ |HU

1 | = |H1| and
both 2|H

L
1 | and 2|H

U
1 | are large. Also in practice one can implement KH using a

one-way hash function H2(.) by concatanating the key x2 and the input m and
then hashing the pair (x2,m). The bind information containing Bob’s public key
prevents a signcryptext sent by Alice to Bob from being transformed into a valid
signcryptext carrying the same message from Alice to a third user colluding with
Bob (see [17] for details on this ‘double-payment’ problem).

4 Efficiency and Common Parameter Generation

4.1 Communication Overhead

The communication overhead of our scheme (where |x| = dlog2(x)e denotes the
bit length of x) is

CommSCF = |e|+ |y| = |KH(.)|+ |R| = 2|KH(.)|+ |S|+ k′ (1)

compared with the communication overhead of the original signcryption scheme
SCS1 [17]:

CommSCS = |KH(.)|+ |q| (2)

and with the RSA sign-then-encrypt method, assuming Alice and Bob have
moduli NA and NB respectively,

CommRSA = |NA|+ |NB | (3)

4.2 Computational Cost

The on-line computational cost of our signcryption algorithm S is dominated by
the integer multiplication e · sA while its off-line computational costs is domi-
nated by the modular exponentiation gr mod N . The number of bit operations
for these computations can be estimated as follows. For these estimates, we
assume the well-known square-and-multiply exponentiation algorithm and clas-
sical arithmetic for multiplication (cost of computing x·y is approximately |x||y|)
and modular reduction (cost of computing x mod y is approximately (|x|−|y|)|y|
when |x| > |y|).

CompSCF,Online S = |e| · |sA| = |KH(.)||S| (4)

and

CompSCF,Offline S = 1.5|R|(2|N |2) = 3(|KH(.)|+ |S|+ k′)|N |2 (5)

For comparison, the signcryption scheme SCS1 has computational costs

Comp
SCS1,Online S = |e| · |sA|+ (|e|+ |sA| − |q|)|q| = 2|KH(.)||q| (6)

and
CompSCS1,Offline S = 3|q||p|2. (7)

In the RSA ‘sign-then-encrypt’ technique, the signing exponentiation (to Alice’s
secret key) of the hashed message must be peformed online. We assume an effi-
cient RSA scheme, in which small public exponents are used (so we neglect the
computational cost of the encryption exponentiation to Bob’s public exponent)
and the Chinese Remainder Theorem (CRT) is used to perform the exponentia-
tion to Alice’s secret key (even though this forces Alice to store the secret prime
factors of her modulus):

Comp
RSA,Online, S = (3/4) · |NA|3 (8)

The unsigncryption operation is dominated by the two exponentiations in the
computation of x′ = (gy′ve′

A)−sB mod N . Using a simple generalization of the
square-and-multiply algorithm as suggested by Shamir (see full paper version
of [17]), one can compute a product of two exponentials gβ1

1 gβ2
2 mod N using on

average 1.5(|β1| − |β2|) + 1.75|β2| multiplications modulo N (assuming without

loss of generality that |β1| > |β2|). In the case of our unsigncryption operation,
the two exponents are β1 = y′·sB and β2 = e′·sB with lengths |β1| = 2|S|+|KH|+
k′ and |β2| = |KH|+ |S|, so the average bit operation cost of the unsigncryption
of SCF is estimated as:

CompSCF,U = (1.5(|S|+ k′) + 1.75(|S|+ |KH|))2|N |2 (9)

This should be compared with the cost of unsigncryption for SCS1 (where both
exponents can be reduced mod q prior to performing the exponentiation):

CompSCS1,U = 1.75|q|(2|p|2) (10)

The computational cost of the ‘decrypt-then-verify’ RSA algorithm is identical
to that of ‘sign-then-encrypt’ (except that Bob’s secret key / modulus are used
to decrypt).

4.3 Choice of Parameters

As we saw above, efficiency considerations encourage the use of a relatively
small S ¿ √

N and N . However, our scheme is trivially breakable by solv-
ing CDLP (N, g, S, vA) to extract a secret key from the public one using, for
example, Shank’s ‘Baby-Step, Giant Step’ algorithm, which takes about

√
S

multiplications in ZZ∗N . Therefore, S can be chosen such that a breaking time
TCDLP =

√
STMULT (|N |) (where TMULT (|N |) estimates the time to perform a

multiplication in ZZ∗N) represents a sufficient security level. Our security analy-
sis suggests that there exist no significantly faster attacks, as long as the time
TFACT required to factor N given (N, g, S) is not less than TCDLP . But when
OrdZZ∗

N
(g) is composed of large prime factors, we know of no algorithm more

efficient than CDLP for factoring N which makes use of (g, S). Therefore, we
can choose |N | and |S| so that the time TNFS(|N |) required to factor N us-
ing the fastest known algorithm for the standard factorization problem (namely
Number Field Sieve) is not less than TCDLP .

Tables 1 and 2 compare the efficiency of our scheme with the earlier sign-
cryption scheme SCS1 and RSA ‘sign-then-encrypt’ with comparable security
level. The assumptions made in constructing the table are the following:

(1) Selection of |N | and |S|: Consistent with the discussion above, we chose
|S| and |N | such that TCDLP (|S|, |N |) = TNFS(|N |). We used the assumptions of
Lenstra and Verheul [10] to estimate the functions TNFS and TCDLP . In particu-
lar, we took TNFS = c·L(2|N |), where L(N) = exp(1.923·ln(N)1/3 ·ln(ln(N))2/3)
denotes the well-known heuristic running time estimate for NFS and the con-
stant c fixed by the 104 MIPS-Years (MY) effort taken recently to factor the
512-bit modulus RSA-155 [3]. We took TCDLP (|N |, |S|) = b ·2|S|/2|N |2, with the
constant b fixed by the (2.2 ·106 ·√2/9) MY effort estimated for TCDLP (|N |, |S|)
with |N | = |S| = 109 bit (we refer the reader to [10] for more details). Since
the signcryption scheme SCS1 can be attacked using a DLP variant of the NFS
algorithm in ZZ∗p with time estimate TNFS(|p|), or alternatively, using Shank’s

baby-step giant step algorithm in ZZ∗q in time
√

q, we set for comparable security
level between the schemes SCS1 and SCF , |q| = |S| and |p| = |N |. Similarly, we
assume the RSA modulus length |NA| = |NB | is equal to |N | in SCF .

(2) Selection of |KH(.)|: Given a signcryptext (c, e, y) from Alice to Bob, Bob
can create an existential forgery (c′, e, y) of a signcryptext from Alice to Bob by
finding a new message m′ such that KH((gyve

A)−sB ,m′, bind) = e. If KH(.) is a
collision-resistant hash function, Bob would be expected to invest about 2|KH(.)|

operations to complete this attack. Therefore, to be consistent with the security
level defined by the choice of |S| and |N |, we assume |KH(.)| = |S|/2.

(3) Selection of k′: From the statement of Theorem 1 in Sect. 5.3, one can see
that the lower bound on the factoring algorithm success probability is significant
only when 2k′ is much greater than the number of queries an active attacker is
allowed to make to the signcryption algorithm. Since the number of queries an
active attacker can make is normally much lower than the number of offline
operations available to him, we assume that a choice of k′ = |KH(.)| will satisfy
the above requirement.

Of particular note is the efficiency tradeoff offered by our scheme compared
with the earlier signcryption scheme, namely the on-line signcryption compu-
tational cost has been cut by about half due to the absence of the modular
reduction, but this at the expense of an approximate doubling in the communi-
cation overhead, and an increase in the unsigncryption computational cost for
the same reason.

security parameters SCF Comm. Comm. Overhead Comm. Overhead
|N | = |p| |S| = |q| |KH(.)| = k′ overhead(bits) RSA / SCF SCS1 / SCF

1024 132 66 329 6.2 0.6

2048 188 94 469 8.7 0.6

4096 263 131 657 12.5 0.6

8192 363 181 907 18.1 0.6

10240 402 201 1004 20.4 0.6

Table 1. Comparison of Communication overhead of proposed signcryption scheme
SCF with RSA based Signature-Then-Encryption with Small Public Exponents and
CRT decryption and with original signcryption scheme SCS1.

4.4 Common Parameter Generation

Our unforgeability security proof in Sect. 5.3 requires that the common param-
eters satisfy (1) N = p · q for p and q prime, (2) OrdZZ∗

N
(g) < S/2, (3) g is an

asymmetric basis in ZZ∗N , and (4) Factoring N given (g, N, S) is intractable. We
cannot prove that a practical common parameter generation algorithm GenComm
exists which satisfies property (4). Based on known attacks on the standard fac-
torization problem and CDLP , however, we conjecture that imposing the fol-

security parameters Online Online Total Total
|N | = |p| |S| = |q| |KH(.)| = k′ RSA / SCF SCS1 / SCF RSA / SCF SCS1 / SCF

1024 132 66 4.7E+04 2.0 0.74 0.41

2048 188 94 1.8E+05 2.0 1.04 0.41

4096 263 131 7.5E+05 2.0 1.48 0.41

8192 363 181 3.1E+06 2.0 2.15 0.41

10240 402 201 5.0E+06 2.0 2.43 0.41

Table 2. Ratio comparison of Online (by sender) and Total (by sender and receiver)
computation cost of proposed signcryption scheme SCF with RSA based Signature-
Then-Encryption (using Small Public Exponents and CRT decryption) and with orig-
inal signcryption scheme SCS1.

lowing additional properties will allow (4) to be met: (5) p− 1 and q− 1 are not
smooth (i.e. have at least one large prime factor) and (6) OrdZZ∗

N
(g) is large

and composed of large prime factors (besides an unavoidable factor of 2 due to
asymmetricity requirement). We therefore believe that the trusted authority can
satisfy all the properties (1) to (6) using the following practical implementation
of GenComm: (1) Pick distinct random primes rp and rq each of length (|S|−6)/2
(2) Pick random odd tp of length |N |/2−|rp| until p = tprp +1 passes a primal-
ity test. (3) Pick random odd tq of length |N |/2 − |rq| − 1 until q = 2tqrq + 1
passes a primality test (4) Compute N = pq (5) Pick random hp ∈ ZZ∗p until

gp = h
(p−1)/rp
p mod p 6= 1 (6) Pick random hq ∈ ZZ∗q (with hq mod q 6= q − 1)

until h
(q−1)/2
q mod q 6= 1 and gq = h

(q−1)/2rq
q mod q 6= 1 (7) Using CRT com-

pute g = gpq(q−1 mod p) + gqp(p−1 mod q) mod N . Note that the resulting g
has order

OrdZZ∗
N

(g) = lcm(OrdZZ∗
p
(g), OrdZZ∗

q
(g)) = lcm(rp, 2rq) = 2rprq (11)

Finally, we remark that the requirement of our scheme to share among all
users a set of common parameters defining a specific group, is similar to the
recommendation in several recent standards (see [7] and [16]) of specific elliptic
curves and group parameters, for the implementation of elliptic curve crypto-
graphic algorithms.

4.5 Trusted Authority

As can be seen in Sect. 4.4, the common parameter generation algorithm for
generating g requires knowledge of the factors (p, q) of N and large factors of
(p− 1) and (q − 1). Thus the ‘Trusted Authority’ (TA) running the generation
algorithm must be trusted to not make use of this knowledge to attack the
system. But we emphasize that:

(1) Once (g, N, S) have been generated, our scheme has no further need for a
TA (besides a public key certification authority, which is needed for any public
key scheme), and

(2) The TA need not manipulate any user secret keys, since users can generate
keys by themselves.

Hence, the TA for our scheme can cease to exist after (g, N, S) have been
generated. The simplest form of TA is a sealed ‘black box’ device implement-
ing the algorithm of Sect. 4.4 and programmed to erase from memory all traces
of (p, q) (and the factors of p − 1 and q − 1) after g and N have been gener-
ated. Alternatively, the TA can take the form of a group of users who engage
in a ‘private’ distributed common parameter generation algorithm, which pre-
vents a minority of colluding dishonest participants from gaining knowledge on
(p, q). We have in mind an efficient protocol similar to that recently proposed
by Boneh and Franklin [2], although the present case is more challenging due to
the requirements on g.

4.6 Trading Efficiency for Security

We observe that by choosing g of maximal order λ(N), and S À √
N (eg |S| >

0.6|N |) one can use Poupard and Stern’s simulation proof technique [13] to prove
the unforgeability of our scheme relative to CDLP to base g, which is harder
than the standard factorization problem. This is due to the following two reasons:
(1) Poupard and Stern’s reduction proof assumes that, given (g, N, S), one can
select an integer x uniformly from a certain set X such that with overwhelming
probability, gx = gs mod N for some s ∈ {0, . . . , S − 1} (i.e. x maps to a valid
public key) and there exists y ∈ X such that y 6= x and gx = gy (i.e. given
gx mod N an algorithm cannot determine with probability greater than 1/2 the
chosen value x). However, in contrast to our case, it appears that this assumption
cannot be met unless S À √

N . When the latter holds, one can approximate a
multiple of OrdZZ∗

N
(g), namely φ(N) = N−(p+q)+1 within the uncertainty in

p and q, which is in the order of
√

N . So one can choose for the set X above the
union of the known intervals [0, S−1] and [N, N +S−1] and achieve the desired
properties above. (2) An element g of maximal order λ(N) can be generated with
relatively high probability of at least 1/[(7 ln ln p)·(7 ln ln q)] (see [14]), given only
N = pq, by simply picking g randomly in ZZ∗N . In this way, one can trade off
the efficiency of our scheme in return for a proof of unforgeability relative to the
standard factorization problem.

5 Security Analysis

5.1 Preliminaries

We use the notation A(., .) to denote an algorithm, with input arguments sep-
arated by commas (our underlying computational model is a Turing Machine).
If algorithm A makes calls to oracles, we list the oracles separated from the al-
gorithm inputs by the symbol ‘|’. When discussing the program of an algorithm
F which makes calls to an algorithm A, which in turn has oracle access to algo-
rithm H, we use Q

(k)
A−H[i] to denote the i’th query of A to H and ρA−H[i] to denote

the corresponding i’th answer from H back to A, where these queries are under-
stood to have been made during the execution of A called by the step labelled
k in the program for algorithm F (if there is no ambiguity in the execution of
A referred to, the superscript k is omitted). If an algorithm A is probabilistic
(i.e. has a random input), we use the same notation as above to denote it with
the understanding that it is invoked with a random input which is statistically
independent of its outcomes in previous runs. In some cases, it will be useful
to invoke A with its random input set to a specified value - in these cases we
write A(.;w) to denote the deterministic algorithm obtained by running A with
its random input set to w. Let T (k) denote an upper bound on the number of
computation steps performed by algorithm A with input parameter k. We say A
has a polynomial time bound in k if there exists c ∈ IR, and k0 ∈ IN such that
T (k) ≤ kc for all k > k0. We say that a function f : IN → IR is negligible if, for
each c ∈ IR, there exists a k0 such that f(k) < 1/kc for all k > k0. We call a
probability function f : IN → [0, 1] overwhelming if the function g : IN → [0, 1]
defined by g(k) = 1− f(k) is negligible.

5.2 Security Notions for Signcryption Schemes

In this section, we adapt the ‘asymptotic’ digital signature security notions de-
fined in [9] to signcryption schemes. Our presentation style is similar to that of
Bellare (see, eg [1]), since we believe it makes all the security proof assumptions
explicit. In order to define precise notions of security for a signcryption scheme,
we need first a precise definition of a signcryption scheme itself.

Definition 1. A Signcryption Scheme SCR = (GenComm,GenUser, S, U) is an
ordered sequence of four algorithms:

1. A probabilistic common parameter/oracle generation algorithm GenComm,
which takes as input a security parameter k and returns a pair (CommPar,O),
where CommPar is a sequence of common parameters and O = (H1, H2, ..., H|O|)
is a a sequence of |O| oracles O[i] = Hi : {0, 1}Lin[i] → {0, 1}Lout[i].

2. A probabilistic user key-pair generation algorithm GenUser, which takes as
input a security parameter k and a common parameter sequence CommPar and
returns a single user’s secret/public key-pair (sk, pk).

3. A probabilistic Signcryption algorithm S, which takes as input a security
parameter k, a common parameters sequence CommPar, a sender’s secret key
skA, a recipient’s public key pkB, and a message m ∈ M (M is the message
space), has access to oracles in a sequence O and returns a signcryptext CS.

4. An UnSigncryption algorithm U, which takes as input a security parame-
ter k, a common parameters sequence CommPar, a recipient’s secret key skB,
a sender’s public key pkA, a signcryptext CS, and has access to oracles in a se-
quence O and returns a pair (m, b), consisting of a message m and a verification
bit b.

The translation of the informal definition of the scheme SCF in section 3 is
straightforward. We simply highlight that our proof of security applies to the

following version of our scheme: (1) The keyed-hash KH(., .) is implemented us-
ing concatanation and the one-way hash function H2(.) (2) The splitting of x
into x1 and x2 is into the least significant and most significant bits of H1(x)
denoted HL

1(x) and HU
1 (x) respectively (3) The algorithm GenComm outputs

CommPar = (g,N, S) and O = (H1, H2,E, D) (4) We shall assume the following
property of GenComm: The outputs CommPar and O are statistically indepen-
dent (this includes as a special case the most practical version where the hash
and encryption algorithms in O are derived deterministically from k). This as-
sumption simplifies the intractability assumption required in the security proof.

Apart from security considerations, a necessary condition for a signcryption
scheme to be usable is that it must ‘work’ as expected in the absence of attackers.
Such a scheme is called complete.

Definition 2. Define the experiment

Experiment CompExp(SCR, k,m)
(CommPar,O) ← GenComm(k)
(skA, pkA) ← GenUser(k, CommPar)
(skB , pkB) ← GenUser(k, CommPar)
CS ← S(k,CommPar, skA, pkB ,m|O)
(m′, b) ← U(k, CommPar, skB , pkA, CS |O)
If m′ = m and b = 1 then Return 1 else Return 0

We say that signcryption scheme SCR is complete if, for all messages m,
Pr[CompExp(SCR, k,m) = 1] is an overwhelming probability function in k.

The completeness of our scheme SCF follows from a simple calculation,
namely, using the notation of section 3 (with all arithmetic performed modN),
if (c′, e′, y′) = (c, e, y) then:

x′ = (gy′ve′
A)−sB = ((gr+sA·eg−sA·e)−sB = gr·(−sB) = vr

B = x (12)

and therefore (x′1, x
′
2,m

′) = (x1, x2, m), so the message m is recovered and the
verification test is passed (by convention, the unsigncryption algorithm U returns
a verification bit equal to 1 when the test is passed).

Authenticity security properties for signcryption schemes can be classified
similarly to signature schemes, according to the resources available to the at-
tacker and severity of the attacker’s output forgery (see [9] and [12]). We shall
take the most conservative security notion — we will call a signcryption scheme
unforgeable only if it is infeasible for the most resourceful type of attacker
(namely an ‘adaptively chosen message attacker’) to produce the weakest type
of forgery (namely an ‘existential’ forgery).

Definition 3. Let SCR = (GenComm,GenUser, S, U) be a signcryption scheme
using |O| oracles. Let R ⊆ {1, ..., |O|}. Define the experiment

Experiment ForgeExp (k,SCR, A, R)
(CommPar,O) ← GenComm(k)
(skA, pkA) ← GenUser(k, CommPar)
(skB , pkB) ← GenUser(k, CommPar)
For each i ∈ {1, ..., |O|}

If i ∈ R Pick a random function H′i : {0, 1}Lin[i] → {0, 1}Lout[i]

Else H′i ← O[i]
O′ ← (H ′

1, ..., H
′
|O|)

CS ← A(k, CommPar, pkA, pkB , skB |O′,S(k, CommPar, skA, pkB , .|O′))
(m, b) ← U(k,CommPar, skB , pkA, CS |O′)
If b = 1 and m 6= QA−S[i] for all i then Return 1
Else Return 0

We say that signcryption scheme SCR is existentially unforgeable under an
adaptively chosen message attack with respect to random oracle replacement set
R if, for any algorithm A with polynomial time bound in k,
Pr[ForgeExp(k,SCR, A, R) = 1] is a negligible function in k.

In Definition 3, the set R specifies the (indexes of) oracles in the sequence
O which are to be replaced by randomly chosen functions in the random ora-
cle model of the signcryption scheme SCR, to yield the oracle array O′. The
attacker A’s success probability in yielding a valid forgery is then assessed over
all random choices made in experiment ForgeExp including the choice of the
random functions for inclusion in O′.

5.3 Security Properties of New Signcryption Scheme

We first examine the authentication security of the signcryption scheme SCF .
We will prove (using the methods of Pointcheval [11]) the unforgeability of the
scheme SCF by showing (in Theorem 1) how to use a poly-time attacker for
SCF , which produces a valid forgery with non-negligible probability, to construct
a poly-time algorithm which factors the public modulus N with non-negligible
probability. Then the unforgeability of SCF follows (in Corollary 1) from the
intractability assumption (see Definition 4) on factorization of N given the triple
(g, N, S) output by GenComm.

There are two key ideas in performing the reduction from factorization to
forgery of SCF in the proof of Theorem 1. The first is the use of the ‘forking’
technique [12] in extracting (from two executions of the attacker) two signcryp-
texts (c1, e1, y1) and (c2, e2, y2) with the same ‘commitment’ x∗, i.e. satisfying
(gy1ve1

A)−sB = (gy2ve2
A)−sB . From these two forgeries, the factoring algorithm can

then compute a multiple of OrdZZ∗
N

(g), namely L
def= sB [(y2−y1)−sA(e2−e1)].

Once L is known, it is then easy to factor N using the fact that g is an asym-
metric basis in ZZ∗N (see Lemma 6 in Appendix). Of course, L cannot be used
to factor N if L is the trivial zero multiple of OrdZZ∗

N
(g). Here we need the sec-

ond key idea, namely the Witness Indistinguishability (WI) of the signcryption
algorithm S, to show that L 6= 0 with high probability.

The WI property, first studied by Feige and Shamir [5], can hold non-trivially
only for schemes in which the one-way function f(.) transforming the secret
key space to the public key space is not one-to-one. In fact, an even stronger
requirement is needed, namely: For each public key v, the preimage W (v) = {s :
f(s) = v} of v under f(.) contains at least n ≥ 2 secret keys. In the case of our

scheme, we have f(s) = g−s mod N which can be made to map at least n secret
keys to each public key by choosing the secret key space as {0, . . . , S − 1} with
S ≥ n · OrdZZ∗

N
(g). Under this assumption, the statistical WI property of the

signcryption algorithm S (Lemma 3 in Appendix) means that the probability
distribution of signcryptexts output by S is almost independent of which secret
key in W (vA) is used by the sender having public key vA.

Referring back to the reduction above, note that the undesirable outcome
L = 0 results (apart from the negligibly probable case sB = 0) from the out-
come h(e1, e2, y1, y2)

def= (y2−y1)/(e2−e1) = sA. It is straightforward to see that
if the joint probability distribution of singcryptexts observed by the attacker is
perfectly WI, i.e. completely independent of sA in W (vA), then choosing sA ran-
domly in {0, 1, ..., S− 1} before running the attacker would give the undesirable
outcome h(e1, e2, y1, y2) = sA with probability not greater than ε/n, where n is
the number of secret keys in W (vA) and ε is the attacker’s success probability in
computing the multiple L. However, since the signcryption algorithm S is only
statistically WI, we can only prove that the distribution of the signcryptexts
observed by the attacker is approximately independent of sA in W (vA), and we
need to bound the effect of this on the probability of the outcome L = 0 to
ensure that the factoring algorithm still succeeds with non-negligible probability
even when the attacker queries S a polynomial number of times (our proof makes
use of Lemma 2 in Appendix for this purpose).

Theorem 1. Let A be an adaptively chosen message attacker algorithm for sign-
cryption scheme SCF=(GenComm,GenUser,S,U), having running time bound T
and success probability

ε
def= Pr[ForgeExp(k,SCF , A, {1, 2}) = 1], (13)

where ForgeExp is the experiment in Definition 3. Suppose that lA−S, lA−H1

and lA−H2 are upper bounds on the number of oracle queries A makes to S, H1

and H2, respectively. Let SL denote a lower bound on S output by GenComm.
Define the experiment

Experiment FactorExp(k, GenComm, Fact)
(g,N, S,O) ← GenComm(k)
p ← Fact(k, g,N, S)
If p is a non-trivial divisor of N then Return 1
Else Return 0

There exists a factoring algorithm Fact(., ., ., .) with running time bound

T ′ = 2T + lA−SO(k3) + O((lA−S + lA−H2)
2)

and success probability

ε′ = Pr[FactorExp(k, GenComm, Fact) = 1] ≥ ε∗(ε∗ − 8lA−S/2k′)/8− 1/SL,

where

ε∗
def= (ε− 1/2|H2|)2/(16lA−H2)− (lA−H1 + 1)(2lA−H1 + 1) · (1/2|H

U
1 |).

Proof. We present a factoring algorithm Fact(., ., ., .) and then we analyse it to
show that it has the claimed running time bound and success probability. Unless
stated otherwise, all products involving g are performed in the multiplicative
group ZZ∗N , where the multiplication operation is performed modulo N .

The following factoring algorithm makes calls to a ‘modified’ attacker algo-
rithm A′. The modified attacker A′ has precisely the same output probability
distribution (and hence success probability) as the given attacker A, but A′ has
the following additional property: For all executions of A′, each query which A′

makes to oracle H2 is distinct from all previous queries made in the execution
to H2 (by either A′ itself or by the signcryption algorithm S). An arbitrary at-
tacker A can always be modified into A′ satisfying the above properties in the
following way: A′ operates in the same way as A but maintains a ‘lookup table’
of all queries previously made to oracle H2 and the corresponding answers re-
turned by H2. Then whenever A makes a query Q to H2, the modified attacker
A′ first searches its lookup table for a previous occurrence of Q, and if found,
takes the answer from the table without querying H2 (if not found, the query is
made to H2 as usual). In order to maintain the lookup table, A′ must update it
with a query/answer pair whenever a new query is made to H2. This is trivial
when the new query is made by A′ directly. However, a new query to H2 may
also be made ‘indirectly’ when A′ queries the signcryption algorithm S with a
message m. This results in the query (HU

1 (vr
B),m, bind) from S to H2 and the

signcryptext (c, e, y) is returned to A′. In order to update its table, A′ recovers
vr

B = (gyve
A)−sB and queries H1 to recover HU

1 (vr
B). Then it has the query/answer

pair [(HU
1 (vr

B),m, bind), e] and updates the table. We note that maintaining the
lookup table can be done in time O((lA−S + lA−H2)

2), plus a time lA−SO(k3) to
recover S’s queries as described above.

Algorithm Fact(k, g,N, S)
1. (vA, sA) ← GenUser(k, g, N, S)
2. (vB , sB) ← GenUser(k, g, N, S)
3. (g′, N ′, S′, (H1, H2,E, D)) ← GenComm(k)
4. Pick random functions H′1 : {0, 1}∗ → {0, ..., 2|H1| − 1} and H′2 :
{0, 1}∗ → {0, ..., 2|H2| − 1} and form O′ = (H′1,H

′
2, E,D).

5. Pick random inputs for running A′:
(a) Pick random ωA′ ∈ {0, 1}∗.
(b) Pick lS random elements r′[i] ∈ {0, ..., R− 1} for 1 ≤ i ≤ lA−S.

6. (e1, y1, c1) ← A′(k, g, N, vA, vB , sB ; ωA′ |S(k, g, N, sA, vB , .; r′[i]|O′),O′)
7. (m1, b1) ← U(k, g, N, vA, sB , (e1, y1, c1)|O′)
8. t1 ← Find(Q(6)

A′−S,m1, lA−S)
9. t2 ← Find(Q(6)

A′−H′2
, (H′U1 ((gy1ve1

A)−sB),m1, bind), lA−H2)
10. If b1 6= 1 or t1 6= 0 then Abort
11. If t2 = 0 then Abort
12. Pick a random function H′′2 : {0, 1}∗ → {0, ..., 2|H2| − 1} subject to

the restriction H′′2 (Q(6)
A′−H′2

[i]) = H′2(Q
(6)
A′−H′2

[i]) for all 1 ≤ i ≤ (t2 − 1)

and H′′2 (Q(6)
S−H′2

[i]) = H′2(Q
(6)
S−H′2

[i]) for all 1 ≤ i ≤ j, where j is the

number of queries S made to H′2 before the query QA′−H′2 [t2] in the
execution of step 6, and form O′′ = (H′1, H

′′
2 , E, D).

13. Pick lA−S random elements r′′[i] ∈ {0, ..., R− 1} for i ∈ {1, ..., lA−S},
subject to the restriction r′′[i] = r′[i] for all i ∈ {1, ..., j}.

14. (e2, y2, c2) ← A′(k, g, N, vA, vB , sB ; ωA′ |S(k, g, N, sA, vB , .; r′′[i]|O′′),O′′)
15. t′1 ← Find(Q(14)

A′−S,m2, lA−S)

16. t′2 ← Find(Q(14)
A′−H′′2

, (H′U1 ((gy2ve2
A)−sB),m2, bind), lA−H2)

17. (m2, b2) ← U(k, g, N, vA, sB , (e2, y2, c2)|O′′)
18. If b2 6= 1 or t′1 6= 0 or t′2 6= t2 or e1 = e2 then Abort
19. If (gy1ve1

A)−sB 6= (gy2ve2
A)−sB then Abort

20. L ← sB [(y2 − y1)− sA(e2 − e1)]
21. If L = 0 then Abort
22. p ← MillFact(g, L,N)
23. Return p

By the shorthand notation in step 6 above we mean that Fact answers the
i’th query QA′−S[i] of A′ to S by running S with its random input set to r[i].
Algorithm Find is defined as follows: Find(Q,m, l) searches array Q of size l for
the element m, returning the index of m in Q if found, or else returning 0 if
Q does not contain m. The algorithm MillFact is a variant of Miller’s factoring
algorithm (see Lemma 6 in Appendix).

We note first that if algorithm Fact is called by experiment FactorExp
and completes execution without aborting, then it successfully factors N . This
is because, when step 19 does not abort, we have (gy1ve1

A)−sB = (gy2ve2
A)−sB ,

which implies that gL = 1 (with L defined in step 20), or equivalently (since
step 21 does not abort), L is a non-zero multiple of OrdZZ∗

N
(g)(g). Hence, since

g output by GenComm is an asymmetric basis in ZZ∗N , then by Lemma 6 in the
Appendix, step 22 computes a non-trivial divisor of N in time O(|L| · |N |2) =
O(k3) (assuming that the unsigncryption algorithm rejects a signcryptext (c, e, y)
when y is outside the known range [0, R + |H2| · S], so that during a successful
run of Fact, when both runs of the attacker output a successful forgery, both y1

and y2 are guaranteed to be in this range).
We now lower bound the probability that Fact does not abort. In the following

analysis, we denote by Ab(n) the event of executions in which Fact aborts at step
n, and by ¬Ab(n) its complement, Note that if the first abort test following step
n occurs at step m, then ¬Ab(n) = Ab(m) ∪ ¬Ab(m). Consider first the abort
test in step 10. Observe that the algorithm up to this point is just a single run
of the forgery experiment ForgeExp, and ¬Ab(10) corresponds to a successful
forgery, i.e. ForgeExp = 1. Therefore Pr[¬Ab(10)] = ε.

Now consider the abort test at step 11. The algorithm aborts at this step if the
query QF1

def= (H′U1 ((gy1ve1
A)−sB),m1, bind) (which we call the ‘forgery query’),

asked by U to H′2 in step 7 to verify the attacker’s output forgery (c1, e1, y1)
has not been previously asked by A′ to H′2. In that case the answer returned
by H′2 to U is uniform and independent of the attacker’s output and we have

Pr[Ab(11)] = Pr[¬Ab(10) ∩ t2 = 0] ≤ Pr[b1 = 1 ∩ t2 = 0] ≤ 1/2|H2|. We deduce
that ε1

def= Pr[¬Ab(11)] = Pr[¬Ab(10)]− Pr[Ab(11)] ≥ ε− 1/2|H2|.
Next, we consider the abort test in step 18. Observe that the probability space

Ω of execution outcomes of the attacker A′ can be represented as a product space
Ωa(i)×Ωb(i) in i different ways for each i ∈ {1, ..., lA−H2}. In these products, the
space Ωa(i) includes all random outcomes occurring before the i’th query of A′ to
H2, and the space Ωa(i) includes all remaining random outcomes occurring after
that query. Below, we let (ai, bi) ∈ Ωa(i) × Ωb(i) denote the execution outcome
of the first attacker run in step 6 and we let (a′i, b

′
i) ∈ Ωa(i) × Ωb(i) denote the

outcome of the second attacker run in step 14. Define the event S ⊆ Ω consisting
of runs of A′ where a successful forgery is output (i.e. ForgeExp=1) and the
‘forgery query’ is asked to H2. The event S can be partitioned into the lA−H2

subevents Si according to the index i of the ‘forgery query’ during the run.
Therefore, the event ¬Ab(11) ∩ (t2 = i) in the execution of Fact corresponds to
the event (ai, bi) ∈ Si for the first attacker run in step 6, and similarly, the event
(b2 = 1 ∩ t′1 = 0 ∩ t′2 = i) for Fact corresponds to (a′i, b

′
i) ∈ Si for the second run

of A′ in step 14. Note that (i) The marginal probability distributions of (ai, bi)
and (a′i, b

′
i) respectively are both equal to the random outcome distribution of

the attacker run in Experiment ForgeExp, and (ii) If (ai, bi) ∈ Si then a′i = ai

because Fact performs the second attacker run with all random outcomes prior
to the forgery query QA−H2[i] identical to those in the first attacker run, namely
equal to ai.

Now since
∑lA−H2

i=1 Pr[(ai, bi) ∈ Si] = Pr[(ai, bi) ∈ S] ≥ ε1, there exists a set
of indices i such that all the subevents Si corresponding to those indices have
high probability and their union has most of the probability of S. In particular,
define G

def= {i ∈ {1, ..., lA−H2} : Pr[Si] ≥ ε1/(2lA−H2)}. Then one can easily show
that ∑

i∈G

Pr[Si] ≥ ε1/2 . (14)

Applying the splitting lemma (see Lemma 4 in Appendix) to each subset Si

on product PS Ωa(i) × Ωb(i) we have the existence of corresponding subsets
Ωi ⊆ Ωa(i) satisfying

Pr[ai ∈ Ωi|(ai, bi) ∈ Si] ≥ 1/2 (15)

and

Pr[(a′i, b
′
i) ∈ Si|(a′i = a)] ≥ = Pr[Si]/2 ≥ ε1/(4lA−H2) for all a ∈ Ωi . (16)

Now we can lower bound the probability of passing all abort tests up to and
including step 18. Writing αi

def= (ai, bi) and α′i = (a′i, b
′
i), we have

Pr[¬Ab(18)]

=
lA−H2∑

i=1

Pr[(αi ∈ Si) ∩ (α′i ∈ Si) ∩ (e1 6= e2)]

≥
∑

i∈G

Pr[(αi ∈ Si) ∩ (ai ∈ Ωi) ∩ (α′i ∈ Si) ∩ (e1 6= e2)]

=
∑

i∈G

∑
a∈Ωi

(a,b)∈Si

Pr[αi = (a, b)] · Pr[(α′i ∈ Si) ∩ (e1 6= e2)|αi = (a, b)] (17)

Note that

Pr[(α′i ∈ Si) ∩ (e1 6= e2)|αi = (a, b)]
= Pr[α′i ∈ Si|αi = (a, b)]− Pr[(α′i ∈ Si) ∩ (e1 = e2)|αi = (a, b)] (18)

Since A′ never asks a previous query to H2, the answer e2 to the i’th query Q′A′−H2

in the second run is uniformly distributed in {0, ..., 2|H2|−1} independent of the
corresponding answer e1 in the first run. We therefore have, for the second term
in (18):

Pr[((a′i, b
′
i) ∈ Si) ∩ (e1 = e2)|(ai , bi) = (a, b)]

≤ Pr[e1 = e2|(ai, bi) = (a, b)] = 1/2|H2|. (19)

For the first term in (18), we obtain, assuming (a, b) ∈ Si and a ∈ Ωi and using
(16),

Pr[α′i ∈ Si)|αi = (a, b)] = Pr[α′i ∈ Si)|a′i = a] (20)
≥ ε1/(4lA−H2). (21)

Putting (19) and (20) into (18) we find:

Pr[(α′i ∈ Si) ∩ (e1 6= e2)|αi = (a, b)] ≥ ε1/(4lA−H2)− 1/2|H2| (22)

Putting (22) in (17), we find

Pr[¬Ab(18)] ≥ ε1/(4lA−H2) ·
∑

i∈G

∑
a∈Ωi

(a,b)∈Si

Pr[αi = (a, b)]

= ε1/(4lA−H2) ·
∑

i∈G

Pr[ai ∈ Ωi|αi ∈ Si] · Pr[αi ∈ Si]

≥ ε1/(4lA−H2) · (1/2) ·
∑

i∈G

Pr[αi ∈ Si] using (15)

≥ ε1/(8lA−H2) · (ε1/2) using (14)

= ε21/(16lA−H2)
def= ε2. (23)

Now note that (i) For executions in ¬Ab(18), the verification query to H′2 (or
H′′2) is asked as the i’th query in both attacker runs, and (ii) The two attacker
runs are identical up to (and including) the point where i’th query is asked
to H′2. Therefore, for those executions, the verification queries of the two at-
tacker runs, namely (H′U1 ((gy

1ve1
A)−sB),m1, bind) and (H′U1 ((gy

2ve2
A)−sB),m2, bind)

respectively, are identical. Therefore the two attacker runs can be considered to-
gether as a single algorithm FindColl, which makes up to 2lA−H1 queries to the
random function oracle H′U1 , and outputs a collision pair of arguments for H′U1 ,
namely (x1, x2)

def= ((gy1ve1
A)−sB , (gy2ve2

A)−sB) with probability at least ε2. Ap-
plying Lemma 5 (see Appendix) to algorithm FindColl, we see that the probabil-
ity Pr[Ab(19)] that x1 6= x2 cannot exceed (2lA−H1 + 2)(2lA−H1 + 1)/2 · (1/2|H

U
1 |).

Therefore,

Pr[¬Ab(19)] = Pr[¬Ab(18)]− Pr[Ab(19)] (24)

≥ ε2 − (lA−H1 + 1)(2lA−H1 + 1) · (1/2|H
U
1 |) def= ε3 (25)

We will now use the WI of the scheme SCF to show that the last abort
test is also passed with non-negligible probability. In the following, we let T

def=
¬Ab(19), so that the executions in which Fact is successful form the event T ∩
¬Ab(21). Also, we let z

def= (y2 − y1)/(e2 − e1) if the execution is in T and set
z = xx if the execution is not in T (xx is just a symbol indicating that an abort
has occurred before step (21)). We note the set equality (T ∩Ab(21)) = (T ∩z =
sA) ∪ (T ∩ sB = 0). Since Pr[(T ∩ sB = 0)] ≤ Pr[sB = 0] = 1/S is negligible, we
derive below a lower bound on Pr[T ∩ (z 6= sA))].

We begin by applying the Splitting Lemma (lemma 4 in Appendix) to the
product probability space of common parameters/A secret key triples (g,N, sA)
by all the other random choices in Fact. Since Pr[T] ≥ ε3 over this product space,
we deduce the existence of a subset ΩT of triples (g, N, sA) such that

Pr[ΩT] ≥ ε3/2 (26)

and

For each (g′, N ′, s′A) ∈ ΩT ,Pr[T |(g,N, sA) = (g′, N ′, s′A)] ≥ ε3/2. (27)

For each (g′, N ′, s′A) ∈ ΩT , let v′A
def= g−sA mod N ′ denote A’s public key as

usual, and let W (g′,N ′,v′A) def= {s ∈ {0, ..., S − 1} : g′−s mod N ′ = v′A} de-
note the set of secret keys of cardinality |W (g′,N ′,v′A)| which map to the pub-
lic key v′A. For brevity we let γ

def= (g′, N ′, v′A). Denote by s(γ)(k) the k’th
key in the set W (γ), indexed in an arbitrary manner. Now extend ΩT to form
Ω′

T
def= {(g′, N ′, s′A) : ∃s∗s.t.s∗ ∈ W (γ)and(g′, N ′, s∗) ∈ ΩT }, and Ω

′(v)
T

def=
{(γ) : ∃s′s.t. s′ ∈ W (γ)and(g′, N ′, s′) ∈ Ω′

T }. For each (γ) ∈ Ω
′(v)
T , let k∗(γ)

denote the index of a (not necessarily unique) secret key s∗ in W (γ) such that
(g′, N ′, s′A) ∈ ΩT . From hereon we denote the outcome triple γs

def= (g,N, sA).
For each (γ) ∈ Ω

′(v)
T , define the matrix P (γ) of size W (γ) + 1 rows by W (γ)

columns, whose j’th column is the conditional probability distribution of the
output ratio z given that A’s secret key is the j’th key in W (γ), i.e.:

P
(γ)
ij

def= Pr[T ∩ (z = s(γ)(i))|(γs) = (g′, N ′, s(γ)(j))]if i ≤ |W (γ)| (28)

and P
(γ)
ij

def= Pr[T ∩ (z 6= s(γ)(i)for alli ∈ {1, ..., W (γ)})|(γs) = (g′, N ′, s(γ)(j)))]
if i = |W (γ)| + 1. Note that the columns of P (γ) do not sum to 1 because we
have not included in them the conditional probability that z = xx (the outcomes
when the execution is not in T). We observe that by (27), at least one column
of P (γ) (whose index we denote k∗(γ)) has a sum satisfying

σ(γ) def=
|W (γ)|+1∑

i=1

P
(γ)
ik∗(γ) ≥ ε3/2. (29)

Also, using the WI of SCF , (lemma 3 in Appendix) we can show that every pair
of columns of P (γ) are close in the statistical distance (1-metric) sense:

|W (γ)|+1∑

i=1

|P (γ)
ik − P

(γ)
il | ≤ B (30)

where B
def= (2lA−S)·(2/2k′). The result 30 is obtained as follows. The lemma 3 in

the appendix gives the bound (2/2k′) on the statistical distance between the con-
ditional probability distributions of single signcryptext views Pr[(e, y, c)|sA = s1]
and Pr[(e, y, c)|sA = s2], given that A’s secret key is s1 and s2 respectively, and
s1, s2 are in the same public key set W (γ). In our case, the output ratio z can
be written as a function f(ω, (sc′1, ..., sc

′
A−S), (sc

′′
1 , ..., sc′′A−S)) (where f(.) is de-

termined by the attacker algorithm A′ and Fact) over the space of all inputs and
random outcomes in Fact (with the exception of the signcryption algorithm’s ran-
dom input), which we denote collectively by ω, and the collection of up to 2lA−S

distinct signcryptexts ((sc′1, ..., sc
′
A−S and (sc′′1 , ..., sc′′A−S)) returned as a result of

the signcryption queries of the two attacker runs, respectively. An application of
lemma 1 (see appendix) to f(.) shows that the statistical distance between the
conditional distributions Pr[z = f(ω, (sc′1, ..., sc

′
A−S), (sc

′′
1 , ..., sc′′A−S))|sA = s1]

and Pr[z = f(ω, (sc′1, ..., sc
′
A−S), (sc

′′
1 , ..., sc′′A−S))|sA = s2] (which is the distance

required in (30)) is not greater than the s.d. between the conditional distribu-
tions of the arguments to f(.), ie Pr[ω, (sc′1, ..., sc

′
A−S), (sc

′′
1 , ..., sc′′A−S)|sA = s1]

and Pr[ω, (sc′1, ..., sc
′
A−S), (sc

′′
1 , ..., sc′′A−S)|sA = s2]. This s.d. can be bounded by

repeated application of the combining lemma (Lemma 2 in Appendix) and the
SCF single signcryptext view WI lemma (Lemma 3) as follows. Starting with the
identical conditional distributions Pr[ω|sA = s1] and Pr[ω|sA = s2] (since ω is
independent of sA), we define the RVs x(1) = ω|sA=s1 and x(2) = ω|sA=s2 , y(1) =
(ω, sc′1)|sA=s1 and y(2) = (ω, sc′1|sA=s2 . Also we define the RVs m

′(i)
j and m

′′(i)
k

as the j′th and k’th message queries of A′ to S in the first and second attacker
runs respectively, the supercript i ∈ {1, 2} denoting A’s secret key as above. We
denote probability distributions using the same notation as in Appendix. We
observe that (i) ∆(Dx(1) , Dx(2)) = 0 and (ii) If x(1) = x(2) then m

′(1)
1 = m

′(2)
1

so that lemma 3 applies and gives ∆(Dy(1)|x, Dy(2)|x) ≤ 2/2k′ . Then (i) and (ii)
and Lemma 2 give ∆(Dy(1) , Dy(2)) ≤ 0+2/2k′ . Now we continue in this manner,
defining x

(1)
i = (ω, sc′1, ..., sc

′
i)|sA=s1 and x

(2)
i = (ω, sc′1, ..., sc

′
i)|sA=s2 , y

(1)
i =

(ω, sc′1, ..., sc
′
i+1)|sA=s1 and y

(2)
i = (ω, sc′1, ..., sc

′
i+1)|sA=s2 and using lemma 3

and lemma 2 to get ∆(D
y
(1)
i

, D
y
(2)
i

) ≤ ∆(D
x
(1)
i

, D
x
(2)
i

) + 2/2k′ ≤ i · (2/2k′), for
each i ∈ {1, ..., lA−S}. In the same way we can ’add in’ the lA−S queries of the
second attacker run, increasing the s.d. bound by 2/2k′ for each added query, so
we get the final upper bound 2lA−S · (2/2k′) on the s.d. between the complete
views (ω, sc′1, ..., sc

′
lA−S

), sc′′1 , ..., sc′′lA−S
) of Fact with respect to the two secret keys

s1 and s2, the result expressed in (30). We now have

Pr[T ∩ (z = sA) ∩ ((γs) ∈ Ω
′(v)
T)] = (31)

∑

(γ)∈Ω
′(v)
T

|W (γ)|∑

k=1

Pr[T ∩ (z = s(γ)(k))|(γs) = (g′, N ′, s(γ)(k))]

· Pr[(γs) = (g′, N ′, s(γ)(k))] (32)

=
∑

(γ)∈Ω
′(v)
T

|W (γ)|∑

k=1

P
(γ)
kk · Pr[(γs) = (g′, N ′, s(γ)(k))] (33)

and

Pr[T ∩ ((γs) ∈ Ω
′(v)
T)]

=
∑

(γ)∈Ω
′(v)
T

|W (γ)|∑

k=1

Pr[T |(γs) = (g′, N ′, s(γ)(k))] Pr[(γs) = (g′, N ′, s(γ)(k))]

=
∑

(γ)∈Ω
′(v)
T

|W (γ)|∑

k=1

|W (γ)|+1∑

l=1

P
(γ)
lk Pr[(γs) = (g′, N ′, s(γ)(k))] (34)

so, subtracting (31) from (34), we obtain the lower bound for the for the prob-
ability of the desired event

Pr[T ∩ (z 6= sA)] ≥ Pr[T ∩ (z 6= sA) ∩ ((γs) ∈ Ω
′(v)
T)]

= Pr[T ∩ ((γs) ∈ Ω
′(v)
T)]− Pr[T ∩ (z = sA) ∩ ((γs) ∈ Ω

′(v)
T)]

=
∑

(γ)∈Ω
′(v)
T

|W (γ)|∑

k=1






|W (γ)|+1∑

l=1

P
(γ)
lk


− P

(γ)
kk


Pr[(γs) = (g′, N ′, s(γ)(k))]

=
∑

(γ)∈Ω
′(v)
T

Pr[(γs) = (g′, N ′, s(γ)(k0))]






|W (γ)|∑

k=1

|W (γ)|+1∑

l=1

P
(γ)
lk


−

|W (γ)|∑

k=1

P
(γ)
kk




for any k0 ∈ {1, ..., |W (γ)|} (35)

≥
∑

(γ)∈Ω
′(v)
T

Pr[(γs) = (g′, N ′, s(γ)(k0))]((|W (γ)| · σ(γ)− (|W (γ)| − 1)·)

− σ(γ) + (|W (γ)| − 1) ·B) (36)

=
∑

(γ)∈Ω
′(v)
T

Pr[(γs) = (g′, N ′, s(γ)(k0))]
(
(σ(γ)− 2B)

(
|W (γ)| − 1

))
(37)

≥ (ε3/2− 2B)




∑

(γ)∈Ω
′(v)
T

Pr[(γs) = (g′, N ′, s(γ)(k0))] ·
(
|W (γ)| − 1

)

 (38)

≥ (ε3/2− 2B)




∑

(γ)∈Ω
′(v)
T

Pr[(γs) = (g′, N ′, s(γ)(k0))] ·
(
|W (γ)| − 1

)

 (39)

≥ (ε3/2− 2B) ·




∑

(γ)∈Ω
′(v)
T

Pr[(g, N, vA) = (γ)] ·
(|W (γ)| − 1

)

|W (γ)|


 (40)

≥ (ε3 − 2B)/4 ·




∑

(γ)∈Ω
′(v)
T

Pr[(g, N, vA) = (γ)]


 (41)

≥ (ε3 − 2B)ε3/8. (42)

To get (35), we have used the fact that GenUser chooses sA uniformly in {0, ..., S−
1} so that Pr[(γs) = (g′, N ′, s(γ)(k))] = (1/S) · Pr[(g, N) = (g′, N ′)] is indepen-
dent of k. To get (36) and (38), we used the WI bound (30) and the existence
(29) of a column (having index k∗(γ)) of sum σ(γ) exceeding ε3/2:

|W (γ)|∑

k=1

|W (γ)|+1∑

l=1

P
(γ)
lk =

|W (γ)|∑

k=1

|W (γ)|+1∑

l=1

((P (γ)
lk − P

(γ)
lk∗(γ)) + P

(γ)
lk∗(γ))

≥ (|W (γ)| − 1) · (σ(γ)). (43)

Similarly, we also used the WI bound (30)in a weaker sense to conclude that
each ’diagonal’ element P

(γ)
kk exceeds the element P

(γ)
lk∗(γ)) on the same row in

column k∗(γ) by at most B, giving

|W (γ)|∑

k=1

P
(γ)
kk ≤ σ(γ) + (|W (γ)| − 1)B. (44)

To get (41), we used the fact that S ≥ 2OrdZZ∗
N

(g) so |W (γ)| ≥ 2 for all (γ) of
non-zero probability of being output by GenComm. To get (42), we used (26):

∑

(γ)∈Ω
′(v)
T

Pr[(g,N, vA) = (γ)] ≥ Pr[ΩT] ≥ ε3/2. (45)

Finally, we have the claimed lower bound on the success probability of the fac-
toring experiment FactorExp:

Pr[FactorExp = 1] = Pr[T ∩ L 6= 0] (46)

≥ Pr[T ∩ (z 6= sA)]− Pr[sB = 0] (47)
≥ (ε3 − 2B)ε3/8− 1/SL. (48)

This establishes the claimed bound and completes the proof. ut

The following is a definition of the factorization intractability property we would
like to have for the common parameter generation algorithm GenComm of the
scheme SCF .

Definition 4. The common parameter generation algorithm GenComm of the
scheme SCF is said to be factorization-intractable if, for any polynomial time
factoring algorithm Fact(., ., ., .), the factoring success probability
Pr[FactorExp(k, GenComm,Fact) = 1] (where FactorExp is the experiment
defined in Theorem 1) is a negligible function in k.

Now we can state our unforgeability result for the scheme SCF as a corollary to
Theorem 1.

Corollary 1. For the scheme SCF=(GenComm,GenUser,S,U), if the common
parameter generation algorithm GenComm is factorization-intractable, then SCF
is existentially unforgeable under an adaptive chosen message attack with respect
to random oracle replacement set {1, 2}.

Proof. Using the fact that 1/2k′ , 1/S, 1/2|H2|, and 1/2|H
U
1 | are all negligible func-

tions in k by construction, and that lA−S, lA−H1 , and lA−H2 are all polynomially
bounded functions in k when the attacker A has a polynomial time bound T (re-
call each oracle query by A is counted as one computation step), one concludes
from Theorem 1 that the existence of a poly-time forging attacker A for SCF hav-
ing non-negiligible success probability, implies the existence of a poly-time fac-
toring algorithm for the output of GenComm, having non-negligible success prob-
ability. We therefore have a contradiction with the assumption that GenComm is
factorization-intractable, so a poly-time attacker A with non-negligible success
probability does not exist. ut

6 Conclusions

We presented a new signcryption scheme and proved its unforgeability in the
random oracle model with respect to a factorization problem. Open problems
related to our scheme are: (i) To prove the confidentiality of our scheme relative
to the Diffie-Hellman problem or more preferably, relative to the factorization
problem and (ii) To find an efficient distributed common parameter generation
algorithm for our scheme which leaks no knowledge about the factors of N to
a minority of colluding participants. Finally, a remaining problem is to find
a scheme at least as efficient as the proposed one which also satisfies one or
both of the following properties: (i) The scheme is based on the standard RSA

modulus factorization problem and (ii) Each user has a personal modulus - i.e.
the modulus to be factored is not common to all users.

Acknowledgements. The authors would like to thank the anonymous referees
for their helpful comments.

References

1. M. Bellare, A. Boldyreva, and S. Micali. Public-Key Encryption in a Multi-user
Setting: Security Proofs and Improvements. In EUROCRYPT 2000, volume 1807
of LNCS, pages 259–274, Berlin, 2000. Springer-Verlag.

2. D. Boneh and M. Franklin. Efficient Generation of Shared RSA Keys. In
CRYPTO’97, volume 1294 of LNCS, pages 425–439, Berlin, 1997. Springer-Verlag.

3. S. Cavallar et al. Factorization of a 512-Bit RSA Modulus. In EUROCRYPT 2000,
volume 1807 of LNCS, pages 1–18, Berlin, 2000. Springer-Verlag.

4. T. ElGamal. A Public Key Cryptosystem and a Signature Scheme Based on Dis-
crete Logarithms. IEEE Tran. Info. Theory, IT-31(4):469–472, 1985.

5. U. Feige and A. Shamir. Witness Indistinguishable and Witness Hiding Protocols.
In Proc. 22-nd STOC, pages 416–426. ACM, 1990.

6. A. Fiat and A. Shamir. How to Prove Yourself: Practical Solutions of Identification
and Signature Problems. In CRYPTO’86, volume 263 of LNCS, pages 186–194,
Berlin, 1987. Springer-Verlag.

7. FIPS 186-2, Digital Signature Standard. Federal Information Processing Standards
Publication 186-2, 2000. Available from http://csrc.nist.gov/.

8. M. Girault. Self-Certified Public Keys. In EUROCRYPT ’91, volume 547 of LNCS,
pages 490–497, Berlin, 1992. Springer-Verlag.

9. S. Goldwasser, S. Micali, and R. Rivest. A Digital Signature Scheme Secure against
Adaptively Chosen Message Attacks. SIAM Journal on Computing, 17(2):281–308,
1988.

10. A. Lenstra and E. Verheul. Selecting Cryptographic Key Sizes. In PKC2000,
volume 1751 of LNCS, pages 446–465, Berlin, 2000. Springer-Verlag.

11. D. Pointcheval. The Composite Discrete Logarithm and Secure Authentication. In
PKC2000, volume 1751 of LNCS, pages 113–128, Berlin, 2000. Springer-Verlag.

12. D. Pointcheval and J. Stern. Security Arguments for Digital Signa-
tures and Blind Signatures. J. of Cryptology, 1999. Available from
http://www.di.ens.fr/∼pointche.

13. G. Poupard and J. Stern. Security Analysis of a Practical “on the fly” Authen-
tication and Signature Generation. In EUROCRYPT’98, volume 1403 of LNCS,
pages 422–436, Berlin, 1998. Springer-Verlag.

14. G. Poupard and J. Stern. Short Proofs of Knowledge for Factoring. In PKC 2000,
volume 1751 of LNCS, pages 147–166, Berlin, 2000. Springer-Verlag.

15. C. P. Schnorr. Efficient Identification and Signatures for Smart Cards. In
CRYPTO’89, volume 435 of LNCS, pages 239–251, Berlin, 1990. Springer-Verlag.

16. SEC2. Recommended Elliptic Curve Domain Parameters, September 2000. Stan-
dards for Efficient Cryptography Group. Available from http://www.secg.org/.

17. Y. Zheng. Digital Signcryption or How to Achieve Cost(Signature & Encryption)
<< Cost(Signature) + Cost(Encryption). In CRYPTO’97, volume 1294 of LNCS,
pages 165–179, Berlin, 1997. Springer-Verlag.

7 Appendix

This appendix contains several Lemmas used in the security proof of our pro-
posed scheme in section 5.3. In the following, we denote by D : Ω → IR a proba-
bility distribution on probability space (P.S.) Ω. The support of distribution D

on P.S. Ω is the set Supp(D) def= {x ∈ Ω : D(x) 6= 0}. A measure of closeness
between two probability distributions D1 and D2 on a common probability space
Ω is the statistical distance (s.d.) ∆(D1, D2)

def=
∑

x∈Ω |D1(x)−D2(x)|.
Lemma 1. Let x(1) and x(2) be RVs over common P.S. Ω with probability dis-
tributions Dx(1) and Dx(2) , respectively. Let f : Ω → Y be an arbitrary mapping.
Define the RVs y(1) def= f(x(1)) and y(2) def= f(x(2)) over P.S. Y with resulting
probability distributions Dy(1) and Dy(2) , respectively. Then

∆
(
Dy(1) , Dy(2)

) ≤ ∆ (Dx(1) , Dx(2)) (49)

Proof. Refer to the full paper. ut
Lemma 2. Let x(1) and x(2) be RVs over common P.S. Ωx, y(1) and y(2) be
RVs over common P.S. Ωy with probability distributions Dx(1) , Dx(2) , Dy(1) ,

Dy(2) , respectively. Suppose that ∆(Dx(1) , Dx(2)) ≤ Bx. Define the set S
def=

Supp(Dx(1)) ∩ Supp(Dx(2)). For each x ∈ S, define the conditional distribu-
tions Dy(1)|x and Dy(2)|x by Dy(i)|x(y) def= Pr

[
y(i) = y|x(i) = x

]
and suppose that

∆(Dy(1)|x, Dy(2)|x) ≤ By for all x ∈ S. Define the ordered-pair RVs z(1) def=

(x(1), y(1)) and z(2) def= (x(2), y(2)) with resulting distributions Dz(1) and Dz(2) ,
respectively. Then

∆ (Dz(1) , Dz(2)) ≤ Bx + By

Proof. Refer to the full paper. ut
Lemma 3. WI For the signcryption scheme SCF = (GenComm, GenUser,S,U),
define the single signcryptext viewing experiment

Experiment ViewSCF(k, (g, N), (sA, vA), (sB , vB),m,H1, H2, E)
(c, e, y) ← S(k, g, N, sA, vB , m|H1, H2, E)
Return (c, e, y)

Suppose (g,N, S) ∈ Supp(GenComm(k)), (sB , vB) ∈ Supp(GenUser(k, g, N, S))
and that H1, H2, E are arbitrary oracles and m is an arbitrary message. Let s

(1)
A

and s
(2)
A denote two secret keys in {0, . . . , S − 1} which map to the same public

key vA = g−s
(1)
A = g−s

(2)
A mod N . For i ∈ {1, 2}, define the RVs

z(i) def= ViewSCF(k, (g, N), (s(i)
A , vA), (sB , vB),m, H1, H2,E)

with corresponding probability distributions Dz(i) . Then

∆ (Dz(1) , Dz(2)) < 2/2k′ .

Proof. Write z(i) = (c(i), w(i)), with w(i) = (e(i), y(i)), for i ∈ {1, 2}. The result
∆ (Dw(1) , Dw(2)) < 2/2k′ follows from Pointcheval’s Theorem 7 [11], since e(i) =
H2(HU

1 (vr(i)

B),m, bind) = S(gr(i)
), where S(.) is a probabilistic ‘strategy’ function

which is independent of i. The lemma then follows using Lemma 2 when we ob-
serve that c(i) = E(HL

1(v
r(i)

B), m) = f(gr(i)
) for a probabilistic function f(.) inde-

pendent of i, and gri = ve(i)

A gy(i)
is determined by w(i), so ∆

(
Dc(1)|w, Dc(2)|w

)
= 0

for all w ∈ Supp(Dw(1)) ∩ Supp(Dw(2)). ut

Lemma 4. Splitting Lemma Let (a, b) be a pair of RVs on the product PS
Ωa × Ωb. Suppose S is a subset of Ωa × Ωb with Pr[(a, b) ∈ S] ≥ ε. Then there
exists a subset Ω of ΩA with the following properties:

(i)Pr[a ∈ Ω|(a, b) ∈ S] ≥ 1/2
(ii) For all x ∈ Ω, Pr[(a, b) ∈ S|a = x] ≥ ε/2.

Proof. See Pointcheval and Stern’s paper [12]. ut

Lemma 5. Define the experiment

Experiment FindCollExp(FindColl)
Pick a random function H : {0, 1}∗ → {0, ..., 2|H| − 1}
(x1, x2) ← FindColl(|H)
If H(x1) = H(x2) and x1 6= x2 Return 1
Else Return 0

For any algorithm FindColl(|.) such that FindColl(|H) makes up to l queries to
oracle H, Pr[FindCollExp(FindColl) = 1] ≤ ((l + 1)(l + 2)/2) · (1/2|H|).

Proof. Refer to the full paper. ut

The following lemma is a slight generalization of the factoring algorithm pre-
sented by Pointcheval [11], and can be considered a variant of Miller’s factoring
algorithm (see [14] - the difference is essentially that Miller’s original algorithm
picks g of order dividing the given L while for this algorithm g is supplied as an
input). An asymmetric basis g in ZZ∗N , where N = pq is an RSA modulus, satis-
fies m2(OrdZZ∗

p
(g)) 6= m2(OrdZZ∗

q
(g)), where m2(z) denotes the multiplicity of

2 in z. Let odd(z) = z/2m2(z).

Lemma 6. There exists an algorithm which, given an RSA modulus N , an
asymmetric basis g in ZZ∗N and a non-zero multiple L of odd(OrdZZ∗

N
(g)), out-

puts a non-trivial factor of N in time O(|L| · |N |2).

Proof. Consider the following algorithm.

Algorithm MillFact(g, L, N)

x0 ← godd(L) mod N
i ← 0
Repeat

xi+1 ← x2
i mod N

i ← (i + 1)
Until xi = 1
p ← gcd(xi−1 + 1, N)
Return p

Let αp = m2(OrdZZ∗
p
(g)) and rp = odd(OrdZZ∗

p
(g)), with analogous quanti-

ties defined for q, and let α
def= max(m2(OrdZZ∗

p
(g)),m2(OrdZZ∗

q
(g)). It is easy

to show that OrdZZ∗
N

(g) = lcm(OrdZZ∗
p
(g), OrdZZ∗

p
(g)) so that OrdZZ∗

N
(g) =

2αlcm(rp, rq). From the assumption on L, we see that odd(L) is an odd multiple
of lcm(rp, rq). Therefore, the exponent of g in computing xi, namely 2iodd(L),
is a multiple of OrdZZ∗

p
(g) iff i ≥ αp and is a multiple of OrdZZ∗

q
(g) iff i ≥ αq.

But g is by assumption an asymmetric basis in ZZ∗N , so one can assume, with-
out loss of generality, that α = αq > αp. It follows that for i = i∗ def= αq − 1,
we have xi∗ = 1 mod p and xi∗ 6= 1 mod q but xi∗+1 = 1 mod q. Therefore xi∗

is a non-trivial square-root of 1 in ZZ∗N , i.e. xi∗ 6= ±1 mod N , and the algo-
rithm returns a non-trivial factor of N (due to the well-known simple result: if
a2 = b2 mod N and a 6= ±b mod N then 1 < gcd(a±b,N) < N) after α squaring
operations mod N (time O(α · |N |2)), a modular exponentiation godd(L) mod N
(time O((|L| − α)|N |2)) and a gcd computation (time O(|N |2)). ut

