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Summary This paper studies the properties and constructions of nonlinear Boolean functions, which
are a core component of cryptographic primitives including data encryption algorithms and one-way hash
functions. A main contribution of this paper is to completely characterise the structures of cryptographic
functions that satisfy the propagation criterion with respect to all but six or less vectors.

1 Introduction

Cryptographic techniques for information authen-
tication and data encryption require Boolean func-
tions with a number of critical properties that dis-

tinguish them from linear (or affine) functions. Among

the properties are high nonlinearity, high degree of
propagation, few linear structures, high algebraic
degree etc. These properties are often called non-
linearity criteria. An important topic is to inves-
tigate relationships among the various nonlinearity
criteria. Progress in this direction has been made
in [7], where connections have been revealed among
the strict avalanche characteristic (SAC), differen-
tial characteristics, linear structures and nonlinear-
ity, of quadratic functions.

In this paper we carry on the investigation ini-
tiated in [7] and bring together nonlinearity and
propagation characteristic of a Boolean function
(quadratic or non-quadratic). We further extend
our investigation into the structures of cryptographic
functions.

Due to the limit in space, proofs of the main
results are left to the full version of the paper.

2 Basic Definitions

We consider Boolean functions from V,, to GF(2)
(or simply functions on V,,), V,, is the vector space
of n tuples of elements from GF(2). The truth ta-
ble of a function f on V,, is a (0, 1)-sequence defined
by (f(aw), f(a1),...,f(agn_1)), and the sequence
of f is a (1,—1)-sequence defined by ((—1)f(®0)
(=1)fler) (=1)f(e2r-1)) where ag = (0, ...,0,0),
ar =(0,...,0,1), ..., agn—1_; = (1,...,1,1). The
matriz of f is a (1, —1)-matrix of order 2" defined
by M = ((—1)7(®®%)) " f is said to be balanced
if its truth table contains an equal number of ones
and zeros.

An affine function f on V,, is a function that
takes the form of f(z1,...,2n) = 121D - BapT,®
¢, where aj,c € GF(2), j = 1,2,...,n. Further-
more [ is called a linear function if ¢ = 0.

Definition 1 Let s be a (0, 1)-sequence. The Ham-
ming weight of s, denoted by W (s), is the number of
ones in the sequence. Given two functions f and g
on V,, the Hamming distance d(f, g) between them
is defined as the Hamming weight of the truth table
of f(x) ® g(x), where v = (x1,...,2,). The non-
linearity of f, denoted by Ny, is the minimal Ham-
ming distance between f and all affine functions
on Vy, i.e., Ny = min,_q o _ont1 d(f, ;) where o1,
02, ..., Pon+1 are all the affine functions on V.

Now we introduce the definition of propagation
criterion.

Definition 2 Let f be a function on V,,. We say
that f satisfies

1. the propagation criterion with respect to « if
f(z)® f(z @ a) is a balanced function, where
x = (x1,...,2,) and « is a vector in V.

2. the propagation criterion of degree k if it sat-
isfies the propagation criterion with respect to
all v € Vi, with 1 = W(a) £ k.

The above definition for propagation criterion
is from [5]. Note that the strict avalanche criterion
(SAC) introduced by Webster and Tavares [9, 8] is
equivalent to the propagation criterion of degree 1.

While the propagation characteristic measures
the avalanche effect of a function, the linear struc-
ture is a concept that in a sense complements the
former, namely, it indicates the straightness of a
function.

Definition 3 Let f be a function on V,,. A vector
a € V, is called a linear structure of f if f(z) ®
f(z ® «) is a constant.

By definition, the zero vector in V,, is a linear
structure of all functions on V,,. It is not hard to
see that the linear structures of a function f form
a linear subspace of V;,. The dimension of the sub-
space is called the linearity dimension of f. We
note that it was Evertse who first introduced the
notion of linear structure (in a sense broader than



ours) and studied its implication on the security of
encryption algorithms [3].

A (1, —1)-matrix H of order m is called a Hadamard

matrix if HH' = mlI,,, where H! is the transpose
of H and I, is the identity matrix of order m. A
Sylvester-Hadamard matrix of order 2", denoted by
H,, is generated by the following recursive relation

Hn—l Hn—l

HO - 1’ Hn - |: anl _anl

],nzl, 2,....

Definition 4 A function f on V,, is called a bent
function if

9-2 Z (_l)f(ﬂf)@(@@ = +1,
xEVn

forall B € V,,. Here (3, x) is the scalar product of 3
and z, namely, (3,x) = Y11 bjx;, and f(x)® (0, x)

s regarded as a real-valued function.

Bent functions can be characterized in various
ways [1, 2, 6]. In particular the following four state-
ments are equivalent:

(i) f is bent.

(i) (£, 0) = £23" for any affine sequence ¢ of
length 2", where £ is the sequence of f.

(iii) f satisfies the propagation criterion with re-
spect to all non-zero vectors in V,,.

(iv) M, the matrix of f, is a Hadamard matrix.

Bent functions on V,, exist only when n is even.
Another important property of bent functions is
that they achieve the highest possible nonlinearity
2n—1 _ 2%n71'

3 Propagation Characteristic and

Nonlinearity
Given two sequences a = (ai,...,an,) and b =
(b1,...,by), their component-wise product is de-

fined by a x b = (aiby,...,ambn). Let f be a
function on V,,. For a vector @ € V,,, denote by
&(a) the sequence of f(x @ «). Thus £(0) is the
sequence of f itself and £(0) * {(«) is the sequence
of f(z) ® f(z ® ).

Set
Afa) = (£(0), (),

the scalar product of £(0) and £(a). Obviously,
A(a) = 0 if and only if f(x)® f(x @ «) is balanced,
i.e., f satisfies the propagation criterion with re-
spect to a. On the other hand, if |A(a)| = 27,
then f(x) @ f(z @ a) is a constant and hence « is
a linear structure of f.

Let M = ((—1)f(®9%)) be the matrix of f and
¢ be the sequence of f. Due to a very pretty result
by R. L. McFarland (see Theorem 3.3 of [2]), M
can be decomposed into

M = 2_an diag(<€)€0>u Tty <€7€2"*1>)Hn

where /; is the ith row of H,,, a Sylvester-Hadamard
matrix of order 2". By Lemma 2 of [6], ¢; is the
sequence of a linear function defined by ¢;(z) =
(o, ), where «; is the ith vector in V,, according
to the ascending alphabetical order.

Clearly

MMT = 27"H, dlag(<£7 €0>2a T <§7 e2"—1>2)Hn' (1)
On the other hand, we always have
MMT = (A(a’l+.7))7

where 7,5 =0,1,...,2" — 1.

Let S be a set of vectors in V,,. The rank of
S is the maximum number of linearly independent
vectors in S. Note that when S forms a linear sub-
space of V,,, its rank coincides with its dimension.

Lemma 6 of [6] states that the distance between
two functions f; and fs on V,, can be expressed as
d(fi, f2) = 2"" = §(€n,€p), where &5 and &,
are the sequences of f; and f5 respectively. As an
immediate consequence we have:

Lemma 1 The nonlinearity of a function f on V,
can be calculated by

1
Ny=2""1— 5 max{|(¢, 4:)], 0 <i<2" -1}

where £ is the sequence of f and fy, ..., fan_1 are
the sequences of the linear functions on V.

Now we prove a central result of this paper:

Theorem 1 Let f be a function on V,, that satis-
fies the propagation criterion with respect to all but
a subset R of vectors in V. Then the nonlinearity
of f satisfies Ny 2 271 — 2%(”“)71, where t is the
rank of R.

It was observed by Nyberg in Proposition 3
of [4] (see also a detailed discussion in [7]) that
knowing the linearity dimension, say ¢, of a func-
tion f on V,, the nonlinearity of the function can
be expressed as Ny = 2¢N,., where N, is the nonlin-
earity of a function obtained by restricting f on an
(n — ¢)-dimensional subspace of V;,. Therefore, in a
sense Theorem 1 is complementary to Proposition 3
of [4].

In the next section we discuss an interesting
special case where |R| = 2. More general cases
where || > 2, which need very different proof tech-
niques, will be fully discussed in the later part of
the paper.



4  Functions with |R| =2

Since R consists of two vectors, a zero and a nonzero,
it forms a one-dimensional subspace of V,,. The
following result on splitting a power of 2 into two
squares will be used in later discussions.

Lemma 2 Letn = 2 be a positive integer and 2" =
p? + q% where both p = 0 and ¢ = 0 are integers.

Then p = 25" and q = 0 when n is even, and

1
p=q=22""Y when n is odd.
Now we can prove

Theorem 2 If f, a function on V,, satisfies the
propagation criterion with respect to all but two (a
zero and a nonzero) vectors in V,,, then

(i) n must be odd,

(ii) the nonzero vector where the propagation cri-
terion is not satisfied must be a linear struc-
ture of f and

(iii) the monlinearity of f satisfies Ny = 2771 —
23(n-1),

A further examination of the proof for Theo-
rem 2 reveals that a function with || = 2 has a
very simple structure as described below.

Corollary 1 A function f on'V,, satisfies the prop-
agation criterion with respect to all but two (a zero
and a nonzero) vectors in Vi, if and only if there
exists a monsingular linear matriz of order n over
GF(2), say B, such that g(x) = f(xB) can be writ-
ten as

g(x) = cxy, @ h(z1,...,Tn-1)

where h is a bent function on V,_1 and ¢ is a con-
stant in GF(2).

By Theorem 2 and Corollary 1, functions on
V., that satisfy the propagation criterion with re-
spect to all but two vectors in V,, exist only if n
is odd, and such a function can always be (infor-
mally) viewed as being obtained by repeating twice
a bent function on V,,_; (subject to a nonsingular
linear transformation on the input coordinates).

When R has more than two vectors, it does not
necessarily form a linear subspace of V,,. Therefore
discussions presented in this section do not directly
apply to the more general case. Nevertheless, using
a different technique, we show in the next section
a significant result on the structure of R, namely,
the nonzero vectors in R with |R| > 2 are linearly
dependent.

5 Linear Dependence in R

Theorem 3 Suppose that f, a function on V,,, sat-
isfies the propagation criterion with respect to all
but k + 1 wectors 0,01,...,0, in V,, where k >
1. Then B1,..., 0 are linearly dependent, namely,
there exist k constants c1,...,c, € GF(2), not all
of which are zeros, such that c181 ® - D cpf = 0.

We believe that Theorem 3 is of significant im-
portance, as it reveals for the first time the interde-
pendence among the vectors where the propagation
criterion is not satisfied by f. Of particular interest
is the case when R = {0, 51, ..., 0} forms a linear
subspace of V,,. Recall that linear structures form a
linear subspace. Therefore, when  is a subspace, a
nonzero vector in R is a linear structure if and only
if all other nonzero vectors are linear structures of

I
In the following sections we examine the cases
when |R| = 3,4,5,6.

6 Functions with || =3

When || = 3, the two distinct nonzero vectors in
R can not be linearly dependent. By Theorem 3 we
have

Theorem 4 There exists no function that does not
satisfy the propagation criterion with respect to only
three vectors.

7 Functions with |R| =4

Next we consider the case when |R| = 4. Similarly
to the case of |R| = 2, the first step we take is to
introduce a result on splitting a power of 2 into
four, but not two, squares.

Lemma 3 Letn = 3 be a positive integer and 2" =
?:1 p? where each p; 2 0 is an integer. Then

(i) Pt =p3=2""1, p3 =ps =0, ifn is odd;

(i) p{ =2", pp=p3=pas=0 orpi =p3 =p3 =
p?=2""2 ifn is even.

Now we can prove a key result on the case of

IR| = 4.

Theorem 5 If f, a function on V,, satisfies the
propagation criterion with respect to all but four

vectors (0, By, B2, P3) in Vi, Then
(i) ® = {0,051, 52,03} forms a two-dimensional

linear subspace of Vi,

(i) m must be even,



(iii) B1, P2 and Ps must be linear structures of f,

(iv) the monlinearity of f satisfies Ny = 2"~ —

237,
As a result we have

Corollary 2 A function f on 'V, satisfies the prop-
agation criterion with respect to all but four vectors
i Vi, if and only if there exists a nonsingular lin-
ear matriz of order n over GF'(2), say B, such that
g(x) = f(xB) can be written as

9(x) = c1xpn_1 ® coxp ® h(x1, ..., Tn—2)

where ¢1 and ¢y are constants in GF(2), and h is
a bent function on V,_o.

The proof of Corollary 2 is similar to that of
Corollary 1.

In [6], it has been shown that repeating twice
or four times a bent function on V,,, n even, re-
sults in a function on V,,_1 or V,,_s that satisfies
the propagation criterion with respect to all but
two or four vectors in V,,_1 or V,_o. Combining
Corollaries 2 and 1 with results shown in [6], we
conclude that the methods of repeating bent func-
tions presented in [6] generate all the functions that
satisfy the propagation criterion with respect to all
but two or four vectors.

8 Functions with |R| =5

Let f be a function on V,, with || = 5 and let
R = {0, 51, B2, B3, P4}. First we discuss properties
of and relationship among the four nonzero vectors.
This is followed by a method showing how to con-
struct functions with |R| = 5.

8.1 Bi@B®PsdBi=0

By Theorem 3, (31,02, B3, B4 are linearly depen-
dent. As (31, (2, (3, B4 are distinct nonzero vectors,
the rank of {f1, B2, 83, 54} must be 3.

Without loss of generality, we assume that 51, 32, 83

are linearly independent. As a nonsingular linear
transformation on the input coordinates does not
affect the total number of vectors where the propa-
gation criterion is satisfied by f, we can further as-
sume that f; = a; = (0,...,0,0,0,1), B2 = ay =
(0,...,0,0,1,0) and B3 = a4 = (0,...,0,1,0,0).
Our goal is to prove that (i, B2, O3 and (4 are re-
lated by B1® B2 ®F3® B4 = 0; that is, B4 = S1DB2®
(B3. We achieve this by showing that there exist no
“shorter” relations than 84 = (31 ® (2 ® 3, namely,
none of the three shorter equations G4 = 1 @ (o,
Bs = P2 ® B3 and B4 = (B1 @ B3 can hold.

We can show that G4 # (1 & (2. In addition,
B1 # B2 @ B3 and By # (1 & B3 can be proved in

the same way. Hence we have proved the following
result:

Lemma 4 Let f be a function on V, that satisfies
the propagation criterion with respect to all but five
vectors 0, B, B2, B3, Ba in V. Then 31 @ B2 @ B3 @
Ba = 0.

8.2 [, (o, f3 and (3, Are Not Linear Struc-
tures

In the full paper the following result is established.

Theorem 6 Let f be a Boolean function on V,
that satisfies the propagation criterion with respect

to all but a subset ® = {0, 31, B2, B3, P4}. Then
(i) n is odd,
(ii) B1® B2 ® B3 @ Ps =0,

(iii) |A(B;)| =271, j =1,2,3,4, and three A(3;)
have the same sign while the remaining has a
different sign, and

(iv) the nonlinearity of f satisfies Ny = 2"~1 —
23(n-1),

Recall that when |®| = 2 or 4, all nonzero vec-
tors in R are linear structures of f, and the struc-
ture of f is very simple — it can be (informally)
viewed as the two- or four-repetition of a bent func-
tion on V1 or V,_9. In contrast, when |R| = 5,
none of the nonzero vectors in R is a linear struc-
ture of f. Thus if a non-bent function does not
possess linear structures, then |R| must be at least
5. In this sense, functions with |®| = 5 occupy a
very special position in our understanding of the
structures of functions.

8.3 Constructing Functions with |R| =5

The structure of a function with |®| = 5 is not as
simple as the cases when |®| < 5. Unlike the case
with |R| = 2 or 4, there seem to be a number of
different ways to construct functions with |R| = 5.
The purpose of this section is to demonstrate one
of such construction methods.

We start with n = 5. Let w(y) be a mapping
from V5 into V3, defined as follows

Set



where y € Vo and z € V3, z = (y,x). f5 can be
explicitly expressed as
f5(y17?/2,x1>1’2,$3) (3)

= (Iey)(1Sy2)r1 © (1®y1)y2r2 @
y1(1 B y2) (21 B x2) B yry2(x2 B x3) (4)

To further discuss the properties of f5, let 199,

£010, 4110, Lo11 denote the sequences of p190(21, 22, 23) =

x1, poio(x1, T2, x3) = X2, P110(T1, T2, 23) = 1D w2,
and ¢o11(z1, T2, r3) = xo @ w3 respectively, where
each ¢ is regarded as a linear function on V3. By
Lemma 1 of [6], 6100, 5010, 5110, 5011 are four differ-
ent rows of H3. By Lemma 2 of [6], the sequence
of f5 is

£ = (Y100, Yo10, ¢110, Lo11)-

Let £(7) denote the sequence of

fz®y) = (wlydp),zd )

where 8 € Vo and a € V3, v = (5, ).

consider A(v) = (£, £(7))-
Case 1: 3 # 0. In this case we have

[5(2) @ fs(z @)
= (W) Cwly®B)z) & (wy®B), ).

Note that w(y) ® w(y @ () is a nonzero constant
vector in V3 for any fixed y € V,. Thus f5(z) ®
f5(2@®~) is a nonzero linear function on V3 for any
fixed y € Vo and hence it is balanced. This proves
that A(y) =0 with v = (8, «) and § # 0.

Case 2: 8 =0. In this case

[5(2) @ fs(z @) = (w(y), @)

(

is balanced for a = (0,1,1), (1,0,0) and (1,1,1).
In other words, A(y) =0, if v = (0,«) and a =
(0,1,1), (1,0, 0) or (1,1 1) It is straightforward
to verify that A(y) = 2%, =24, —2% and —2* with
v = (0,«0) and a = (0, O 1), (0,1,0), (1,0,1) and
(1,1,0) respectively. Obviously A(0) = 2°. Thus
f5 satisfies the propagation criterion with respect
to all but five vectors in V5.

With f5 as a basis, we now construct functions
with |R| = 5 over higher dimensional spaces. Let
t 2 5 be odd and s be even. And let g be a function
on V; that satisfies the propagation criterion with
respect to all but five vectors in V4, and h be a bent
function on Vi. Set

f(w) = g(v) © h(u) ()

where w = (v,u), v € V; and u € V5. Then we have

We now

Lemma 5 A function constructed by (5) satisfies

IR| = 5.

A function f constructed by (5) is balanced if
g is balanced. As the function f5 on V5 defined in
(4) is balanced, we have

Theorem 7 For any odd n = 5, there exists a bal-
anced function satisfying the propagation criterion
with respect to all but five vectors in V.

As an example, set h(zg, z7) = zex7 and

fr(x1, x2, 23, 24, x5, 6, T7) (6)
= fs(x1, 22,23, 4, 75) © h(ws,x7)  (7)

where f5 is defined in (4). Note that h(xg, x7) is a
bent function on V5, by Theorem 7, f7 is a balanced
function on V7 that satisfies |R| = 5.

To close this section we note that one can also
start with constructing a function f7; on V7 with
|R| = 5 by using the same method as that for de-

signing fs.

9 Functions with || =6

Careful analysis which will be presented in the final
paper shows that:

Theorem 8 There exists no function on V, such
that |R| = 6.

10 Degrees of Propagation

In [6] it has been shown that if f is a function on
Vy, with |R| = 2, then, through a nonsingular linear
transformation on input coordinates, f can be con-
verted into a function satisfying the propagation
criterion of degree n — 1. Similarly, when |R| = 4,
the degree can be ~ 2n. In this section we show
that with |R| = 5, the degree can be n — 3.

Assume that the four nonzero vectors in R are
B1, B2, B3 and B4, and that (i, 2 and fF3 are a
basis of ® = {0, 31, B2, 33, 54}. Let B be an n x
n nonsingular matrix on GF(2) with the property
that

/B =(1,...,1,0,0,1)
3B =(1,...,1,0,1,0)
BB =(1,...,1,1,0,0)

As B4 = 51 @ B2 @ B3, we have

BaB = (1@ P2® P3)B=(1,...,

Now let g(z) = f(xB). Then g satisfies the propa-
gation criterion of degree n — 3, as the only excep-
tional vectors are (0,...,0,0,0,0), (1,...,1,0,0,1),
(1,...,1,0,1,0), (1,...,1,1,0,0) and (1,...,1,1,1.1).
These discussions, together with Theorem 7, show
that for any odd n = 5, there exist balanced func-
tions on V,, that satisfy the propagation criterion
of degree n — 3 and do not possess a nonzero linear
structure.

Table 1 shows structural properties of functions
with |R| = 6.

1,1,1,1).



l R H {O} l {075} l {07/617627ﬁ3} l {Oa517/627637ﬁ4} ‘
Dimension n even odd even odd
e.g.
Form CTp® C1Tn D C2Tp 1D fs(z1,...,25)@
of bent h(z1,. .., Tn_1), h(z1, ..., Tn_2), h(zg, ..., xn),
function h is bent. h is bent. f5 is defined in (4),
h is bent.
Nonzero linear || No I6] 051, B2, B3 No
structure(s)
Nonlinearity 2n—1 2571—1 2n—1 _ 2%(71/—1) 2n—1 _ 2%71 2n—1 _ 2%(77,—1)
Degree
of n n—1 ~ %n n—3
propagation
IsRa No.
subspace 7 Yes Yes Yes However,
B1 D B2® Ps & Py =0.
Rank of ® 0 1 2 3

Table 1: Structural Properties of Highly Nonlinear Functions (Functions with three or six exceptional vectors

do not exist.)

11 Final Remarks

We have presented a quantitative relationship be-
tween propagation characteristic and nonlinearity.
We have shown that no functions satisfy the propa-
gation criterion with respect to all but three or six
vectors. We have also completely decided the struc-
tures and construction methods of cryptographic
functions that satisfy the propagation criterion with
respect to all but two, four or five vectors. An in-
teresting topic for future research is to investigate
the structures of functions with seven or more ex-
ceptional vectors.
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