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Abstract. MISTY is a data encryption algorithm recently proposed by
M. Matsui from Mitsubishi Electric Corporation. This paper focuses on
cryptographic roles of the transform used in the MISTY cipher. Our
research reveals that when used for constructing pseudorandom permu-
tations, the transform employed by the MISTY cipher is inferior to the
transform in DES, though the former is superior to the latter in terms
of strength against linear and differential attacks. More specifically, we
show that a 3-round (4-round, respectively) concatenation of transforms
used in the MISTY cipher is not a pseudorandom (super pseudorandom,
respectively) permutation. For comparison, we note that with three (four,
respectively) rounds, transforms used in DES yield a pseudorandom (su-
per pseudorandom, respectively) permutation.

Another contribution of this paper is to show that a 3-round concate-
nation of transforms used in (the preliminary version of) the MISTY
cipher has an algebraic property, which may open a door for various
cryptanalytic attacks.

1 Introduction

The Data Encryption Standard (DES) [NBS77] is the most widely used cipher
over the world. It has been nearly a quarter of a century since DES was pub-
lished in the 1970’s. Due to rapid advances in cryptanalysis as well as computing
technology over the past 20 years, especially the recent discovery of differential
cryptanalysis by Biham and Shamir [BS93] and linear cryptanalysis by Mat-
sui [Ma94], the cryptographic strength of DES is being questioned by an in-
creasing number of researchers as well as practitioners. Structurally DES can be
viewed as being obtained by the iteration of a basic transform which was first
proposed by Feistel [F73, FNS75] and will be called a DES-like transform in this
paper.

Not all the design criteria for DES have been made public by its designers.
Recent work by some researchers, however, shows that based on the iteration of
DES-like transforms, it is possible to construct a block cipher that is provably
secure against differential cryptanalysis [NK95, Nyb94].



Based on these observations, Matsui has proposed a new block cipher (en-
cryption algorithm) called MISTY [Ma96]. A preliminary version of the MISTY
cipher appears in [Ma96], where it is shown that the MISTY cipher is provably
more robust than DES in terms of its resistance against linear or differential
cryptanalysis. In studying the security of a cipher, however, we should bear in
mind that there is in general no inclusive relationship in the power of crypt-
analytic attacks. In particular, a cipher secure against linear and differential
cryptanalysis may be insecure against other (seemingly weaker) types of crypt-
analysis. One example of such an algorithm can be found in [Nyb93]. In this
context the MISTY cipher deserves special attention, as it employs a new trans-
form that is different from a DES-like one. It is quite natural for one to expect
that a cryptanalytic attack not applicable to DES may be used for breaking the
MISTY cipher, which is precisely the major motivation of this research.

The cryptographic soundness of DES-like transforms has been theoretically
studied by Luby and Rackoff [LR86]. In particular they proved that a 3-round
concatenation of DES-like transforms yields a pseudorandom permutation. In
proving the result they assumed that truly random and independent functions
were used in the three round transforms. As the function used in a DES-like
transform is far from being random, their result does not form a proof for the
security of DES.

It is important to note that Luby and Rackoff [LR86] also proved that a
2-round concatenation of DES-like transforms never gives a pseudorandom per-
mutation, as the resulting permutation is breakable by a chosen plaintext attack
when the permutation is regarded as a cipher. From this result one can say
that the approach taken by Luby and Rackoff is of fundamental importance
to any basic transform used in a cryptographic algorithm. This can be fur-
ther demonstrated by recent studies on the security of message authentication
codes [BKR94, BGR94], and Kerberos-like key distribution [BR95].

When the preliminary version of the MISTY cipher was published in [Ma96],
the soundness of a transform used in the MISTY cipher, which will be called
a MISTY-like transform hereafter, was not examined in the context of Luby
and Rackoff’s approach. Hence, the focus of this paper is on the construction
of pseudorandom permutations from MISTY-like transforms, with the aim of
comparing a MISTY-like transform against a DES-like one. We show that a 3-
round concatenation of MISTY-like transforms does not yield a pseudorandom
permutation. This should be compared with DES-like transforms: as mentioned
earlier, a concatenation of the same number of DES-like transforms does result
in a pseudorandom permutation. This contrast also shows that pseudorandom-
ness and resistance against linear or differential cryptanalysis are incomparable.
Hence it provides an answer to the second open problem in the last section of
[SP92].

More importantly we show that a 3-round concatenation of MISTY-like
transforms proposed in [Ma96], has an algebraic invariance property. As 3-round
concatenations are recursively used as basic building blocks for each round in
a preliminary version of the MISTY cipher, this algebraic property would open
a large door for various cryptanalytic attacks, and hence could be a potentially
critical weakness of a preliminary version of the MISTY cipher. These facts
clearly show that MISTY-like transforms are inferior to DES-like ones.

We have also examined under which conditions MISTY-like transforms would
yield a pseudorandom permutation. In particular we have considered cases where



similar concatenations of DES-like transforms would result in pseudorandom per-
mutations. Our research in this direction shows that, in every case we considered,
MISTY-like transforms fail to produce pseudorandom permutations. To put it in
another way, in all these cases DES-like transforms are superior to MISTY-like
ones.

2 Preliminary

2.1 Basic Notation

The set of positive integers is denoted by A. For each n € NV, let I, be the set of
all 2™ binary strings of length n, i.e., {0,1}". For s1,s9 € I,,, $1 @ s2 stands for
the bit-wise exclusive-or of s; and s», and s; e so denotes the bit-wise product
of s; and ss.

Denote by H,, the set of all functions from I, to I,,, which consists of 2"
in total. The composition of two functions f and g in H,, denoted by f o g, is
defined by f o g(x) = f(g(x)), where x € I,. And in particular, f o f is denoted
by f2, fo fo f by f2, and so on.

By z €gr X we mean that z is drawn randomly and uniformly from a set X.

2.2 DES-like Transforms

Associate with each f € H, a function
O2n,f (L, R) = (R & f(L), L)

for all L,R € I,. In cryptography, the function f used in 2, ; is commonly
referred to as the F-function of 02, ¢. Note that da,, ¢ is a permutation in Ha,,
and it is commonly called a DES-like transform associated with f [F73, FNS75,
NBS77]. Furthermore, for fi, fa,..., fs € Hy, define D(fs,..., f2, f1) = O2n,p, ©
-+ 00ap,f, ©02p,f, as an s-round concatenation of DES-like transforms.

Various generalizations of DES-like transforms, together with their crypto-
graphic applications, were studied in [ZMI89, ZMI89, Zhe90].

2.3 Notion of Pseudorandomness

Let n € N. An oracle circuit T}, is an acyclic circuit which contains, in addition
to ordinary AND, OR, NOT and constant gates, also a particular kind of gates
— oracle gates. Each oracle gate has an n-bit output, and it is evaluated using
a function from H,,. The output of T,,, a single bit, is denoted by T’,[f] when a
function f € H, is used to evaluate all the oracle gates in Tj,. The size of T}, is
the total number of connections in it. Note that we can regard an oracle circuit
as a circuit without any input or as a circuit with inputs to which constants are
assigned.

A family of oracle circuits T = {T,,|n € N} is called a statistical test for
functions if there is a polynomial @ (n) such that the size of each T, is not larger

than Q(n).



Assume that S, is a set composed of functions from H,,. Let S = {S,|n € N'}
and H = {H,|n € N}. We say that T is a distinguisher for S if there is a

polynomial P(n) such that for infinitely many n, we have
\Pr{T,[s] = 1= Pr{T,[h] = 1] > 1/P(n),

where s €g S, and h €g H,. We say that S is pseudorandom if there is no
distinguisher for it. (See also [GGM86, LR86]).

3 Previous results

This section summarizes some of the currently known results on pseudorandom-
ness of DES-like transforms. We note that only those directly related to this
research have been shown below.

Theorem 1 [LR86]. {D(g, f)lg, f € Hn,n € N} is not a pseudorandom per-
mutation generator.

Theorem 2 [LR86]. {D(h,g, f)|h,g,f € Hn,n € N'} is a pseudorandom per-
mautation generator.

Theorem 3 [Pie90]. {D(f%, f,f,f)|f € Hp,n € N} is a pseudorandom per-
mutation generator.

We note that in the above theorems, f, g and h are functions drawn from
H,, independently.

4 Some Facts on MISTY-like Transforms

The MISTY cipher employs a transform different from a DES-like one. This
section reviews the definition of the new transform, as well as relevant results
on it.

4.1 Definition of MISTY-like Transforms
Associate with f € H,, a function
pan,f (L, R) = (R, f(L) ® R)

for all L, R € I,. pan, s called a MISTY-like transform associated with f [Ma96].
Similarly to a DES-like transform ds,, r(L, R) = (R f(L), L), we call the func-
tion f used in poy,,r the F-function of po,,p. Comparing pon, ¢ with 02, ¢, two
differences between them are apparent: the first is the position where the F-
function is placed, and the second is that unlike d2y,,f, pt2,, r forms a permutation
over I, only when f is also a permutation over I,,.

In addition, for fi, fa,...,fs € Hy, we define M(fs,..., f2, f1) = pon,s, ©
-+ 0 o f, O fh2n,f; as an s-round concatenation of MISTY-like transforms.

In [Ma96] Matsui observes that unlike DES-like transforms, a 3-round con-
catenation of MISTY-like transforms allows partial parallel computation. This
suggests that a cipher based on MISTY-like transforms would be more suit-
able for hardware implementation than those based on DES-like transforms. In
the next section we turn to a more important issue, that is the resistance of a
MISTY-like transform to cryptanalytic attacks, especially linear and differential
attacks.



4.2 Immunity against differential and linear cryptanalysis

Nyberg and Knudsen [NK95] introduced a measure of security of block ciphers

against differential cryptanalysis and showed that DES-like transforms yield

block ciphers with provably security against differential attacks. Furthermore,

Nyberg [Nyb94] extends the argument into the case of linear cryptanalysis.
The following measures are formulated in [Ma96].

Definition4 [Ma96]. For f € H,,, Az, 'z € I,, and Ay, 'y € I,,, define

DP(f) =aMA%, #{z € X|S(x) @QSn(x ® Az) = Ay)}’

Lp(p) =A% (2 Xz e e = 5@ e L))

—1)2

Using this definition, a result in [NK95, Nyb94] can now be stated as follows:

Theorem 5 [NK95, Nyb94]. For an s-round concatenation (s > 3) of DES-
like transforms D(fs, ..., f2, f1), assuming that DP(f;) < p, we have

DP(D(fsa"'7f27fl)) S 2p2

Similarly, assuming that LP(f;) < p, we have

LP(D(fsa"'7f27f1)) S 2102

Remark. Nyberg [Nyb93] showed that a DES-like transform based on a func-
tion f(z,k) = (z @ k)~ on GF(2") achieves high resistance against differential
attacks. Note, however, we can easily crack such a cipher by solving a set of
low degree polynomial equations derived from known plaintext/ciphertext pairs.
Thus, the measures introduced in Definition 4 are not sufficient for the security
of a block cipher. This conclusion is further supported by extended differential
attacks proposed in [Lai94, Knu94]. In particular, the higher order differential
cryptanalysis discussed in [Knu94] breaks a 6-round version of an example cipher
proposed in [NK95], despite of the fact that this example cipher has been proven
to be resistant against ordinary differential attacks. These successfully extended
attacks could be helpful in refining the security measures in Definition 4.

A key result in [Ma96] is the following which was served as evidence that
MISTY-like transforms would have an advantage over DES-like transforms, in
terms of resistance against differential and linear cryptanalysis.

Theorem 6 [Ma96]. For an s-round concatenation (s > 3) of MISTY-like
transforms
M(fs,..., f2, f1), where each f; is a permutation, assuming that DP(f;) < p,

we have
DP(M(f87 . '7f27f1)) S p2-
Similarly, assuming that LP(f;) < p, we have

LP(M(fsa"'7f27fl)) Sp2



Remark. Recently, Aoki and Ohta [AO96] reported that the inequalities in The-
orem 5 can be improved to the following:

DP(D(fs,..., fo, 1)) <p*> (LP(D(fs,...,f2, 1)) < p*,respectively)

under the assumption that each function f; is a permutation. This result dis-
proves Matsui’s conjecture on the advantages of MISTY-like transforms over
DES-like transforms with respect to immunity against differential and linear
cryptanalysis.

5 Our results

We now investigate (non-)randomness of permutations obtained from MISTY-
like transforms in order to compare the security of the MISTY cipher with that
of DES.

5.1 Non-randomness of MISTY-like transforms

The following are results we have obtained so far regarding conditions under
which MISTY-like transforms do not generate pseudorandom permutations. For
all conditions shown in Theorems 7 - 10, except that in Theorem 8 which is
currently being investigated by the authors, it is known that DES-like transforms
give pseudorandomness permutations.

Theorem 7. {M(h,g, f)|h,g,f € Hy,n € N'} is not a pseudorandom permuta-
tion generator.

Proof: Let M3 = M(h,g, f). Then we have M3(L,R) = (R® f(L) & g(R), %),
where L and R are arbitrary vectors from I, and * denotes a string we do
not care. Now we further assume that neither L nor R is 0. Then we have the
following:

M5(0,0) = (£(0) & 9(0), *)

M3 (L,0) = (f(L) © g(0), )
M3(0,R) = (f(0) & g(R) ® R, %)
Ms(L, R) = (f(L) & g(R) ® R, %)

Adding together the left halves of the right-hand sides of the above four equations
must give us 0. These observations indicate that we can construct an oracle
circuit for {M (h, g, f)|h,g, f € Hp}. The oracle circuit uses only four (4) oracle
gates. When M3 is used in the oracle circuit for function evaluation, the oracle
circuit always outputs a bit 1. On the other hand, when a random function from
H,, is used in the oracle circuit, the probability for the oracle circuit to produce
a bit 1 is 1/2™. This completes the proof. O

In our plain language, Theorem 7 states that a 3-round concatenation of
MISTY-like transforms is not a pseudorandom permutation, even if the F-
function in each round is chosen independently at random from H,,.



Remark. Theorem 7 is also implied by a more general result by Ohnishi [Ohn88]
which states that the family of functions with a depth of at most one (e.g.
f(L)® g(R) @ h(L & R)) is not a pseudorandom function generator. Thus, for
pseudorandom function generation, functions must have a depth of at least two

(e.g. f(g(R)))-

For a 4-round concatenation of MISTY-like transforms, we have the following
two results.

Theorem 8. {M(f, f2, f, f)lh,9,f € Hy,n € N} is not a pseudorandom per-
mutation generator.

Proof: To prove this theorem, we construct a oracle circuit for { M (f, f2, f, f)|f €
H,} that uses two oracle gates. The detailed arrangement of the two oracles is
obtained through the following two observations:

1. M(f, f% f, f) always translates (0,0) into (f3(0), f3(0) @ f(0)). Adding up
the two halves gives us f(0).
2. Now we have (0, f(0)), which will be translated by M(f, f2, f, f) into (0, *).

The oracle circuit based on the above observations outputs a bit 1 with certainty
when its two oracles are evaluated using M (f, f2, f, f), but only with a proba-
bility of 1/2™ when using a truly random function from Ho,,. |

Theorem 9. {M(fi*7, fi, fi, fi)|f € Hp,n € N'} is not a pseudorandom per-
mutation generator, where v and j are integers larger than 0.

A proof for this theorem can be easily obtained by noting the fact that
M (fi+i, fi, fi, f¥) always translates (0,0) into (x,0), where * as before means a
string we do not care.

Based on Theorem 9, the following result on a 5-round concatenation of
MISTY-like transforms can be obtained:

Theorem 10. {M (g, f*7, 7, %, f9)|g, f € Hnyn € N'} is not a pseudorandom
permutation generator, where i and j are integers larger than 0.

The proof for Theorem 10 is surprisingly simple: M (g, fit7, 7, ft, %) always
translates (0,0) into (0, x), even if f and g are chosen independently at random.

It remains an interesting topic to see whether the above techniques can be
generalized to other cases, including M (g, £,1,1), M(F,9. ), Mo, £.1,1.£),
etc.

Finally we study the super pseudorandomness of MISTY-like transforms.
Super pseudorandomness is a slightly stronger notion than that of pseudoran-
domness. It is defined by allowing an oracle circuit to contain also gates that
computes the inverse of a permutation. The reader is directed to [LR86] for the
precise definition of super pseudorandomness.

In the case of DES-like transforms, Luby and Rackoff showed the following
result.

Theorem 11 [LR86]. {D(f4, f3, f2, f1)|f1, f3, fo, J1 € Hp,n € N} is a super
pseudorandom permutation generator.



Our following result shows that, in the case of MISTY-like transforms, a
4-round concatenation is not adequate for achieving super pseudorandomness,
although whether it yields a pseudorandom permutation generator still remains
open,

Theorem 12. {M (f4, f3, f2, f1)|f1, f3, f2, f1 € Hpyn € N} is not a super pseu-
dorandom permutation generator.

Proof: Let My = M(f4, f3, f2, fi) and M, * the converse of My, namely, M, * (M, (A, B)) =
(A, B) for all vectors A,B € I,. Given two vectors A and B, first compute
(X,Y) = M4(A,B), then set (C,D) = M; (X & Z,Y ® Z) for an arbitrary
Z € I,. Next compute (U,V) = M4(A, D) and (S,T) = M4(C, B). It is easy to
check that the relation U & V = S & T holds. This proves the theorem. a

5.2 Practical consequences of non-randomness

Though the argument of non-randomness in the previous section is theoretical,
the way the distinguishers work could suggest potential attacks on MISTY and
related block ciphers.

Consider a 3-round concatenation of MISTY-like transforms M (h, g, f). As
we have shown in Theorem 7, it is not a pseudorandom permutation. Set ¢(L, R)
be the left half of output of S3(L, R). Then, the following relation holds:

t(L,R) = t(0,0) ® t(L,0) @ t(0, R).
More importantly, the following general relation holds:
t(L,R) =t(A,B) ®t(L,B) ®t(A,R)

This implies that the left half ¢ has an algebraic structure which allows ¢(L, R)
to be computed from three encrypted data items t(A, B),t(L, B) and t(A, R) for
any A, B,L,R € I,,. Based on this property, one may launch a known-plaintext
attack against a 3-round concatenation of MISTY-like transforms.

For a cipher to be secure, the above algebraic relation must be avoided. To see
this point, we note that by using Luby and Rackoff’s argument for Theorem 1,
a cipher placed in the public domain which was based on 2-round DES-like
transforms, has been shown to be insecure against a known-plaintext attack
similar to the one described above. (For details see Pages 351-352 of [Sch95].)

Though such an algebraic structure could disappear in the concatenation
of four or more MISTY-like transforms, the F-function of a round (which is a
MISTY-like transform) in the preliminary version of the MISTY cipher is defined
as the concatenation of three smaller MISTY-like transforms. In other words, an
“outer” F-function in the MISTY cipher is recursively constructed from three
smaller MISTY-like transforms. Hence, the “outer” F-function has the algebraic
structure explained above.

This structure could be used by a cryptanalyst and hence cast very serious
doubts on the security of the MISTY cipher. Indeed the MISTY cipher may
be immune against the differential or linear attack, however, the fact that the
MISTY cipher adopts the concatenation of three smaller MISTY-like transforms
in its “outer” F-functions could render the cipher vulnerable to other (chosen
plaintext) attacks.



6 Future Research

Topics for future research include (1) to identify under what conditions MISTY-
like transforms would yield a pseudorandom permutation, and (2) to compare
the MISTY cipher with DES from the perspectives of other security criteria. In
particular, concerning the first topic the following two concrete questions remain
to be tackled:

(Q1) Is a 4-round concatenation of MISTY-like transforms M(fa, f3, f2, f1) a
pseudorandom permutation ?

(Q2) Is a 5-round concatenation of MISTY-like transforms M (f5, fa, f3, f2, f1) &
super pseudorandom permutation ?

Concerning on the second topic, an interesting question is if there are any security
criteria which would indicate the advantage of a MISTY-like transform over a
DES-like transform.

A final remark is that a detailed description of the original algorithm in the
preliminary version of the MISTY cipher [Ma96] uses a 8-round concatenation
of MISTY-like transforms, though no design criteria on this decision have been
disclosed.
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