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Abstract

Three important criteria for cryptographically strong Boolean functions are balance, non-
linearity and the propagation criterion. The main contribution of this paper is to reveal a
number of interesting properties of balance and nonlinearity, and to study systematic meth-
ods for constructing Boolean functions that satisfy some or all of the three criteria. We show
that concatenating, splitting, modifying and multiplying (in the sense of Kronecker) sequences
can yield balanced Boolean functions with a very high nonlinearity. In particular, we show
that balanced Boolean functions obtained by modifying and multiplying sequences achieve a
nonlinearity higher than that attainable by any previously known construction method. We
also present methods for constructing balanced Boolean functions that are highly nonlinear and
satisfy the strict avalanche criterion (SAC). Furthermore we present methods for constructing
highly nonlinear balanced Boolean functions satisfying the propagation criterion with respect
to all but one or three vectors. A technique is developed to transform the vectors where the
propagation criterion is not satisfied in such a way that the functions constructed satisfy the
propagation criterion of high degree while preserving the balance and nonlinearity of the func-
tions. The algebraic degrees of functions constructed are also discussed.
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1 Introduction

A Boolean function of n input coordinates is said to satisfy the propagation criterion with respect to
a non-zero vector if complementing input coordinates according to the vector results in the output
of the function being complemented 50% of the time over all possible input vectors, and to satisfy the
propagation criterion of degree k if complementing k or less input coordinates results in the output
of the function being complemented 50% of the time over all possible input vectors. Another
important criterion is the strict avalanche criterion (SAC) that coincides with the propagation
criterion of degree 1. The SAC was first introduced by Webster and Tavares (1985; 1986), was
generalized in one direction by Forré (1989) and in another direction by Adams and Tavares (1990a).
A combination of the two generalizations was studied in (Preneel et al., 1991b; Preneel et al., 1991a).

The nonlinearity of a Boolean function is defined as the minimum distance from the function to
the affine functions. A cryptosystem that employs functions with a low nonlinearity is vulnerable
to many cryptanalytic attacks, including the linear cryptanalysis discovered by Matsui (1994). It
is well known that bent functions possess the highest nonlinearity and satisfy the propagation
criterion with respect to all non-zero vectors (Dillon, 1972). However two drawbacks of bent
functions prohibit their direct application in practice. The first drawback is that they are not
balanced, and the second drawback is that they exist only when the number of input coordinates
is even. Cryptographic applications, such as the design of strong substitution boxes (S-boxes),
often require that when input coordinates of a Boolean function are selected independently, at
random, the output of the function must behave as a uniformly distributed random variable (Kam
& Davida, 1979; Adams & Tavares, 1990a; Seberry et al., 1993). In other words, the function has
to be balanced. Some practical applications need Boolean functions with an odd number of input
coordinates.

This paper studies properties and constructions of nonlinear, balanced functions. We present a
number of methods for constructing highly nonlinear balanced functions. These include concate-
nating, splitting, modifying and multiplying (in the sense of Kronecker) sequences. It is interesting



to note that balanced functions obtained by modifying and multiplying sequences achieve a nonlin-
earity higher than that attainable by any previously known construction method. We also present
methods for systematically constructing balanced functions satisfying the SAC. When n = 2k + 1,
where n is the number of input coordinates, the nonlinearity of functions constructed is at least
22k _ 9k "and when n = 2k, it is at least 22— — 2k,

Furthermore we present methods for constructing balanced functions satisfying high degree
propagation criterion. More precisely, when n = 2k+1, we construct nonlinearly balanced functions
that satisfy the propagation criterion with respect to all but one non-zero vectors, and when n = 2k,
functions we construct are balanced and also satisfy the propagation criterion with respect to all
but three non-zero vectors. We also show that the vectors where the propagation criterion is not
satisfied can be transformed into other vectors. As a consequence, we obtain balanced functions
satisfying the propagation criterion of degree 2k when n = 2k + 1, and balanced functions satisfying
the propagation criterion of degree % when n = 2k. The nonlinearity of functions constructed is
at least 22¢ — 2F when n = 2k 4 1, and 2%~! — 2% when n = 2k.

The organization of the remainder of the paper is as follows: in Section 2 we introduce notations
and definitions used in this paper. In Section 3 we prove results on the nonlinearity and balance of
functions including those obtained by concatenating or splitting bent sequences. In Section 4, we
show methods for constructing highly nonlinear balanced functions by modifying and multiplying
sequences. Our construction methods for highly nonlinear balanced functions satisfying the SAC
are presented in Section 5, while methods for highly nonlinear balanced functions satisfying high
degree propagation criterion are presented in Section 6. The paper is closed by a discussion of
future work in Section 7.

2 Preliminaries

We consider functions from V;, to GF(2) (or simply functions on V;,), where V,, is the vector space
of n tuples of elements from GF(2). These functions are also called Boolean functions. Note that
functions on V,, can be represented by polynomials of n coordinates. We are particularly interested
in the algebraic normal form representation in which a function is viewed as the sum of products of
coordinates. The algebraic degree of a function is the number of coordinates in the longest product
when the function is represented in the algebraic normal form. To distinguish between a vector of
coordinates and an individual coordinate, the former will be strictly denoted by z, y or z, while
the latter strictly by z;, y;, zi, u or v, where ¢ is an index.

Let f be a function on V;,. The (1, —1)-sequence defined by ((—1)/(@0) (—1)f(er) (—1)/(aen 1))
is called the sequence of f, and the (0, 1)-sequence defined by (f(ag), f(a1), ..., f(asn_1)) is called
the truth table of f, where aj, 0 < i < 2" —1, denotes the vector in V,, whose integer representation
is i. A (0,1)-sequence ((1,—1)-sequence) is said to be balanced if it contains an equal number of
zeros and ones (ones and minus ones). A function is balanced if its sequence is balanced.

Obviously if (ag,...,asn—_1) and (bg,...,bon_1) are the sequences of functions f; and fo on Vj,
respectively, then (agbo, ..., am _1bon_1) is the sequence of f(z) @ g(x), where x = (21, z2,...,z,).
In particular, —(ayg,...,aon_1) = (—ag, ..., —agn_1) is the sequence of 1 & fi(z).

An affine function f on V,, is a function that takes the form of f(x) = a121®- - -®apz, e, where
aj,c € GF(2), j = 1,2,...,n. Furthermore f is called a linear function if ¢ = 0. The sequence
of an affine (or linear) function is called an affine (or linear) sequence. The Hamming weight of a
(0, 1)-sequence (or vector) , denoted by W (), is the number of ones in «. The Hamming distance
between two sequences « and [ of the same length, denoted by d(a, 3), is the number of positions
where the two sequences differ. Given two functions f and g on V,,, the Hamming distance between



them is defined as d(f,g) = d(&f,&y), where & and ¢, are the truth tables of f and g respectively.
The nonlinearity of f, denoted by Ny, is the minimal Hamming distance between f and all affine
functions on V;,, i.e., Ny = min;_q; _ on+1_1 d(f, ;) where oo, @1, ..., @an+1_1 denote the affine
functions on V,.

The following notation will be used in this paper. Let o = (ay,---,a,) and 8 = (by, -, b,)
be two sequences (or vectors), the scalar product of a and 3, denoted by («, 3}, is defined as the
sum of the component-wise multiplications. In particular, when « and g are from V,, («, ) =
a1by @ - - - ® apby, where the addition and the multiplication are over GF(2), and when « and (3 are
(1, —1)-sequences, (a, ) = a1by + -+ + apby,, where the addition and the multiplication are over
the reals.

The Kronecker product of an m x n matrix A and an s X ¢ matrix B, denoted by A ® B, is an
ms X nt matrix defined by

anB a;2B -+ a,B
A®B= ; :
am1 B amaB -+ ampB

where a;; is the element in the sth row and the jth column of A. In particular, the Kronecker
product of a sequence a of length m and a sequence (8 of length n is a sequence of length mn
defined by a ® 8 = (a18,a20, - ,an ), where q; is the ith element in «.

A (1,—1)-matrix H of order n is called a Hadamard matrix if HH' = nl,, where H' is the
transpose of H and I, is the identity matrix of order n. It is well known that the order of a
Hadamard matrix is 1, 2 or divisible by 4 (Wallis et al., 1972). A special kind of Hadamard matrix,
called Sylvester-Hadamard matriz or Walsh-Hadamard matriz, will be relevant to this paper. A
Sylvester-Hadamard matrix of order 2", denoted by H,, is generated by the following recursive
relation

1 1

1 -1 QH,_1,n=1,2,...

ngl,Hn:l

Note that H,, can be represented as H,, = H; ® H; for any s and ¢ with s +¢ = n. such matrices
are closely related to linear functions, as is shown in the following well-known lemma.

£y
. 1 . .
Lemma 1 Write H,, = . where ¢; is a row of Hy,. Then ¥; is the sequence of h; = («;, x),
lon_y
a linear function, where a; is a vector in V,, whose integer representation is i and © = (Z1,...,Tp).

Conversely the sequence of any linear function on Vi, is a row of Hy,.

From Lemma, 1 the rows of H,, comprise the sequences of all linear functions on V,,. Consequently
the rows of £ H,, comprise the sequences of all affine functions on V,,.

The following notation is very useful in obtaining the functional representation of a concatenated
sequence. Let § = (i1,4%2,...,7,) be a vector in V},. Then D; is a function on V), defined by

D(5(y17y27"'7yp) = (ylealleal)(ypeazp@l)

Using this notation one can readily prove



Lemma 2 Let fy, f1, ..., for—1 be functions on V. Let &; the sequence of f;, i =0,1,...,2P —1,
and let & be the concatenation of &y, &1, ..., aw—1, namely, & = (£0,&1,...,&w—1). Then & is the
sequence of the following function on Vpiq

21
fy,2) = @ Da,(y) fil=)
i=0
where y = (y1,...,Yp), = (21,...,24) and o is the vector in V), whose integer representation is

1.

For instance, if &, & are the sequences of functions fi, fo on V,, then n = (&,£2) is the
sequence of (1 @ u)fi(z1,...,2n) ®ufo(z1,...,2,), a function on V1.
We now introduce the concept of bent functions.

Definition 1 A function f on V, is called a bent function if

g2 Z (—1)/@&B2) = 41

IEVn

for all B € V,,. Here f(x) @ (B,x) is regarded as a real-valued function. The sequence of a bent
function is called a bent sequence.

From the definition we can see that bent functions on V), exist only when n is even. It was
Rothaus who first introduced and studied bent functions in the 1960s, although his pioneering work
was not published in the open literature until some ten years later (Rothaus, 1976). Other issues
related to bent functions, such as properties, constructions and counting, can be found in (Adams
& Tavares, 1990a; Kumar & Scholtz, 1983; Lempel & Cohn, 1982; Olsen et al., 1982; Yarlagadda &
Hershey, 1989). Kumar, Scholtz and Welch (1985) defined and studied bent functions from Z;' to
Z4, where ¢ is a positive integer. Applications of bent functions to digital communications, coding
theory and cryptography can be found in such as (Adams & Tavares, 1990b; Detombe & Tavares,
1993; Lempel & Cohn, 1982; Losev, 1987; MacWilliams & Sloane, 1978; Meier & Staffelbach, 1990;
Nyberg, 1991; Olsen et al., 1982; Seberry et al., 1993).

The following result can be found in an excellent survey of bent functions by Dillon (1972).

Lemma 3 Let f be a function on V,, and let & be the sequence of f. Then the following four
statements are equivalent:

(i) f is bent.
(ii) (£,¢) = +237 for any affine sequence £ of length 2™.
(i1i) f(z) ® f(r & «) is balanced for any non-zero vector a € V,,.
(iv) f(z)® (a,z) assumes the value one 2" ' + 2571 times for any a € V.

By (iv) of Lemma 3, if f is a bent function on V,,, then f(z) @ h(z) is also a bent function
for any affine function h on V. This property will be employed in constructing highly nonlinear
balanced functions to be described in Sections 5 and 6.

The notion of strict avalanche criterion (SAC) was first introduced by Webster and Tavares (1985;
1986).



Definition 2 A function f on V, is said to satisfy the SAC if complementing any single input
coordinate results in the output of f being complemented half the times over all input vectors,
namely, f(z) ® f(z ® «) is a balanced function for any vector o € V,, whose Hamming weight is 1.

In this paper we are also concerned with the propagation criterion, which was introduced
in (Adams & Tavares, 1990a; Preneel et al., 1991b) as a generalization of the SAC.

Definition 3 Let f be a function on V,,. We say that f satisfies

1. the propagation criterion with respect to a non-zero vector o in V, if f(z) ® f(x ® a) is a
balanced function.

2. the propagation criterion of degree k if it satisfies the propagation criterion with respect to
all a € V,, with 1 £ W () £ k.

Note that the SAC is equivalent to the propagation criterion of degree 1, and that the perfect
nonlinearity studied by Meier and Staffelbach (1990) is equivalent to the propagation criterion of
degree n.

Now it becomes clear that when n is even, only bent functions fulfill the propagation criterion of
the maximal degree n. Another property of bent functions is that they possess the highest possible
nonlinearity. This will be discussed in more detail in the next section.

3 Properties of Balance and Nonlinearity

This section presents a number of results related to balance and nonlinearity. These include upper
bounds for nonlinearity and properties of concatenated and split sequences.

3.1 Upper Bounds on Nonlinearity

It is well-known that the maximum nonlinearity of functions on V;, coincides with the covering
radius of the first order binary Reed-Muller code R(1,n) of length 2" (MacWilliams & Sloane,
1978). By translating an upper bound on the covering radius of R(1,n) (Cohen et al., 1985), we
have:

1

Lemma 4 For any function f on V,, the nonlinearity Ny of f satisfies Ny < gn—1 _g3n-1,

Remark 1 A function on V;, attains the upper bound for nonlinearities, 27~ — 2%”_1, if and only
if it is bent.

Recall that bent functions are not balanced. From Remark 1, balanced functions can not attain
the upper bound for nonlinearities, namely 27! — 25n-1 A slightly improved upper bound for the
nonlinearities of balanced functions can be obtained by noting the fact that a balanced function
assumes the value one an even number of times.

Lemma 5 Let f be a balanced function on V,, (n 2 3). Then the nonlinearity N of f is given by

< gn—1 _g3n—1 _ 2, n even
I= [[2n ! — 2%”_1“, n odd

where ||x]| denotes the mazimum even integer less than or equal to x.



Proof. Note that the length of the sequence of a function is even. Also note that the truth table
of f contains an even number of ones and that all affine sequences contain an even number of ones.

Then Ny = min;_ _on+1_1 d(f, i), where @o, @1, ..., pon+1_; denote the affine functions on V;,,
must be even. On the other hand, since f is not bent, by Remark 1 we have Ny < on—1 _ g3n-1,
This proves the lemma. O

For V5, there are six balanced sequences, namely
j:(la 13 _13 _1)7 :l:(la _13 la _1)3 :l:(la _17 _17 1)

all of which are linear. Therefore there are no nonlinearly balanced functions on V5.

3.2 Concatenating Sequences

First we establish a lemma that is very useful in calculating the nonlinearity of a function.

Lemma 6 Let f and g be functions on V,, whose sequences are £ and &, respectively. Then the
distance between f and g can be calculated by d(f,g) = 2"1 — (¢4, &,).

P’I“OOf. (ff, 59) = Zf(x):g(:v) 1— Zf(:v);ég(x) 1=2"-2 Zf(:v);ég(x) 1=2"— Qd(f, g) This proves the

lemma. O

The following lemma gives a lower bound on the nonlinearity of a function obtained by con-
catenating the sequences of two functions.

Lemma 7 Let fi and fa be functions on Vy,, and let g be a function on V,41 defined by
g(u7$17"'7$n) = (1 @U)fl(l'l,... 7$n) @Ufg(l'l,--- 7$n)' (1)

Suppose that &1 and &9, the sequences of f1 and fy respectively, satisfy (£1,£) < Py and (£2,£) < Py
for any affine sequence £ of length 2", where Py and Py are positive integers. Then the nonlinearity
of g satisfies Ny 2 2" — 2(Py + P).

Proof. Note that £ = (£1,£2) is the sequence of g. Let ¢ be an arbitrary affine function on V4
and let L be the sequence of 1. Then L must take the form of L = (¢,4¢) where £ is an affine
sequence of length 2. Note that (&, L) = (&1, £) + (£2,£) and thus |[(¢, L)| £ P; + P,. By Lemma 6,
we have d(g, ) = 2"—%(5, L)y=2"— %(Pl + P,). Since 1) is arbitrary, we have Ny = 2"—%(P1 +Py),
and this completes the proof. a

As bent functions do not exist on Vi1, an interesting question is what functions on Vo4 are
highly nonlinear. The following result, as a special case of Lemma, 7, shows that such functions can
be obtained by concatenating bent sequences. This construction has been discovered by Meier and
Staffelbach in (1990).

Corollary 1 In the construction (1), if both f1 and fy are bent functions on Vay, then Ny 2 22k _ok

A similar result can be obtained when the sequences of four functions are concatenated.



Lemma 8 Let fy, f1, fo and f3 be functions on V, whose sequences are &y, &1, €2 and &3 respec-
tively. Assume that (&;,£) < P; for each 0 < i < 3 and for each affine sequence £ of length 2",
where each P; is a positive integer. Let g be a function on V,1o defined by

3
9(y, ) = @ Do, () fi(=) (2)
i=0
where y = (y1,y2), £ = (z1,...,%,) and a; is a vector in Vo whose integer representation is i. Then

Ny 2 ont1 _ %(Po + Py + Py + Ps). In particular, when n is even and fo, f1, fo and fs are all bent
functions on V,,, N, = 2"+1 — 9gn+l

The proof for Lemma 8 is similar to that for Lemma 7, and hence is omitted. It is a simple
exercise to further generalize the lemma to the case where the sequences of 2¢, t 2 1, functions are
concatenated.

By selecting proper starting functions in (1) and (2), the resulting functions can be balanced.
For instance, in (1), if both f; and fy are balanced, or the number of times f; assumes the value
one is equal to that fo assumes the value zero, the resulting function g is balanced.

3.3 Splitting Sequences

We have discussed the concatenation of sequences of functions including bent functions. The
following lemma deals with the other direction, namely splitting bent sequences.

Lemma 9 Let f(z1,z2,...,x9) be a bent function on Vo, ny be the sequence of f(0,z2, ..., zoy),

and 1, be the sequence of f(1,zo,...,xo). Then for any affine sequence £ of length 22*~1, we have
—2F < (o, ) £ 2% and —2F < (i, 0) < 2F.

Proof. We only give a proof for —2¢ < (n,£) < 2. The other half can be proved in the same
way. Since f(x1,22,...,29) = (1 ® z1)f(0,29,...,29%) ® 21 f(1,22,...,221), 7 = (10, 71) is the
sequence of f(z1,x2,...,zo). Let L = (£,¢) and L' = (¢,—¢). By Lemma 1, both L and L' are
affine sequences of length 22%.

Suppose that —2F < (ng, £) < 2* is not true. Without loss of generality assume that (n, £) > 2*.
There are two cases that have to be considered: (n1,£) > 0 and (n,£) < 0. In the first case we
have (n, L) = (no, %) + (n1,£) > 2*, and in the second case we have (n, L') = (n,£) + (91, —£) =
(no,£) + (=1)(n1,£) > 2*, both of which contradict the fact that (n, L) = +2F (see also (ii) of

Lemma 3). This completes the proof. O
A consequence of Lemma 9 is that the nonlinearity of split functions f(0,zs,...,z9) and
f(1,29,...,20;) is at least 226=2 — 2¥=1 Tt is interesting to note that concatenating and splitting

bent sequences both achieve the same nonlinearity.

Splitting bent sequences can also result in balanced functions. Let ¢; be the ith row of Hy where
i =0,1,...,28 — 1. Note that ¢, is an all-one sequence while ¢1, fo, ..., £5._, are all balanced
sequences. The concatenation of the rows, (£, ¢1,...,¢%_;), is a bent sequence (Adams & Tavares,
1990a). Denote by f(z1,x2,..., o) the function corresponding to the bent sequence. Let & be the
second half of the bent sequence, namely, £ = (£yr-1,09k-1,1,...,%91_1). Then ¢ is the sequence
of f(1,29,...,20;). Since all £;, 5 = 2F=1 2k=1 11, .. 2¥ — 1 are balanced, f(1,zo,...,zo) is a
balanced function. The nonlinearity of the function is at least 22¢=2 — 2k—1,

By permuting {/yr-1,%5%-1,1,...,%% 1}, we obtain a new balanced sequence

fl = ( ,2’9*17 IQk*1+17' R IQk_l)



that has the same nonlinearity. Now let

" ! ! !
5 = (62k‘—1£2k,1, 62k——1+1£2k71+1, . ,62](:7162]9_1),

where each e; is independently selected from {1,—1}. ¢” is also a balanced sequence with the
same nonlinearity. The total number of different balanced sequences obtained by permuting and
changing signs is 22° " . 2k-11.

3.4 An Invariance Property

Next we examine properties of functions with respect to the affine transformation of coordinates.
Let f be a function on V,,, A a nondegenerate matrix of order n with entries from GF(2), and b a
vector in V,,. Then f*(z) = f(xA @ b) defines a new function on V,,, where z = (z1,x2,...,z,). It
is obvious that the algebraic degree of f* is the same as that of f.

On the other hand, since A is nondegenerate, zA @ b is an one-to-one mapping on V,,. Hence
the truth table of f* contains exactly the same number of ones as that of f. This indicates that
the balance of a function is preserved under the affine transformation of coordinates.

Now let ¢ be an affine function on V,, and let p*(z) = p(zA @ b). It is easy to verify that
d(f,e) = d(f*,¢*). Since A is nondegenerate, ¢* will run through all affine functions on V,, while
© runs through all affine functions on V,,. This proves that the nonlinearity of f* is the same as
that of f (Meier & Staffelbach, 1990).

Finally we consider the propagation characteristics under the affine transformation of coordi-
nates. Let « be a nonzero vector in V,. f*(z) @ f*(z @ «) is balanced if and only if

fzAob) D f((zrda)Adb) = f(zADb) @ f((zADDb) ® aA)
= fly)® flysp)

is balanced, where y = A ® b and 8 = aA. Since A is nondegenerate and « is a nonzero vector, (3
is a nonzero vector. In addition, y = xA@®b will run through V,, while z runs through V,,. Therefore
the number of vectors in V,, where the propagation criterion is satisfied remains unchanged under
the affine transformation. To summarize the discussions, we have

Lemma 10 The algebraic degree, the Hamming weight of the truth table, the nonlinearity, and
the number of vectors with respect to which the propagation criterion is satisfied, of a function are
imwvariant under the affine transformation of coordinates.

4 Highly Nonlinear Balanced Functions

Recall that a bent sequence of length 22% contains 22¥~1 + 25=1 ones and 2%~1 — 25=1 zeros, or
vice versa. As is observed by Meier and Staffelbach (1990), complementing 2¥~1 positions in a
bent sequence yields a balanced function on Vs, having a nonlinearity of at least 22#~1 — 2% This
nonlinearity is the same as that obtained by concatenating four bent sequences of length 22¢—2
(see Lemma 8). We note, however, that concatenation is superior to complementation in that it is
far easier to discuss cryptographic properties such as the propagation characteristics of functions
obtained by concatenation than to discuss properties by complementation.

Now we consider the case of V51 1. As the maximum nonlinearity of functions on V;, coincides
with the covering radius of the first order binary Reed-Muller code R(1,n) of length 2", using a
result of (Patterson & Wiedemann, 1983), we can construct unbalanced functions on Voy 1, k 2 7,

whose nonlinearity is at least 22¥ — %2'“, a higher value than 22% —2* achieved by the construction

10



in Corollary 1. One might be tempted to think that modifying the sequences in (Patterson &
Wiedemann, 1983) would result in balanced functions with a higher nonlinearity than that obtained
by concatenating or splitting bent sequences. We find that it is not the case. We take Vi5 for an
example. The Hamming weight of the sequences on Vj5, which have the largest nonlinearity of
16276, is 16492. Changing 54 positions makes them balanced. The nonlinearity of the resulting
functions is 16222, smaller than 16256 achieved by concatenating two bent sequences of length 214
(see Corollary 1).

To summarize the above discussions, so far the best result on constructing nonlinearly balanced
functions on Vs, is by concatenating four bent sequences of length 22#=2, while the best result on
Va1 is by concatenating two bent sequences of length 22%, or by splitting a bent sequence of length
92k+2

In the following we show how to modify bent sequences of length 22* constructed from Hadamard
matrices in such a way that the resulting functions on V5, are balanced and have a much higher
nonlinearity than that attainable by concatenating four bent sequences. This result, in conjunction
with sequences in (Patterson & Wiedemann, 1983), allows us to construct balanced functions on
Vokt1, k = 14, that have a higher nonlinearity than that achieved by concatenating or splitting bent
sequences. These results represent a significant improvement to the previously known construction
methods.

4.1 On ‘/gk

Note that an even number n = 4 can be expressed as n = 4t or n = 4t + 2, where ¢t = 1. As the
first step towards our goal, we prove

Lemma 11 For any integer t 2 1 there ewists
i) a balanced function f on Vi such that Ny = 24-1 _22l=1 _ ot
(i) ! ;

(ii) a balanced function f on Vo such that Ny 2 24+l _ 92t _ ot

Proof. (i) Let /; be the ith row of Hy where i = 0,1,...,2% —1. Then & = (g, 01,... 0y 1) is a
bent sequence of length 2.

Note that except for £y = (1,1,...,1), all other £; (i = 1,...,2% — 1) are balanced sequences of
length 22!, Therefore replacing the all-one (or “flat”) leading sequence £y with a balanced sequence
renders ¢ balanced. The crucial idea here is to select a replacement with a high nonlinearity, since
the nonlinearity of the resulting function depends largely on that of the replacement.

The replacement we select is £ = (e1,e1,e2,...,e9t_ 1), where e; is the ith row of H;. Note
that the leading sequence in £ is e; but not eg = (1,1,...,1). £ is a balanced sequence of length
22t since all e;, i = 1,...,2" — 1, are balanced sequences of length 2!. Replacing £y by 5, we get a
balanced sequence £* = (€5, 41, ..., lg2t_1).

Denote by f* the function corresponding to the sequence £*, and consider the nonlinearity of
f*. Let ¢ be an arbitrary affine function on Vy, and let L be the sequence of ¢. By Lemma 1,
L is a row of £Hy. Since Hy = Hoy ® Hoy, L can be expressed as L = £/; ® {;, where ¢; and /;
are two row of Hy;. Assume that 4; = (ag,a1,...,a9¢ 1). Then L = %(aol;,a1lj,..., a0 145). A
property of a Hadamard matrix is that its rows are mutually orthogonal. Hence (), ¢,) = 0 for
p # q. Thus

€™, D = 1408, £3)] + (85, €3] = [{63, €5)] + 22

11



We proceed to estimate |(£g,#;)|. Note that Hy; = H; ® Hy, /; can be expressed as £; = e, ® ey,
where e, and e, are rows of Hy. Write e, = (bp,...,byt 7). Then £; = (bgey, ..., byt _1e,). Similarly
to the discussion for [(£*, L)|, we have

2[(e2, e2)] =271, ifv =1,
(05, )] £ < |{ew,en)| = 27, ifo=2,...,2 —1,
0, ifv=0.

Thus (£5,¢;)| < 271 and hence [(¢*, L)| < 2071 4 220,
By Lemma 6, d(f*,¢) = 2%~1 — 1(¢*, L) =2 241 — 2%=1 — 2! Since ¢ is arbitrary, Ny 2
24t71 _ 22t71 _ 2t.

(ii) Now consider the case of V0. Let £;,i = 0,1,...,2%%1 —1, be the ith row of Hy; ;. Then

¢ = (0o, l1,... lo2+1_1) is a bent sequence of length 2442,
The replacement for the all-one leading sequence ¢y = (1,1,...,1) € Vo1 is the following
balanced sequence £ = (eyt, €ty 1,...,e5t+1_1), the concatenation of the 2'th, the (2 + 1)th, ...,

and the (27! — 1)th rows of Hyyq. Let & = (£§,41,...,09e41_1), and let f* be the function
corresponding to the balanced sequence.

Similarly to the case of Vy, let ¢ be a affine function on Vy o and let L be its sequence. L can
be expressed as L = £/; ® £; where /; and /; are rows of Ho;;1. Hence

ME™ LI S 4. 43)] + 1465, £5)] < {65, )] + 2

Since £j is obtained by splitting the bent sequence (eg, e, ..., et+1_1), where e; is a row of Hyy,
by Lemma 9, we have [(£5,¢;)] < 271, From this it follows that [(¢*,L)| < 2071 4 22141 and
Nyp. z 24+l 92t ot 0

With the above result as a basis, we consider an iterative procedure to further improve the
nonlinearity of a balanced function. Note that an even number n = 4 can be expressed as n = 2™,
mz=2,orn=252t+1),s=1andt=1.

Consider the case when n = 2™, m = 2. We start with the bent sequence obtained by con-
catenating the rows of Hym-1. The sequence consists of 227! sequences of length 22" Now we
replace the all-one leading sequence with a bent sequence of the same length, which is obtained
by concatenating the rows of Hym-2. The length of the new leading sequence becomes 22" Tt
is replaced by another bent sequence of the same length. This replacing process is continued until
the length of the all-one leading sequence is 22 = 4. To finish the procedure, we replace the leading
sequence (1,1,1,1) with (1,—1,1,—1). The last replacement makes the entire sequence balanced.
By induction on s = 2,3,4,..., it can be proved that the nonlinearity of the function obtained is

at least
om_1 l

2

The modifying procedure for the case of n = 2%(2t + 1), s = 1 and ¢ = 1, is the same as that

for the case of n = 2™, m = 2, except for the last replacement. In this case, the replacing process

is continued until the length of the all-one leading sequence is 2%*1. The last leading sequence is

replaced by £ = (egt, €9ty 1,...,ex+1_1), the second half of the bent sequence (eg,e1,...,eq+1_1),

where each e; is a row of H;yj. Again by induction on s = 1,2,3,..., it can be proved that the
nonlinearity of the resulting function is at least

2 (22" 422" 427 2.2,

223(2t+1)_1 . %(22371(2t+1) + 22372(2t—|—1) + . _|_ 22(2t+1) _|_ 22t+1 + 2t+1)

We have completed the proof for the following

12



Table 1: Nonlinearities of Balanced Functions on V5,

\ Vector Space [ Vi [ V| Vs | Vio | Viz | Viu |

Upper Bound (=) 4 |26 | 118 | 494 | 2014 | 8126
By Modification () 4 |26 | 116 | 492 | 2010 | 8120
By Concatenation (2) | 4 | 24 | 112 | 480 | 1984 | 8064

Theorem 1 For any even number n = 4, there exists a balanced function f* on V, whose nonlin-
earity s

Ny > { 22"l L2 422" e 2% 2.9, n=2m
f* = 223(2t+1)71 %(225_1(2t+1) n 225—2(2t+1) I 22(2t+1) + 22t+1 + 2t+1), n = 25(2t + 1)

Let ¢ = (¢o,C1,---,Cor 1) be a sequence of length 22* obtained by modifying a bent sequence.
Permuting and changing signs discussed in Section 3.3 can also be applied to . In this way we
obtain in total 22" - 2! different balanced functions, all of which have the same nonlinearity. Even
more functions can be obtained by observing the fact that the leading sequence (y has exactly the
same structure as the large sequence (, and hence permuting and changing signs can also be applied
to Co.

The nonlinearities of balanced functions on V4, Vg, Vg, Vig, Vio and Vi4 constructed by the
method shown in the proof of Theorem 1 are calculated in Table 1. For comparison, the nonlinear-
ities of balanced functions constructed by concatenating four bent sequences (see Lemma 8) as well
as the upper bounds for the nonlinearities of balanced functions (see Lemma 5) are also presented.

4.2 On %k+1
The following lemma can be easily confirmed and very useful in obtaining balanced functions.
Lemma 12 Let & be the sequence of f1 on Vi and &y be the sequence of fo on Vi. Then

1. fi(z1,...,zs) D fo(y1, .., yt) is a balanced function on Viiy if f1 or fo is balanced.

2. The Kronecker product & ® & is the sequence of f1(x1,...,2s) ® fo(y1,---,yt)-
Lemma 13 Let & be the sequence of f1 on Vs and &5 be the sequence of fo on Vi. Also let

g($17---,$57y1,---7ys) :fl(xla---axs)®f2(y17---7yt)'

Assume that (£1,01) < Py and (&2,02) < Py, where £y is an arbitrary affine sequence of length 2%, {5
is an arbitrary affine sequence of length 2t, Py and Py are positive integers. Then the nonlinearity
of g satisfies Ny 2 25701 —1p . Py,

Proof. Note that & = & ® & is the sequence of g. Let ¢ be an arbitrary affine function on V4,
and let ¢ be the sequence of ¢. Then ¢ can be expressed as £ = +¢; ® ¢2 where ¢; is a row of Hy
and 45 is a row of H;. Since

(€,0) = (&1 ® &2, £ ® Lo) = (&1, 01)(E2, La)
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we have
[, O] = (€1, 1)] - [{€2, £2)| = Py - Py

and by Lemma 6

1
d(g,p) 2 257071 — §P1 - P,.

Due to the arbitrariness of ¢, we have Ny = 25+¢=1 — %Pl - Py. ]

Let & be a balanced sequence of length 22% that is constructed using the method in the proof of
Theorem 1, where k = 2, Let & be a sequence of length 2'° obtained by the method of (Patterson &
Wiedemann, 1983). Note that the nonlinearity of &5 is 16276, and there are 13021 such sequences.
Denote by f; the function corresponding to &, and by fo the function corresponding to &;. Let

f(@1, .o Toky Tokt1s - oo Tokt15) = f1(@1, ..o, Tok) B fo(Tokt1s- -+ Tokt15)- (3)
Note that

< {2 AT 2 g2, 2k =27,
(&1,0) = 9277 (2041) 4 92°TP(2041) L g 92(2041) 4 92041 4 o+l o) — 95(2f 4 1),

and
(€2,05) £ 2- (21 — 16276) = 216

22k

where /; is a linear sequence of length and /o is a linear sequence of length 2'>. Then by

Lemma 13, we have:

Theorem 2 The function f defined by (3) is a balanced function on Vay 15, k = 2, whose nonlin-
earity is at least

2m71

. 92" +14 _ 108(2 +22" T 422 1 2. 22), 2k = 2m,
F=9 o92e241)+14 _ 108(22" 1 (2H1) 4 92 22041) Ly 9224 1) 4 92041 4 ot L) 9k — 25(2t 4 1).

The nonlinearity of a function on Va5 constructed in this section is larger than that obtained
by concatenating or splitting bent sequences for all k = 7.

5 Constructing Highly Nonlinear balanced Functions Satisfying
SAC

This section presents methods for constructing balanced functions with a high nonlinearity and
satisfying the SAC. The algebraic degrees of the functions are discussed.

5.1 On ‘/2k+l

Let k =2 1, f a bent function and h a non-constant affine function, both on V4. Note that f(z)®h(z)
is also bent. Without loss of generality we suppose that the number of times that f(z) assumes
the value zero differs from that of f(z) @ h(z). Let g be a function on V5,1 defined by

g(u, 1, ..., To)
= (1 @U)f(ml, e aka) @U(f(flfl, .. aka) D h(lEl,. .. aka))
= f(xl,...,x%)@uh(ml,...,x%). (4)

By Lemma 2 the sequence of g is the concatenation of the sequences of f(z) and f(z) ® h(z).
Thus we have

14



Lemma 14 The function g defined by (4) is a balanced function on Voriq.
The following lemma, is a direct consequence of Corollary 1.
Lemma 15 N, = 228 — 2% where g is defined by (4).

Lemma 16 The function g defined by (4) satisfies the SAC.

Proof. Let v = (b,a1,---,a9;) be an arbitrary vector in Vi, with W(y) = 1. Also let a =
(a1, -, a9), 2 = (u,2z1,...,29;) and = (x1,...,z9,). We show that g(z) ® g(z ®v) = f(z) @
flz®a) ®u(h(z) ®h(z®a)) ®bh(zr @ «) is balanced by considering the following two cases.

Case 1: b =0 and hence W(a) = 1. Then g(2)®g(z®7) = f(z)® f(z D) Du(h(z) D h(z® )).
Since h is an affine function, h(z) @ h(z & ) = ¢ where ¢ is a constant from GF(2). Thus
9(2)®g(z®y) = f(z)® f(z®a) P cu. By (iii) of Lemma 3, f(x)® f(z @ «) is a balanced function
on Vo, and hence by Lemma 12, g(z) & g(z @ ) is a balanced function on Vo 1.

Case 2: b =1 and hence W(a) =0, i.e. a =(0,0,---,0). Then g(z) ® g(z ® ) = h(x). Since
h(z) is a non-constant affine function on Vo, h(z) and hence g(z) ® g(z @ ) are balanced. a

Summarizing Lemmas 14, 15 and 16 we have

Theorem 3 For k 2 1, g defined by (4) is a balanced function on Vogi1 having Ny 2 22k _ 9k and
satisfying the SAC.

Recently Zheng, Pieprzyk and Seberry (1993) constructed a very efficient one way hashing
algorithm using boolean functions constructed by the method given in Theorem 3. These functions
have further cryptographically useful properties.

5.2 On ‘/gk

Let kK = 2 and f a bent function on Va;_s. And let hy, hy and hz be non-constant affine functions
on Voi_o such that h;(z) @ h;(z) is non-constant for any ¢ # j. Such affine functions exist for all
k 2 2. Let z = (21, -, T2,—2). Note that each f(z) ® h;(z) is also bent.

Without loss of generality we suppose both f(z) and f(x) @ hi(x) assume the value one 2273 4
2k=2 times while both f(x) @ he(z) and f(z) ® h3(x) assume the value one 22¥=3 — 2=2 times. Let
g be a function on V5 defined by

g(u, v, 21, ..., Top_2)
= (leu)(lev)f(z)® (1 du)(f(z)®hi(z))®
u(1 @ v)(f(z) @ ha(z)) ® wv(f(z) ® hs(z))
= f(z) ® vhi(z) ® uho(z) ® wv(hi(x) ® ha(z) ® hs(z)). (5)

Lemma 17 g defined by (5) is a balanced function on V.

Proof. Note that the sequence of g is the concatenation of the sequences of f(z), f(z) ® h1(z),
f(x) ® ho(x) and f(z) ® ha(x), and that f(z) and f(z) ® hi(x) assume the value one 22¢—3 4 2k—2
times while f(z)®ho(x) and f(z) @ h3(z) assume the value one 22673 —2k=2 times. Thus g assumes
the value one 221 times and hence is a balanced function on V. O
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Lemma 18 N, = 22k~ — 2% where g is defined by (5).
Proof. 1t follows from Corollary 1. O
Lemma 19 The function g defined by (5) satisfies the SAC.

Proof. Lety = (b,c,a1,--,as,_2) be any vector in Vo, with W (y) = 1. Write a = (a1, -, ask_2),
z = (u,v,T1,...,%Tok_2) and x = (x1,...,To,_2). Note that g(z D y) = f(z D a) ® (v® c)hi(z &
a)® (udbhay(z®da)®(udb)(vdc)h(zda)®dho(zx®a)® hs(z®a)). Consider the balance of
g(z) ® g(z @ ) in the following three cases.

Case 1: b=1, ¢ =0 and hence W(a) =0, i.e. @ =(0,0,---,0). In this case, g(2) ® g(z ®vy) =
ho(z) ® v(h1(z) ® hao(z) ® hs(x)) will be ho(xz) when v = 0 and hy(z) ® hs(z) when v = 1. Both
ho(z) and hy(z) ® h3(x) are non-constant affine functions on Vo 5 and hence g(z) ® g(z ® ) is a
balanced function on Vay.

Case 2: b =0, ¢c =1 and hence W(«a) =0, i.e. a = (0,0,---,0). The proof of the balance of
9(2) ® g(z @ ) is similar to Case 1.

Case 3: b =0, ¢ = 0 and hence W («) = 1. Since h; is an affine function, h;(z) ® hj(z ® ) = a;
where a; is a constant from GF(2). Hence g(z) @ g(z®7) = f(z) ® f(z ® o) ® va1 ® uaz ®uv(a; @
az ® az). By (iii) of Lemma 3, f(z) ® f(zr @ a) is a balanced function on Va;_o and hence by
Lemma 12, g(2) @ g(z & ) is a balanced function on Vs;. This proves that g satisfies the SAC. 0O

Summarizing Lemmas 17, 18 and 19 we have

Theorem 4 For k 2 2, g defined by (5) is a balanced function on Vo, having Ny 2 22k=1 _ 9k gnd
satisfying the SAC.

5.3 Remarks

We have shown that a function on V;, constructed according to (4) and (5) satisfy the propagation
criterion with respect to all the n vectors whose Hamming weight is 1. In fact there are many more
vectors where the propagation criterion is satisfied, and it is not hard to show that the total number
of vectors in Vi1 such that a function constructed by (4) satisfies the propagation criterion is
22k 4 22k=1 " while the total number of vectors in Vo, such that a function constructed by (5),
satisfies the propagation criterion is at least 2272 4 1.

The algebraic degree is also a nonlinearity criterion and it becomes important in certain prac-
tical applications where linear approximation of a nonlinear function needs to be avoided. In our
constructions (4) and (5), the algebraic degree of a resulting function g is the same as that of the
starting bent function f.

The simplest bent function on V5 is the following quadratic function:

f(x1, 02,0, Top) = L1241 D T2Tpy2 @ - - - D TpTog.

Bent functions with higher algebraic degrees exist and there are many methods for constructing
such functions (Dillon, 1972). The following is a method discovered by Dillon and Maiorana (1972;
1985) for constructing a bent function f on Vy:

f(z) = (2, 7(z")) ® r(z")
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where z = (2',2"), ' = (x1,...,z), 2" = (Tgs1,-..,%2k),  is an arbitrary function on Vj; and

7w = (m(z"), mo(2"),...,m(2")) is a permutation on the vector space V. Due to the arbitrariness
of r, the algebraic degree of f can be any integer between 2 and k. From these discussions it
becomes clear that functions obtained by (4) and (5) can achieve a wide range of algebraic degrees,
namely 2,...,k and 2,...,k — 1 respectively.

6 Constructing Highly Nonlinear balanced Functions Satisfying
High Degree Propagation Criterion

Another interesting topic is to study methods for constructing functions that are balanced and
possess good propagation characteristics. In (Preneel et al., 1991a), it was suggested that a function
f on V, which has a zero point in its Walsh spectrum be modified into a balanced function by
adding a suitable linear function h on V,,. As h has to be found by exhaustive search over all the
linear functions on V,,, the method is infeasible when n is large. In addition, the method is not
applicable to the functions which do not have zero points in their Walsh spectra. Two types of such
functions are (1) bent functions, and (2) highly nonlinear functions obtained by complementing a
single position in a bent sequence. In the following we describe two methods for systematically
constructing highly nonlinear balanced functions satisfying high degree propagation criterion.

6.1 Basic Construction
6.1.1 On Vo

Let f be a bent function on Vs, and let g be a function on Vo defined by

g($1,$2a s ,$2k+1)
= (1 D Il)f(IQ, e ,x2k+1) D Il(l &) f(IQ, - ,$2k+1))
= 110 f(®2,..., Togt1)- (6)

Lemma 20 The function g defined in (6) satisfies the propagation criterion with respect to all
non-zero vectors y € Vop1 with v # (1,0,...,0).

Proof. Let v = (a1,a9,...,a9k+1) # (1,0,...,0) and let z = (z1,29,...,29,+1). Then g(z) &
gz ®dy) = a1 ® f(ra,...,Top11) D f(x2 @ ao,...,Topr1 D agks1). Since f is a bent function,
f(may ..., 2ops1) ® f(xa®ag, ..., Topr1 D askr) is balanced for all (as,...,a511) # (0,...,0) (see
(iii) of Lemma 3). Thus g(z) ®g(z®) is balanced for all v = (a1, a2, ...,a%+1) # (1,0,...,0). O

From Corollary 1, the nonlinearity of the function g defined by (6) satisfies N, = 22k _ 9k
Furthermore, by Lemma 12, g is balanced. Thus we have

Corollary 2 The function g defined by (6) is balanced and satisfies the propagation criterion with
respect to all non-zero vectors v € Vopy1 with v # (1,0,...,0). The nonlinearity of g satisfies
N, = 22k — 2k,
6.1.2 On Vy

Let f be a bent function on Vo;_o and let g be a function on Vo obtained from f in the following
way':

9(x21,29,%3, ..., Tok)
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= (]_ ) 271)(]_ D J?Q)f(ﬂ?g, ... ,IQk) D (]_ D Il)ﬂjg(l D f(I3, - ,xgk))
271(1 &) 1‘2)(1 ) f($3, N ,J?Qk)) ) $1$2f(l‘3, . ,J?Qk)
= 11Dz f(r3,...,T%). (7)

Lemma 21 The function g defined in (7) satisfies the propagation criterion with respect to all but
three non-zero vectors in Vor. The three vectors where the propagation criterion is not satisfied are
1= (170707"' 70)7 Y2 = (071707"' 70)7 and73 =71 D7 = (171707"' 70)

Proof. Lety = (a1,as,...,as) beanon-zero vector in Vo, differing from ~1, 5 and 3. Also let z =
(x1,...,22;). Then we have g(z)Dg(z®7) = a1®a®f(z3,...,To%)Df(z3Das, ..., ropDagy). Since
f is a bent function on Vo5 and (as,...,as) # (0,...,0), f(z3,...,20) D f(x3DPas, ..., TopDasy)
is balanced, from which it follows that g(z) ® g(z @ ~y) is balanced for any non-zero vector vy in Vo
differing from ~;, 2 and 3. This proves the lemma. O

Since x1 ® z2 is balanced on V3, ¢ is balanced on Va;. On the other hand, by Lemma 7, we have
N, = 22k=1 2k Thus we have the following result:

Corollary 3 The function g defined by (7) is balanced and satisfies the propagation criterion with
respect to all non-zero vectors v € Vo, with v # (c1,¢2,0,...,0), where c1,co € GF(2). The
nonlinearity of g satisfies Ny 2 22k=1 _ ok,

6.2 Moving Vectors Around

Though functions constructed according to (6) or (7) satisfy the propagation criterion with respect
to all but one or three non-zero vectors, they only fulfill the propagation criterion of degree zero.
Therefore these functions are not interesting in practical applications. Recall that the balance, the
nonlinearity and the number of vectors where the propagation criterion is satisfied are all invariant
under an affine transformation of coordinates. This indicates that the degree for the propagation
criterion might be improved through a suitable affine transformation of coordinates. Identifying
such an affine transformation, however, is not an easy exercise, especially when the dimension of
the underlying vector space is large and the number of vectors where the propagation criterion is
satisfied is small.

In this section, we show that for functions constructed according to (6) or (7), the vectors
where the propagation criterion is not satisfied can be transformed into vectors having a high
Hamming weight. In this way we obtain highly nonlinear balanced functions satisfying high degree
propagation criterion.

6.2.1 On Vo

Theorem 5 For any non-zero vector v* € Voryq (k = 1), there exist balanced functions on Voy i1
satisfying the propagation criterion with respect to all non-zero vectors vy € Vo1 with v # v*. The
nonlinearities of the functions are at least 22F — 2F.

Proof. Let f be a bent function and let g be the function constructed by (6). From linear algebra
we know that for any bases By and B of the vector space Voi41, where By = {a|j = 1,...,2k+1}
and By = {B]j = 1,...,2k + 1}, there exists a unique nondegenerate matrix A of order 2k + 1
with entries from GF(2) such that o;jA = 3;, j = 1,...,2k + 1. In particular, this is true when
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ap =v* and fy = (1,0,...,0). Let x = (z1,z2,...,x,) and let ¢g* be the function obtained from g
by employing linear transformation on the input coordinates of g:

g*(z) = g(zA).

Since A is nondegenerate, by Lemma 10, g* is balanced and has the same nonlinearity as that
of g. Now we show that ¢* satisfies the propagation criterion with respect to all non-zero vectors
except v*.

Let v be a non-zero vector in Va1 with v # «*. Consider the following function ¢*(z) ® ¢* (z ®
v) =g(zA)Dg(zADyA) = g(y)Dg(yDyA) where y = zA. Note that A is nondegenerate and thus
y runs through Vo1 while z runs through Vi, q. Since v # +* we have vA # (1,0,...,0). By
Lemma 20, g(y) ® g(y ®yA) runs through the values zero and one an equal number of times. Hence
g*(z) ® g*(z & ) is balanced. Consequently, g* satisfies the propagation criterion with respect to
all non-zero vectors in Vo1 but v*. This completes the proof. O

As a consequence of Theorem 5, we obtain, by letting v* = (1,1,...,1), highly nonlinear
balanced functions on Vo satisfying the propagation criterion of degree 2k. This is described in
the following:

Corollary 4 Let f be a bent function on Vo and let g*(z1,...,Tok11) = z1 ® f(x1 ® z2, 71 B
Z3y. .., X1 B Tokr1). Then g* is a balanced function on Vo1 and satisfies the propagation criterion
of degree 2k. The nonlinearity of g* satisfies Ng- 2 22k _ ok,

Proof. Let e;, j = 1,2,...,2k + 1, be a vector in V51 whose jth coordinate is 1 and all other
coordinates are 0. In the proof of Theorem 5, we let oy = vo = (1,...,1), a5 =e¢;,j =2,...,2k+1
and 3; = ej, 7 = 1,...,2k + 1. Then there is a unique nondegenerate matrix A of order 2k + 1
such that a;A = 3;, 7 =1,...,2k + 1. It is easy to verify that A has the following form:

70

€2

A= .

€2k +1

Thus we have g*(z) = g(zA) = g(z1,21DT2, ..., 21DLok 1) = 21D f (21DT2, T1Dx3, ..., L1DTok11),
where g(z) = 1 ® f(z2,...,Tok11), and z = (z1,%9,...,%o+1). By Theorem 5 g* satisfies the
propagation criterion with respect to all non-zero vectors in Vo1 except the all-one vector v* =
(1,1,...,1). Consequently ¢g* satisfies the propagation criterion of degree 2k. O

6.2.2 On Vy

Theorem 6 For any non-zero vectors vf,vs € Vo (k 2 2) with i # 73, there exist balanced
functions on Vo satisfying the propagation criterion with respect to all but three non-zero vectors
in Vog. The three vectors where the propagation criterion is not satisfied are v7, v5 and v ® 5.
The nonlinearities of the functions are at least 28— — 2k,

Proof. The proof is essentially the same as that for Theorem 5. The major difference lies in the
selection of bases By = {aj|j = 1,...,2k} and By = {f;|j = 1,...,2k}. By linear algebra, we
can let a1 = 7§, aa =3, /1 = (1,0,0,...,0), and B2 = (0,1,0,...,0). By the same reasoning as
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in the proof of Theorem 5, we can see that ¢* defined by g*(z) = g(xA) satisfies the propagation
criterion with respect to all but the following three non-zero vectors in Va: 77, 75 and ] ©;. Here
z = (z1,T9,...,%9), g(x) =21 B 22 ® f(x3,...,T9k), and f, a bent function on Voi_o, are all the
same as in (7), and A is the unique nondegenerate matrix such that a;A = 3;, j =1,...,2k. O

Similarly to the case on Vo1, we can obtain highly nonlinear balanced functions satisfying high
degree propagation criterion, by properly selecting vectors v and <;. Unlike the case on Vo1,
however, the degree of propagation criterion the functions can achieve is %k, but not 2k — 1. The
construction method is described in the following corollary.

Corollary 5 Suppose that 2k = 3t + ¢ where ¢ = 0,1 or 2. Then there exist balanced functions on
Vor that satisfy the propagation criterion of degree 2t — 1 (when ¢ = 0 or 1), or 2t (when ¢ = 2).
The nonlinearities of the functions are at least 22k=1 — 2k,

Proof. Set c; =0,co =1ifc=1and set ¢ = ¢y = %c otherwise. Let 77 = (a1,...,ast+c) and
v3 = (b1,...,b3¢4c), where

0 — 1 forj=1,...,2t + ¢y,
710 forj=2t+c+1,...,3t+c

b — 0 forj=1,....t+c,
711 forj=t4ec+1,...,3t+c.

By Theorem 6 there exists a balanced function g* on Vy satisfying the propagation criterion
with respect to all but three non-zero vectors in Vo;. The three vectors are v;, v5 and v ®7;. The
nonlinearity of g* satisfies Ny = 22k—=1 _ 9k,

Note that W(vy) = 2t 4+ c1, W(v3) = 2t + c2, and W(yf @ v3) = 2t + 2¢; = 2t + ¢. The
minimum among the three weights is 2t + ¢;. Therefore, for any nonzero vector v € Vo with
W(y) = 2t+c¢; — 1, we have v # v, 73 or v ® 3. By Theorem 6, g*(z) ® g*(z @ ) is balanced.
From this we conclude that ¢g* satisfies the propagation criterion of order 2t + ¢; — 1. The proof is
completed by noting that ¢ =0ifc=0o0r 1 and ¢; =1 if ¢ = 2. a

6.3 Discussions

Comparing (4) with (6), one can see that the difference between the two constructions lies in the
selection of the affine functions. In (4) a non-constant affine function h is selected, while in (6)
a constant 1 is employed. In a sense, the two constructions complement one another. A similar
observation applies to the case of (5) and (7).

Functions obtained by (6) and (7) can achieve a wide range of algebraic degrees, namely 2,... &k
and 2,...,k — 1 respectively. (See also the discussions in Section 5.3.) Recently, Detombe and
Tavares obtained, while studying the design of S-boxes, balanced gquadratic functions on V5 that
satisfy the propagation criterion with respect to all but one vectors in Vi. (They called these
functions near bent functions.) They obtained the functions by the use of the cubing technique
suggested by Pieprzyk (1991). Propagation characteristics of quadratic functions were also studied
extensively in (Preneel et al., 1991a). However, applicability of these quadratic functions in practice
is limited by the following two facts:

1. Their algebraic degree is only 2.

2. They are all equivalent in structure in the sense that they can be transformed into one another
by linear transformation of input coordinates.
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7 Concluding Remarks

We have studied properties of balance and nonlinearity of Boolean functions including concate-
nating, splitting, modifying and multiplying sequences. A novel method has been presented to
construct balanced functions whose nonlinearity is much higher than that attained by any previ-
ously known construction. In addition, systematic methods have been presented for constructing
highly nonlinear balanced functions satisfying the SAC or high degree propagation criterion. A
technique has been developed that allows us to transform vectors where the propagation criterion
is not satisfied into other vectors, while preserving the nonlinearity and balance of the functions.
This paper has also introduced a number of interesting problems which remain to be solved. We
discuss one of them before closing the paper. For Vo1, functions constructed according to (6) are
optimal in the sense that they fulfill the propagation criterion with respect to 2%5*! — 2 non-zero
vectors, and after the affine transformation of coordinates, they satisfy the propagation criterion
of degree 2k. For V5, the number of non-zero vectors given by (7) is 22¥ — 4 and the degree after
the transformation is %. It is left as future work to examine whether there are highly nonlinear
balanced functions on Vy; satisfying the propagation criterion of degree 2k — 1, and if there are, to
find methods for constructing such functions.
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