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Abstract

One-way hash functions are an important tool in achieving authentication and data in-
tegrity. The aim of this paper is to propose a novel one-way hash function based on linear
cellular automata over GF(q). Design and security analysis of the proposed one-way hash
function are based on the use of very recently published results on cellular automata and
its applications in cryptography. The analysis indicates that the one-way hash function
is secure against all known attacks. An important feature of the proposed one-way hash
function is that it is especially suitable for compact and fast implementation.
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1 INTRODUCTION

Cryptographic hash functions play an important role in modern cryptography. The basic
idea of cryptographic hash functions is that a hash-value serves as a compact represen-
tative image (sometimes called an imprint, digital fingerprint, or message digest) of an
input string, and can be used as if it were uniquely identifiable with that string.

Following [1], at the highest level, cryptographic hash functions may be classified into
two classes: hash functions, whose specification dictates a single input parameter - a
message (unkeyed hash functions); and keyed hash functions, whose specification dictates
two distinct inputs - a message and a secret key. This paper is concerned with unkeyed
hash functions which are also called one-way hash functions.



A typical usage of one-way hash functions for data integrity is as follows. The hash-value
corresponding to a particular message M is computed at time ¢;. The integrity of this
hash-value (but not the message itself) is protected in some manner. At a subsequent time
t9, the following test is carried out to determine whether the message has been altered,
i.e., whether a message M’ is the same as the original message. The hash-value of M’ is
computed and compared to the protected hash-value; if they are identical, one accepts
that the inputs are also equal, and thus that the message has not been altered. The
problem of preserving the integrity of a potentially large message is thus reduced to that
of a small fixed-size hash-value. Since the existence of collisions is guaranteed in many-
to-one mappings, the unique association between the inputs and hash-values can, at best,
be in a computational sense. A hash-value should be uniquely identifiable with a single
input in practice, and collisions should be computationally infeasible to find (essentially
never occurring in practice).

In this paper, a novel and fast one-way hash function is proposed and analyzed. The
proposed one-way hash function is based on a quite different approach than these employed
in other one-way hash functions in that it is based on linear cellular automata over GF(q).
Note that a cellular automata is a particular linear finite state machine. The proposed
one-way hash function is a development of the previously proposed bit oriented one (see
[18]) to the word oriented one-way hashing.

In Sections 2 - 4 relevant background about cellular automata and one-way hash func-
tions is summarized. In Section 5 the novel one-way hash function is proposed. Its security
together with efficiency is analyzed in Section 6. Some concluding remarks are made in
Section 7.

2 LINEAR CELLULAR AUTOMATA OVER GF(Q)

A linear finite state machine (LFSM) is a realization or an implementation of certain linear
operator. Linear feedback shift registers (LFSR) and Linear Cellular Automata (CA) are
particular LFSMs. Following [4] this section summarize the main characteristics of the
CA over GF(q), assuming ¢ a power of prime (for background see also [2] and [3]).

A null-boundary linear hybrid cellular automata is a LFSM composed of a one-dimensional
array of n cells with the following characteristics. Each cell consists of a single memory
element capable of storing a member of GF(q), and a next-state computation function.
We assume that communication between cells is nearest-neighbor, so that each cell is
connected to only its left and right neighbors. The leftmost and rightmost cells behave as
though their left and right neighbors, respectively, are in state 0, and this make the CA

null-boundary. At each time step ¢, cell 7 has a state sgt) (that is a member of GF(q)).
The next-state function of a cell is its updating rule, or just rule. A linear CA employs
the linear next-state functions. If in a CA the same rule is applied to all cells, then the
CA is called a uniform CA; otherwise it is called a hybrid CA.

For time step t+1, each cell « computes its new state SZ(-t+1), using its next-state function

fi. In a CA, this function can depend on only the information available to the cell, and



in the here considered case, it is the states of cells ¢ — 1, 7, and 7 + 1 at the time ¢. Since
we require that f; be linear,

st = filst s sth) = bisy 4+ dis? + sty (1)
and b;, d;, and ¢; are constants dependent on the particular machine. The multiplication
and addition operations are performed in the field GF(g). The number of possible functions
fi is the number of choices for b;, d;, and ¢;, which is ¢3. Hence, the number of rule
configurations for an n-cell CA is (¢*)" = ¢*".

We define the state of a CA at time ¢ to be the n-tuple formed from the states of the
individual cells, s = [sgt), ...,sM]. The next-state function of the CA is computed as
st = [£,(0, 519, 50, ...,fi(sgt_)l,sgt),sgle),...] . Since each f; is a linear function, f is
also a linear function, mapping n-tuples to n-tuples. Linearity implies that f has an n by n
matrix formulation A, so that the previous expression can be rewritten as a matrix-vector
product s+ = f(s) = As® | where A is the transition matrix for the CA, and the
product is a matrix-vector multiplication over GF(q). Because the CA communication is
restricted to nearest-neighbor, the matrix A is tridiagonal.

A CA has a maximum length cycle if the sequence of states (¥, sV, s . 50
includes all ¢® — 1 nonzero states for any nonzero starting state s(®. Let the transition
matrix of an LESM be denoted Ajrsy. The characteristic polynomial of the LFSM is
defined to be: |x1 — Appsy| , where z is an indeterminante, and I is the identity matrix
with the same dimension as A;rgys. The characteristic polynomial is primitive if and only
if the LFSM has a maximal length cycle.

3 GENERAL MODEL FOR ITERATED HASH FUNCTIONS

Most one-way hash functions hash(-) are designed as iterative processes which hash
arbitrary-length inputs by processing successive fixed-size blocks of the input. A hash
input M of arbitrary finite length is divided into fixed /-length blocks M;. This prepro-
cessing typically involves appending extra bits (padding) as necessary to attain an overall
length which is a multiple m of the block-length ¢ and often includes (for security reasons,
see [6] and [7]) a block indicating the length of the unpadded input. Each block M; then
serves as input to an internal fixed-size function h, the compression function of hash,
which computes a new intermediate result of bit-length n for some fixed n, as a function
of the previous n-bit intermediate results and the next input block M;. Let H; denote
the partial result after Stage i. Then the general process for an iterated one-way hash
function with inputs M = (M, M, ..., M,;,) can be modeled as follows:

Hy=1V |, H;=h(H; 1,M;), 1<i<m, hash(M)=g(H,) . (2)

H;_, serves as the n-bit chaining variable between Stage : — 1 and Stage i, and Hj is
a pre-defined starting value or initial value I'V. An optional transformation ¢ is used in
a final step to map the n-bit chaining variable to an n/-bit result g(H,,); g is often the
identity mapping g(H,,) = H,,.

Specific one-way hash functions proposed in the literature differ from one another in pre-
processing, compression function, and output transformation. Certain cellular automata



based approaches for constructions of one-way hash functions are reported in [7], [11], [12]
and [18].

4 SECURITY OF THE ONE-WAY HASH FUNCTION

Based on [6], [7], [8], [9], in a number of models, it is possible to relate the security of
hash(-) to the security of h and g according to the following result:
Theorem 1. (cf. [9]) Let hash(-) be an iterated hash function with MD-strengthening.
Then preimage and collision attacks on hash(-) (where an attacker can choose IV freely)
have roughly the same complexity as the corresponding attacks on A and g.

Theorem 1 gives a lower bound on the security of hash(-).

According to [9] the iterated hash functions based on the Davies-Meyer compression
function given by the following

h(M;,H;—1) = Ey,(Hi—1) ® H;—1 (3)

where Ek(-) is a block cipher controlled by the key K, are believed to be as secure as the
underlying cipher E(+) is.

As a direct extension of the results of security related to cipher block chaining and the

assumption 1 from [9] (which is a standard one in cryptography today), we assume the
following.
Assumption 1. Let the compression function h be the Davies-Meyer function (2) and
the employed cryptographic transformation is a secure one. Then finding collisions for h
requires about 2"/2 operations, and finding a preimage for h requires about 2" operations,
assuming n-bit hash result.

The above discussions imply that the main problem in the design of a secure one-way
hash function can be reduced to the design of a secure compression function and a good
output function.

5 A NOVEL CELLULAR AUTOMATON BASED HASH FUNCTION

In this section, a novel dedicated one-way hash function is proposed. The proposed func-
tion follows the general model for iterated hash functions (see relation (2)), and employs
the Davies-Meyer principle, which according to (3) assumes that the compression function
h is defined by the following:

h(M;, H;_y) = Fp,(H;—1) ® Hi—y (4)

where Fy,(H;—1) is a function which maps H;_; according to M;, and M; is the ith
part of the whole message M. These would guarantee the approved basis for design and
imply secure hash function construction assuming that the compression function and the
output function are secure. The novel construction of the compression function A and
the output function g is based on cellular automata and recently published results which
imply the security of the novel h and g functions. The proposed hash function provides:
very fast hashing, and the preimage and collision resistance due to the employed principles



and building blocks. The novel compression function hA*, the output function ¢*, and the
whole hash function hash* are defined by the next three parts of this section.

5.1 Compression Function h*(-)

We assume the following notations:
e 1 is number of words in each M; or H;_;, and ¢ is number of bits in each word, and n
is an even integer;
o M, is kth word of M;, and an element of GF(2°);
e H; 1 is kth word of H; |, and an element of GF(2");
e fi(-), k =1,2,..., K, are functions each of which nonlinearly maps two elements from
GF(2%) into an element of GF(q), ¢ prime, 2 — 1 < ¢ < 22 — 1, according to certain
Boolean functions, assuming that the criteria from [10] are satisfied;
e CA(") is an operator of mapping a current CA state into the next state, assuming n-
length CA over GF(q) with primitive characteristic polynomial, and that elements of the
matrix (1) satisfy the following:
-g=1,1<1<n—-1,
-b=-1,2<i<n,
-d; €{0,1}, 1 <i<n,
- the number of d;, 1 < i < n that are 1 is minimal,
- ¢ is prime;
Note that this yields a very efficient realization of the CA without multiplications over
GF(q).
e ¢r(+), k = 1,2,..., K, are functions each of which nonlinearly maps an element from
GF(q) into an element of GF(g), according to certain Boolean functions, assuming that
the criteria from [10] are satisfied.
e vi(-), k = 1,2,..., K, are functions each of which nonlinearly maps an element from
GF(g) into an element of GF(2%), according to certain Boolean functions, assuming that
the criteria from [10] are satisfied.

The compression function maps the input variables M; and H;_; into the output ac-
cording to the following steps 1 - 5.

1. nonlinear combining with compression of the M; and H;_; words: the mappings {0, 1, ..., 2/~
1}2 = {0,1,....,q — 1}
Generate an n-dimensional vector X; with elements X;;, k£ = 1,2,...,n, from GF(q)
according to the following:

Xik = fu; o+ Hi_1 ymodtymodr (Mig, Hi 1) , k=1,2,...,n. (5)

2. first CA processing
Generate an n-dimensional vector Y; with elements Y; from GF(q):

Y; = CA(X;) . (6)

3. nonlinear mapping and permutation



Generate an n-dimensional vector Y with elements Y}, from GF(g) according to the
following:

n
Yil,(k—l—ko)modn = ¢km0dK(( Vi + Yot )mOdq) , k=1,2,.., 5 ) (7)
, n n
Y;,(k+k0)modn = ¢k)modK( Y;c + Yvk—% )mOdq) ) k= 5 + ]-7 5 + 27 PPN ) (8)

where kg is certain constant kg < n/2.
4. second CA processing
Generate an n-dimensional vector Z; with elements Z; ; from GF(q):

Z;=CAY]) . ®)

5. nonlinear transformation and compression
Generate an n-dimensional vector H] with elements H, from GF(2‘) according to the
following:

Hz{,k = (pkmodK(Zi,k) . (10)
Accordingly, the compression function A*(-) is then defined by the following
h*(M;, H;_y) = H.® H;_y = H; , (11)
where @ denotes bit-by-bit mod2 addition.

5.2 Output Function g¢*(-)

The output function maps H,, into an n-dimensional binary vector. The output function
g*(-) is a variant of the cellular automaton based keystream generator proposed and
analyzed in [17]. The input argument for the generator is a transformation of H,, into an
n-dimensional binary vector which serves as the ”secret key”, according to the following:
ith bit of the binary vector is the mod2 sum of the bits in ith word of H,,. Using this
"secret key” g*(-) generates n output bits.

The main parts of the key stream generator which realizes the output function g* are
the following: an n-cell CA over GF(2), a ROM which contains the configuration rules for
the CA, an n-length binary buffer, and an n-dimensional varying permutation.

Assume that 7 < n maximal length CA’s are chosen out of all possible maximal length
CA’s. These rules are noted as { Ry, R, ..., R, }. The rule configuration control word corre-
sponding to a rule R; is stored in a ROM word. The output function operates as following:

® Initially the CA is configured with the rule Ry,a,, where Ay is mod n value of the
secret key.
With this configuration the CA runs one clock cycle. Then it is reconfigured with next
rule (i.e., R;) and runs another cycle. The rule configuration of CA changes after every



run, i.e., in the next run, a rule is R(;;14Aymodn, Where A is a numerical equivalent of
the previous CA state.

® After each clock cycle, the content of a middle cell of the CA is taken as an output and
stored in the n-length binary buffer.

® After n clock cycles, the buffer content is permuted according to a varying permutation
controlled by the current CA state.

5.3 Hash Function hash*()

1. INPUT. The message M, and the n-words initial value I'V.

2. PREPROCESSING. MD-strengthening and padding using the approach proposed in
[10].
Splitting the processed message into m blocks of n-words each: M = (M, My, ..., M,,).

3. ITERATIVE PROCESSING. Assuming that Hy = IV, for each : = 1,2, ..., m, do the
following:

® calculate the compression function h*(-) value:
Hi = h*(Mla Hi—l) )

where h*(-) is defined in the Section 5.1.
4. If H,, is the all zero vector recalculate H,, according to the following: H,,, = h*(M,,, Hy),
and proceed to the next step.
5. OUTPUT FUNCTION. Calculate ¢g*(H,,), where ¢g*(-) is defined in the Section 5.2.
6. OUTPUT. n-bits message digest: hash*(M) = g*(H,,).

6 ANALYSIS OF THE PROPOSED HASH FUNCTION

6.1 Security Analysis

Note that according to the Theorem 1, a lower bound on security of the proposed hash
function is determined by the characteristics of its compression and output functions.
Accordingly, the security will be considered through the security of the proposed functions
g*(-) and h*(). Security of both the functions will be examined on the preimage / 2nd
preimage and collisions attacks.

Security of Compression Function h*(-)

Processing of each message block M;, i = 1,2, ..., m, by the compression function h*(M;, H; 1)
consists of the following:

- nonlinear mapping of M; and H;_; into an n-dimensional vector with elements from
GF(q): the CA current state ¥j;

- CA mapping of its current state into the next one - an n-dimensional vector C' A(Y;)
with elements from GF(q);

- nonlinear mapping of C'A(Y;) into the n-dimensional vector Y, with elements from GF(q).



- CA mapping of its current state equal to the the vector Y; into the next one - an n-
dimensional vector Z; with elements from GF(q);

- nonlinear mapping of the vector Z; into an n-dimensional vector H; with elements from
GF(2;

- bit-by-bit mod2 addition of the elements of n-dimensional vectors H] and H, ; yielding
the new intermediate result H;.

Accordingly, the following facts imply the security of the compression function:
(a) The CA has primitive characteristic polynomial so that any nonzero state is mapped
into a nonzero state which belongs to the sequence of all possible different 2" — 1 nonzero
n-dimensional vectors.
(b) High nonlinearity of the compression function due to the employed Boolean functions
and CA.
(c) So far published algorithms for reconstruction of a CA state employing certain CA
outputs, are the following:
algorithm from [13] based on noiseless sequence of bits generated by certain CA cell
assuming, in general, a nonlinear configuration rule; algorithm from [15] based on error-
free next CA state assuming a nonlinear configuration rule; algorithm from [16] based on
the sequence of noisy CA (PCA) states assuming an additive configuration rule; algorithm
from [17] based on the noisy sequence of bits sampled from CA (PCA) states assuming
an additive configuration rule.
It can be directly shown that all these methods for reconstruction of certain CA state can
not work in the case of h*(-).
(d) The compression function is a cryptographic transformation.

Facts (a)-(d) imply that h*(-) can be considered as a cryptographically secure one-way
function, so that according to the Assumption 1 the following hold:
- finding preimage for given h*(-) output requires about 2" operations (i.e. testing of 2"
hypothesis);
- finding collision for h*(-) requires about 2"/? operations (testing of 2"/2 hypothesis).

Security of Output Function g*(+)

Recall that the output function ¢g*(-) is realized by a variant of the keystream generator
proposed and analyzed in [17]. Cryptographic security examination of this generator shows
that it is resistant on all attacks known so far, assuming that the length of employed PCA
is greater than 120, [17]. Accordingly, we can accept that the output function g*(-) is the
secure one, and that finding the input argument of g*(-) (preimage or 2nd preimage), i.e.,
the value H,, for given hash value hash*(M) has complexity 2" assuming that n > 120.
Due to the same reasons, i.e., because g*(-) is realized by the cryptographically secure
keystream generator, we can accept that no better attack than the Yuval’s birthday attack,
[5], can be expected for finding the collisions for the output function. The previous implies
that finding a collision for ¢*(-) requires testing about 2"/2 hypothesis, i.e. employing about
27/2 operations.

6.2 Complexity Analysis

As the first, note that the set of functions (see the Section 5.1) can be efficiently realized by
the truth tables in ROM, assuming moderate value of ¢. Obviously, for realization of this



approach certain ”space-cost” should be paid. Based on the structure of the compression
function h*(-) it can be directly shown that processing of each n-words message block
employs no more than 3n +n+ 2n+ 3n+n = 10n additions, and approximately no more
than 3n reading from ROM. Similarly, it can be directly shown that the processing cost
in the output function g*(-) (for its n-bits input) is approximately equal to 3n? mod2
additions + n mod n additions + realization of the permutation. Accordingly, the overall
complexity of processing (hashing) a message consisting of m blocks and each n-words
long, can be estimated as approximately equal to performing m(10n)+3n? modq additions
(including the ROM reading costs, mod n additions, and realization of the permutation).
So, the proposed hash function employs the number of operations approximately equal to
10 + %’ additions over GF(q) for hashing each message word.

7 CONCLUSIONS

This paper addresses the problem of designing a fast one-way hash function for word
oriented applications, and it points out a new application of linear cellular automata over
GF(q). The aim paper was to extend the applications of cellular automata based building
blocks to the word oriented hash functions instead of the recently proposed bit oriented
hashing. A theoretical basis for this goal were the recently published results related to the
one-dimensional linear hybrid cellular automata over GF(q) [4].

A novel hash function is proposed and its security and complexity are analyzed. The
proposed hash function employs the approved model of iterative hash function with novel
compression and output functions.

The proposed compression function is one of the Davies-Meyer type based on cryp-
tographic transformation employing cellular automata, and the output function is a
keystream generator, also based on cellular automata. The employment of cellular au-
tomata ensures the efficiency of the proposed hash function.

The security of the proposed hash function was analyzed through the security of the
compression and output functions. The analysis, based on the so far published results,
implies that the proposed hash function has ideal security, i.e., given a hash n-bits out-
put, producing each of a preimage or 2nd preimage requires testing of approximately 2"
hypothesis, and producing of a collision requires testing of approximately 2™/ hypothesis,
assuming n > 120.

Assuming a message of m blocks, each with n words, and each word of ¢ bits, the

proposed hash function employs number of operations approximately equal to 10+ %" ad-
10+3n/m

Toaal modq additions

ditions over GF(q), for hashing each message word, or equivalently
for hassing each message bit.

REFERENCES

A.J. Menezes, P.C. van Oorschot and S.A. Vanstone, Handbook of Applied Cryptography.
Boca Roton: CRC Press, 1997.

S. Wolfram, Cellular Automata and Complexity. Reading MA: Addison-Wesley, 1994.

P.P. Chaudhuri, D.R. Chaudhuri, S. Nandi and S. Chattopadhyay, Additive Cellular Au-



tomata: Theory and Applications. New York: IEEE Press, 1997.

K. Cattell and J.C. Muzio, ” Analysis of one-dimensional linear hybrid cellular automata
over GF(q)”, IEEE Trans. Comput., vol. 45, pp. 782-792, 1996.

G. Yuval, "How to swindle Rabin”, Cryptologia vol. 3, pp. 187-190, 1979.

R. Merkle, ”One way hash functions and DES”, Advances in cryptology - CRYPTO 89,
Lecture Notes in Computer Science, vol. 435, pp. 428-446, 1990.

[.LB. Damgard, ”A design principle for hash functions”, Advances in Cryptology -
CRYPTO 89, Lecture Notes in Computer Science, vol. 435, pp. 416-427, 1990.

Y. Zheng, T. Matsumoto and H. Imai, ” Structural properties of one-way hash functions”,
Advances in cryptology - CRYPTO 90, Lecture Notes in Computer Science, vol. 537,
pp. 303-313, 1991.

L. Knudsen and B. Preneel, "Fast and secure hashing based on codes”, Advances in
cryptology - CRYPTO 97, Lecture Notes in Computer Science, vol. 1294, pp. 485-498,
1997.

Y. Zheng, J. Pieprzyk and J. Sebery, ”HAVAL - a one-way hashing algorithm with variable
length of output”, Advances in cryptology - AUSCRYPT 92, Lecture Notes in Computer
Science, vol. 718, pp. 83-104, 1993.

J. Daemen, R. Govaerts and J. Vandewalle, ”A framework for the design of one-way
hash functions including cryptanalysis of Damgard’s one-way function based on cellular
automaton”, Advances in cryptology - ASTACRYPT ’91, Lecture Notes in Computer
Science, vol. 739, 1993.

S. Hirose and S. Yoshida, ”A one-way hash function based on a two-dimensional cel-
lular automaton”, The 20th Symposium on Information Theory and Its Applications
(SITA97), Matsuyama, Japan, Dec. 1997, Proc. vol. 1, pp. 213-216.

W. Meier and O. Staffelbach, ” Analysis of pseudo random sequences generated by cellular
automata”, Advances in Cryptology - EUROCRYPT 91, Lecture Notes in Computer
Science, vol. 547, pp. 186-189, 1992.

S.R. Blackburn, S. Murphy and K.G. Peterson, ”Comments on ” Theory and Applications
of Cellular Automata in Cryptography””, IEEE Trans. Comput. vo. 46, pp. 637-638,
May 1997.

C.K. Koc and A.M. Apohan, ”Inversion of cellular automata iterations”, IEE Proc. -
Comput. Digit. Tech., vol. 144, pp. 279-284, 1997.

M. Mihaljevi¢, ”Security examination of a cellular automata based pseudorandom gen-
erator using an algebraic replica approach”, Applied Algebra, Algorithms and Error
Correcting Codes - AAECC 12, Lecture Notes in Computer Science, vol. 1255, pp.
250-262, 1997.

M. Mihaljevié¢, ” An improved key stream generator based on the programmable cellular
automata”, Information and Communication Security - ICICS ’97, Lecture Notes in
Computer Science, vol. 1334, pp. 181-191, 1997.

M. Mihaljevi¢, Y. Zheng, and H. Imai, " A cellular automaton based fast one-way hash
function suitable for hardware implementation”, 1998 International Workshop on Prac-
tice and Theory in Public Key Cryptography (PKC ’98), Japan, Yokohama, Feb. 1998,
Pre-Proceedings, pp. 187-200 (also to appear in Lecture Notes in Computer Science).



