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PAPER

Realizing the Menezes-Okamoto-Vanstone (MOV)

Reduction Efficiently for Ordinary Elliptic Curves

Junji SHIKATA†, Yuliang ZHENG††, Nonmembers, Joe SUZUKI†,
and Hideki IMAI†††, Members

SUMMARY The problem we consider in this paper is
whether the Menezes-Okamoto-Vanstone (MOV) reduction for
attacking elliptic curve cryptosystems can be realized for genera
elliptic curves. In realizing the MOV reduction, the base field
F q is extended so that the reduction to the discrete logarithm
problem in a finite field is possible. Recent results by Balasub-
ramanian and Koblitz suggest that, if l � |q − 1, such a minimum
extension degree is the minimum k such that l|qk − 1, which
is equivalent to the condition under which the Frey-Rück (FR)
reduction can be applied, where l is the order of the group in
the elliptic curve discrete logarithm problem. Our point is that
the problem of finding an l-torsion point required in evaluating
the Weil pairing should be considered as well from an algorithmic
point of view. In this paper, we actually propose a method which
leads to a solution of the problem. In addition, our contribution
allows us to draw the conclusion that the MOV reduction is in-
deed as powerful as the FR reduction under l � |q − 1 not only
from the viewpoint of the minimum extension degrees but also
from that of the effectiveness of algorithms.
key words: elliptic curve cryptography, elliptic curve discrete

logarithm problem, Menezes-Okamoto-Vanstone (MOV) algo-

rithm, supersingular elliptic curves, ordinary elliptic curves

1. Introduction

Let E be an elliptic curve defined by

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

(a1, a2, a3, a4, a6 ∈ F q),

where F q is a finite field with q = pm (p : a prime num-
ber) elements. The Elliptic Curve Discrete Logarithm
Problem (ECDLP) asks: given a base point P ∈ E(F q)
and R ∈ 〈P 〉, find an integer n such that R = [n]P ,
where E(F q) is the set of its F q-rational points.

In 1985, N. Koblitz [12] and V. Miller [18] inde-
pendently proposed the use of elliptic curves over finite
fields for public-key cryptography, based on the pre-
sumed intractability of the ECDLP. Since that time,
elliptic curve cryptosystems have gained a tremendous
amount of attention. The main reason is that they have
two potential advantages over the conventional systems:
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the great diversity of elliptic curves available to provide
the groups; and the absence of subexponential time al-
gorithms such as index calculus type that can find dis-
crete logarithms in these groups. (For example, see
[29].)

Of the developments in elliptic curve cryptogra-
phy, the most dramatic was the demonstration by A.
Menezes, T. Okamoto and S. Vanstone [17] in 1991
that the ECDLP on a so-called supersingular elliptic
curve can be reduced to the Discrete Logarithm Prob-
lem (DLP) in the multiplicative subgroup of a finite
field (MOV reduction). This result means that one
should avoid the set of supersingular curves if one wants
to have a secure cryptosystem. (After the MOV reduc-
tion appeared, several attacks against the ECDLP have
been proposed thus far: G. Frey and H.G. Rück [8] de-
vised a reduction of the ECDLP to the DLP in the
multiplicative subgroup of a finite field that can be ap-
plied under a certain condition (FR reduction); and I.
Semaev [26], N. Smart [30], T. Satoh and K. Araki [22]
independently announced reductions of the ECDLP to
the DLP of the additive group structure of the base
field for so-called anomalous curves.)

In this paper, we raise a natural and important
question: can the MOV reduction be realized for gen-
eral elliptic curves ? We solve this problem in the affir-
mative from an algorithmic point of view.

In the following discussion, we assume that l =
#〈P 〉 is a prime number, which is not restrictive since
we can reduce the composite case to the prime one
by applying the Chinese Remainder Theorem and the
Pohlig-Hellman algorithm. Moreover, we assume that
l � |q since the l-part DLP is solved by the obvious ex-
tension of [22], [26], [30] in polynomial time when l|q.

Before we see how hard the problem is, let us
briefly review how the MOV reduction works [16], [17].
The idea is to find the minimum extension degree k
such that E[l] ⊂ E(F qk), where E[l] is the set of l-
torsion points, i.e. {T ∈ E|[l]T = O}. Then, the group
isomorphism 〈P 〉 → µl ⊂F qk defined by S 
→ el(S,Q)
is available if we can find a point Q ∈ E[l] such that
el(P,Q) is a generator of µl, where el : E[l]×E[l] → µl

is the Weil pairing [28], and µl is the multiplicative
group of l-th roots of unity. Thus, we can successfully
reduce the ECDLP to the DLP in a finite field.

In particular, for supersingular elliptic curves,
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1. showed that such a k is at most six; and
2. constructed a method to find such a Q in proba-

bilistic polynomial time in k log q (k ≤ 6).

Therefore, those facts lead to the realization of the re-
duction that works in probabilistic polynomial time in
k log q (k ≤ 6) for supersingular elliptic curves, and
consequently the MOV algorithm is completed in prob-
abilistic subexponential time in log q for supersingular
elliptic curves.

However, there exist two major problems to be
clear, from an algorithmic point of view, in applying
the MOV reduction to general elliptic curves (assum-
ing that l = #〈P 〉 is a prime number and l � |q):

1. the problem of explicitly determining the minimum
positive integer k such that E[l] ⊂ E(F qk).

2. the problem of efficiently finding an l-torsion point
Q such that el(P,Q) has order l. (i.e. el(P,Q) �= 1
because of the assumption that l is a prime num-
ber. In the sequel, we refer to such an l-torsion
point Q as a “good” l-torsion point.)

For the first problem, we can find an answer to it
in a recent paper by Balasubramanian and Koblitz [3].
They proved that if l � |q−1, k is the minimum positive
integer such that qk ≡ 1 mod l. (It is interesting to
note that this condition is identical to the one under
which the FR reduction is applied.) In the same paper,
they also suggest that we need k = l if l|q − 1 and
E[l] �⊂ E(F q). Thus, when l is much larger than log q,
we may give up applying the MOV reduction since the
extension degree in this case is too large in order for
the reduced DLP in F ∗

qk to be solved in subexponential
time in log q .

For the second problem, we cannot find any answer
which covers all the case in open literatures: we need
some assumptions in order for currently known meth-
ods [10], [17] to work efficiently even if k is small. Thus,
an efficient method which solve the second problem for
the general case will be desired from mathematical and
algorithmic points of view.

The major contribution of this paper is to solve the
second problem described above by actually proposing
a method that efficiently finds a “good” l-torsion point
for ordinary (non-supersingular) elliptic curves (see [17]
for supersingular elliptic curves). The proposed method
is completed in probabilistic polynomial time in k log q,
more precisely O(k3 log3 q) if #E(F q) is given before-
hand and otherwise O(k3 log3 q+log6 q), where k is the
minimum positive integer with qk ≡ 1 mod l. The run-
ning time seems to be asymptotically optimal, since it
is equal to that of randomly picking a point in E(F qk),
which seems to be needed in any situation, except for
computing #E(F q). Also, our method is completed
in probabilistic polynomial time in log q whenever k is

small enough to solve the DLP in F ∗
qk in subexponen-

tial time in log q. As a result, we can successfully realize
the MOV reduction for the general case, in a true sense.

Now, we turn our attention to comparing the MOV
and FR reductions. It may have been believed by some
cryptographers that assuming l � |q − 1, the MOV re-
duction is as powerful as the FR reduction in the sense
that their minimum extension degrees k coincide when
the base field F q is extended to F qk in order to ap-
ply those reductions. However, so far there has been
a lack of a formal proof that supports the belief. As
pointed out in [10], the problem of efficiently finding
an l-torsion point required in evaluating the Weil pair-
ing should be solved as well for the general case. Thus,
our contribution allows us to finally draw the conclusion
that the MOV reduction is indeed as powerful as the
FR reduction under l � |q − 1, in a true sense: not only
from the viewpoint of the minimum extension degrees
of the base field but also from that of the effectiveness
of algorithms.

The rest of this paper is organized as follows: In
Sect. 2, we briefly review some basic facts on elliptic
curves over finite fields, the MOV algorithm and the an-
swer to the first problem obtained by Balasubramanian
and Koblitz. In Sect. 3, we actually propose a method
for finding a “good” l-torsion point, which leads to the
solution of the second problem. It turns out that the
proposed method is completed in probabilistic polyno-
mial time in k log q under l � |q − 1.

2. Preliminaries

In this section, we briefly review some materials on el-
liptic curves over finite fields. (See [28] for more de-
tails.)

Let F q be a finite field with q elements and of
characteristic p, and F̄ q its algebraic closure. Let E
be an elliptic curve over F q given by the Weierstrass
equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (1)

whose coefficients lie in F q. For each extension field K
of F q, E(K) is given by

E(K) = {(x, y) ∈ K ×K|(x, y) satisfies (1)} ∪ {O}

where O is a special point called the point at infinity.
There is an abelian group structure on the points of
E(K), in which O serves as its identity element, given
by the so-called tangent-and-chord method. We express
its abelian group structure additively.

Let l be a positive integer relatively prime to p, the
characteristic of F q. The Weil pairing is the map

el : E[l]× E[l] −→ µl ⊂ F̄ q

where E[l] = {T ∈ E(F̄ q)|[l]T = O} is the group of
l-torsion points and µl is the subgroup of l-th roots of
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unity in F̄ q. For properties of the Weil pairing, see
[16], [28].

Let P ∈ E[l] be a point of order l. Then, we have
the following:

Proposition 1[17], [28]: There exists Q ∈ E[l] such
that el(P,Q) is a primitive l-th root of unity. Therefore,

fQ : 〈P 〉 −→ µl, fQ(S) = el(S,Q)

is a group isomorphism.

Based on this fact, the framework of the MOV al-
gorithm can be described as follows:
Algorithm 1 (The MOV Algorithm [16], [17]):

Input: An element P ∈ E(F q) of order l, and R ∈ 〈P 〉.
Output: An integer n such that R = [n]P .
Step 1: Determine the minimum positive integer k such

that E[l] ⊂ E(F qk).
Step 2: Find Q ∈ E[l] such that α = el(P,Q) has order

l.
Step 3: Compute β = el(R,Q).
Step 4: Compute n, the discrete logarithm of β to the

base α in F ∗
qk .

This algorithm is somewhat incomplete in that the
method for determining k and that for finding a point
Q are not explicitly given. For supersingular elliptic
curves, the methods which settle those problems are
given in [17]; the resulting minimum k are k = 1, 2, 3, 4,
or 6, and for each corresponding k, Q is efficiently ob-
tained by using the group structure of E(F qk). There-
fore, for supersingular elliptic curves, the reduction pro-
cedure (i.e. Step 2 and 3) is completed in probabilistic
polynomial time in log q and the algorithm mentioned
above takes probabilistic subexponential time in log q.

In the following, we consider the two problems
described in Sect. 1 esspecially for ordinary (non-
supersingular) elliptic curves.

For the problem of determining the minimum pos-
itive integer k such that E[l] ⊂ E(F qk), recently, Bala-
subramanian and Koblitz [3] have obtained the follow-
ing result:

Proposition 2[3]: Let E be an elliptic curve defined
over F q, and suppose that l is a prime number such
that l|#E(F q), l � |q − 1. Then, E[l] ⊂ E(F qk) if and
only if l|qk − 1.

Remark 1: It is important to note that Balasubra-
manian and Koblitz’s results also suggest that we need
k = l if l|q−1 and E[l] �⊂ E(F q). Thus, when l is much
larger than log q, we may give up applying the MOV
reduction since the extension degree in this case is too
large in order for the reduced DLP in F ∗

qk to be solved
in subexponential time in log q .

3. An Efficient Method for Finding l-Torsion
Points

In this section, we consider the problem of finding an l-

torsion point Q ∈ E[l] such that α = el(P,Q) has order
l. (See Algorithm 1 in Sect. 2.) We refer to such an
l-torsion point Q as a “good” l-torsion point. In this
section, we actually propose a method which finds a
“good” l-torsion point, and estimate the running time.

As before, we assume the following:

Assumption 1: (1) l is an odd prime number; (2)
l � |q; (3) l � |q − 1.

The first condition is not restrictive since we can reduce
the composite case to the prime one by applying the
Chinese Remainder Theorem and the Pohlig-Hellman
algorithm; the second one is necessary, since the Weil
pairing is not defined otherwise, and more importantly
when l|q, the l-part DLP is solved by the obvious ex-
tension of [22], [26], [30] in polynomial time; the third
one is reasonable from the result by Balasubramanian
and Koblitz (See Remark 1 in Sect. 2).

Also, as before, we use the following notation: P is
a base point with order l (Thus, E(F q)[l]=〈P 〉 ∼=Z/l.);
k is a positive integer such that E[l] ⊂ E(F qk). If
we are interested in the minimum k such that E[l] ⊂
E(F qk), see Proposition 2 in Sect. 2.

Let Nk be the number of F qk -rational points on
E, and E(F qk)l the l-part of E(F qk), i.e.

Nk = #E(F qk), E(F qk)l =
⋃
i≥1

E(F qk)[li],

and let d = vl(Nk) denote the largest integer such that
ld|Nk.

For supersingular elliptic curves, the method for
finding a “good” l-torsion point is considered based on
the fact that E(F qk) ∼= Z/cl × Z/cl, where c is some
constant and determined based on the class of supersin-
gular elliptic curves. For ordinary (non-supersingular)
elliptic curves, the similar method is presented in [10]
assuming some condition on the group structure of
E(F qk) in order to work efficiently.

On the other hand, one might easily come up with
the following method: pick a point V ∈ E(F qk)l ran-
domly using the map [Nk/l

d], and compute its order,
say lt. Then we have Q = [lt−1]V ∈ E[l]. However,
if we consider the case that E(F q)l ∼= Z/lr (r ≥ 2)
and E(F qk)l ∼= Z/lr × Z/ls with some s < r, where
l is exponential in log q, this method takes exponential
time in log q even for small k. We briefly explain the
reason. The probability that the order of V is lr is
ϕ(lr)ls/lr+s = lr−1+s(l − 1)/lr+s = 1− 1/l, where ϕ is
the Euler function. If V has order lr, then, Q = [lr−1]V
is in 〈P 〉, so that el(P,Q) = 1. Thus, the probability
of obtaining a “good” l-torsion point is less than 1/l.
Therefore, this means that the expected number of it-
erations is at least l. Since l is exponential in log q, it
is exponentially large.

The key idea commonly seen in these methods is
to use constant maps Z ⊂EndF

qk
(E) in a suitable way,
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where EndF
qk
(E) is the ring of endomorphisms of E

defined over F qk . In addition to this idea, by using
the q-th power Frobenius map, we propose a method
which finds a “good” l-torsion point. It will turn out
that our method works efficiently without assuming any
condition on the group structure of E(F qk), i.e. for the
general case.

Before giving a method of finding a “good” l-
torsion point, we analyze the group structure E(F qk).
If an elliptic curve E is supersingular, it is explicitly
given in [24]. Thus, what remains to be investigated is
the ordinary (non-supersingular) case.
Theorem 1†: Let E be an ordinary elliptic curve
over F q and l an odd prime number. Suppose that
vl(#E(F q)) = r ≥ 1 and that l � |q−1, l � |q. For a given
positive integer k, we set η := vl(k) and ω := vl(qk−1).
Then, we have

E(F qk)l � Z/lr+η × Z/lδ,

where δ is given as follows: if ω < η + r, then δ = ω; if
ω > η + r, then δ = η + r; and if ω = η + r, then δ is
some positive integer with δ ≥ ω(= η + r).
Proof of Theorem 1. The case of k = 1 is trivial. We
assume k ≥ 2 in the sequel.

Let φ be the q-th power Frobenius map and
DZ[φ] denote the discriminant of the ring Z[φ]. Since
l|#E(F q) = q + 1 − t and l � |q − 1, we have DZ[φ] =
t2 − 4q ≡ (q + 1)2 − 4q ≡ (q − 1)2 �≡ 0 mod l. Thus,
l does not divide the conductor of O in OK , where
O =EndFq

(E) =EndF̄q
(E) (note that the last equality

follows since E is ordinary), and OK is the maximal
order of K = Q ⊗ Z[φ].

Now, we consider the ideal decomposition of lOK

in OK . The minimal polynomial of φ is X2 − tX + q ∈
Z[X] and it decomposes as

X2 − tX + q ≡ (X − 1)(X − q) mod l. (2)

Since q �≡ 1 mod l, Eq. (2) has two distinct roots.
Therefore, we see that l splits completely in OK and
that the prime ideal decomposition of lOK in OK is
lOK = LL̄, where L = lOK + (φ− 1)OK .

Let (OK)L and (OK)L̄ be the localizations of the
ring OK at primes L and L̄, respectively. Also, let
vL and vL̄ be the normalized discrete valuations with
respect to L and L̄, respectively.

We claim that if vL((φk−1)OK) = a and vL̄((φk−
1)OK) = b, then E(F qk)l � Z/la × Z/lb. In fact, let
N be the norm, then N(φk − 1) = #E(F qk). Thus,
vl(#E(F qk)) = a + b is obtained. On the other hand,
E[lc] ⊂ E(F qk) if and only if φk − 1 is divisible by
lc in O (see [20, Lemma 1]). Putting c := min(a, b),
we have E[lc] ⊂ E(F qk) and E[lc+1] �⊂ E(F qk) since
l does not divide the conductor of O. Thus, we have
E(F qk)l � Z/la × Z/lb.

From the assumption that vl(#E(F q)) = r and
l � |q − 1 (this implies E[l] �⊂ E(F q)), it follows that

vL(φ− 1) = r and (3)
vL̄(φ− 1) = 0. (4)

If we set

η := vL(φk − 1)− r and
δ := vL̄(φ

k − 1),

we can write

E(F qk)l � Z/lr+η × Z/lδ.

In the sequel, we evaluate η and δ in the discrete valu-
ation rings (OK)L and (OK)L̄, respectively.

First, we evaluate η. Let π be some prime element
with vL(π) = 1. Then, we can write φ in the form

φ = 1 + uπr,

(See (3)), where u is some unit in (OK)L. Thus, we
have

φk = (1 + uπr)k = 1 + kπru+
k∑

i=2

(
k

i

)
πriui. (5)

Here, we apply the following lemma.

Lemma 1: Let k be an integer no less than two and
l an odd prime number. Then, for any positive integer
w such that 2 ≤ w ≤ k,

vl(
(
k

w

)
)− vl(k) + (w − 1) > 0.

Proof. Considering the l-adic expansion of w, we can
write w uniquely in the form w =

∑m
i=0 wil

i with 0 ≤
wi < l and wm �= 0. Since vl(w!) =

∑
i≥1�w/li�, we

have vl(w!) =
∑m

i=1(
∑i−1

j=0 l
j)wi. Thus,

vl(
(
k

w

)
)− vl(k) + w − 1

= vl((k − 1)(k − 2) · · · (k − w + 1))
− vl(w!) + w − 1

= vl((k − 1)(k − 2) · · · (k − w + 1))

+
m∑

i=1

(li −
i−1∑
j=0

lj)wi + (w0 − 1).

Clearly, li −
∑i−1

j=0 l
j > 0 for any i ≥ 1. From the

assumption that l is an odd prime and w ≥ 2, it follows
that

m∑
i=1

(li −
i−1∑
j=0

lj)wi + (w0 − 1) > 0.

Therefore, the proof is completed. ✷

Now, we are back to the proof of Theorem 1. From
†Recently, Saito and Uchiyama [21] reported a relevant

result to Theorem 1.
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Lemma 1, it follows that

vL(kπru) = vl(k) + r

< vl(
(
k

i

)
) + ri ( by Lemma 1)

= vL(
(
k

i

)
πriui)

for any i ≥ 2. Therefore, we have

vL(φk − 1) = vL(kπru) = vl(k) + r,

from which we obtain η = vl(k).
Next, we evaluate δ. We discuss it in the ring

(OK)L̄. Since φφ̄ = q and φ̄ is a unit (note that l � |q),
we have

φk − 1 =
qk

φ̄k
− 1 =

qk − φ̄k

φ̄k
.

Therefore, vL̄(φk − 1) = vL̄(qk − φ̄k).
Let π′ be some prime element with vL̄(π′) = 1.

From (3), we can write φ̄ in the form

φ̄ = 1 + u′(π′)r

for some unit u′ ∈ (OK)L̄. Therefore, we obtain

qk − φ̄k = (qk − 1)− ku′(π′)r

−
k∑

i=2

(
k

i

)
(u′)i(π′)ri, (6)

and for any i with 2 ≤ i ≤ k,

vL̄(
(
k

i

)
(u′)i(π′)ri)− vL̄(ku

′(π′)r)

= (vl(
(
k

i

)
) + ir)− (vl(k) + r)

= vl(
(
k

i

)
)− vl(k) + (i− 1)r

≥ vl(
(
k

i

)
)− vl(k) + (i− 1)

> 0 (by Lemma 1).

Thus,

vL̄(ku
′(π′)r) = vl(k) + r < vL̄(

(
k

i

)
(u′)i(π′)ri)

for any i with 2 ≤ i ≤ k. Set ω := vl(qk−1). Then from
the formula (6), if ω < η+r (note that η = vl(k)), then
δ = vL̄(φk −1) = ω; if ω > η+r, then δ = vL̄(φk −1) =
η + r; if ω = η + r, then δ = vL̄(φk − 1) ≥ ω = η + r.
Thus, the proof is completed. ✷

3.1 Proposed Method

In this subsection, we actually propose a method which
efficiently finds a “good” l-torsion point. Since the

method for the supersingular case is already given in
[17], we forcus on the ordinary case. The following is
our proposed method for ordinary elliptic curves.

Let k be the minimum positive integer such that
E[l] ⊂ E(F qk), or equivalently the minimum k such
that l|qk − 1. (See Proposition 2 in Sect. 2.)
Procedure:

Step 1: Compute N1 =#E(F q) and r = vl(N1).
Step 2: Compute Nk =#E(F qk) from N1, using the

Weil conjecture.
Step 3: Compute d = vl(Nk) and s := d − r. If r > s,

go to Step 5.
Step 4: (the case of r ≤ s)

(4-1): Pick Q ∈ E(F qk) randomly.
(4-2): Compute Q′ := [Nk/l

r+1]Q ∈ E[l].
(4-3): Compute α := el(P,Q′). If α = 1, go to

Step (4-1). Otherwise, go to Step 6.
Step 5: (the case of r > s)

(5-1): Pick Q ∈ E(F qk) randomly.
(5-2): Compute Q′ := (φ− 1) ◦ [Nk/l

r+1]Q ∈ E[l].
If Q′ = O, then go to Step (5-1).

(5-3): Compute α := el(P,Q′).
Step 6: Store Q′ and α.

3.2 Validity of the Proposed Method

In this subsection, we give explanation of each step in
the proposed method.

In Step 1, we compute N1 in polynomial time in
log q using the Schoof-Elkies-Atkin algorithm and its
variants [1], [2], [4]–[7], [11], [14], [15], [19], [25].

In Step 2, we can compute Nk as follows: compute
ti (1 ≤ i ≤ k) recursively by ti = t1ti−1 − qti−2, t0 = 2,
t1 = q+1−N1 (note that t1, the trace of the q-th power
Frobenius map, is already computed in the course of
computing N1), then we obtain Nk = qk + 1− tk.

In Step 3, in order to compute d and s, we set ci :=
ci−1/l, c0 := Nk/l

r+1. If cm is the first number that
is not an integer, d = m + r and s = m are obtained.
In this step, we can know the group structure E(F qk)l:
since vl(k) = 0, by Theorem 1 we have

E(F qk)l = 〈S〉 × 〈T 〉
� Z/lr × Z/ls (1 ≤ r, 1 ≤ s)

with 〈P 〉 ⊂ 〈S〉,
where S and T are generators of orders lr and ls, re-
spectively.

In Step 4, we assume that r ≤ s. If r = s, then
E(F qk)l ∼= Z/ls × Z/ls. The image of the multipli-
cation by Nk/l

r+1 map [Nk/l
r+1] = [ls−1] ◦ [Nk/l

d] :
E(F qk) → E(F qk) is E[l]. Since the map [Nk/l

r+1]
is an abelian group homomorphism, the uniform dis-
tribution on E(F qk) induces the uniform distribution
on E[l]. Thus, if we pick Q ∈ E(F qk) randomly, we
can get Q′ = [Nk/l

r+1]Q ∈ E[l] randomly. Then the
success probability in Step (4-3) (i.e. the probability of
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not going back to Step (4-1)) is

#E[l]−#〈P 〉
#E[l]

=
l2 − l

l2
= 1− 1

l
= 1− o(1),

where o(1) → 0 as l → ∞. Thus, the expected number
of iterations is 1 + o(1).

If r < s, the image of the multiplication by
[Nk/l

r+1] map [Nk/l
r+1]: E(F qk) → E(F qk) is iso-

morphic to Z/l and Im[Nk/l
r+1] �= 〈P 〉. Thus, the

success probability in Step (4-3) is

#(Z/l)×

#(Z/l)
=
l − l

l
= 1− 1

l
= 1− o(1).

Thus, the expected number of iterations is 1 + o(1).
In Step 5, we assume that

E(F qk)l = 〈S〉 × 〈T 〉
� Z/lr × Z/ls (1 ≤ s < r)

with 〈P 〉 ⊂ 〈S〉,

where S and T are generators of orders lr and ls, re-
spectively. In order to explain the validity of this step,
we apply the following theorem:

Theorem 2: We assume that

E(F q)l = 〈S〉 ∼= Z/lr (thus, 〈P 〉 = 〈lr−1S〉)

E(F qk)l=〈S〉×〈T 〉 ∼= Z/lr×Z/ls (1 ≤ s ≤ r),

where S and T are generators of orders lr and ls, re-
spectively. Consider the map:

f = (φ− 1) ◦ [ls−1] : E(F qk) −→ E(F qk).

Then, we have Im(f |E(F
qk )l

) ∼= Z/l and Im(f |E(F
qk )l

)
�= 〈P 〉.
Proof. Let Tl(E) be the l-adic Tate module of E and
πr : Tl(E) → E[lr] the canonical projection. Let {Ŝ, Û}
be a basis of Tl(E) over Zl such that S = πr(Ŝ), U =

πr(Û) and T = lr−sU . Let Mφ =
(
a b
c d

)
be the

representation matrix of φ with respect to the basis
{Ŝ, Û} of Tl(E). Since φ(S) = S, we have a ≡ 1 mod lr

and c ≡ 0 mod lr. Also, detMφ = q gives d ≡ q mod lr.
Clearly, (φ − 1)(ls−1S) = O. And (φ − 1)(U) =

(b mod lr)S + (q − 1 mod lr)U , from which we have

(φ− 1)(ls−1T )
= (b mod l)lr−1S + (q − 1 mod l)ls−1T.

Since l � |q − 1, it follows that (q − 1 mod l)ls−1T �= O.
Therefore, the proof is completed. ✷

Since (φ−1)◦ [Nk/l
r+1] = (φ−1)◦ [ls−1]◦ [Nk/l

d],
the image of the map (φ − 1) ◦ [Nk/l

r+1] : E(F qk) →
E(F qk) is isomorphic to Z/l and it is different from
〈P 〉 by Theorem 2. Thus, the success probability in

Step (5-2) (i.e. the probability of not going back to
Step (5-1)) is

#(Z/l)×

#(Z/l)
=
l − 1
l

= 1− 1
l
= 1− o(1).

Thus, the expected number of iterations is 1 + o(1).

3.3 Theoretical Analysis of the Proposed Method

In this subsection, we estimate the success probability
and running time of the proposed method.

The success probability in each step can be esti-
mated as follows:

1. the success probability in Step 4 is 1 − 1/l. (See
Sect. 3.2.)

2. the success probability in Step 5 is 1 − 1/l. (See
Sect. 3.2.)

For the running time, we assume that the usual
multiplication method is used, so that multiplying two
elements of length N takes O(N2) bit operations. The
running time of the following major computation can
be estimated as follows:

1. Computation of #E(F q) using the Schoof-Elkies-
Atkin algorithm and its variants (in Step 1): this
procedure requires O(log6 q).

2. Picking a random point on E(F qk): this procedure
requires O(k3 log3 q).

3. Computation of Q′: computation of Q′ in Step (4-
2) requires
O((logNk)(k log q)2) = O((k log q)(k log q)2) =
O(k3 log3 q). Computation of Q′ in Step (5-2) re-
quires
O((logNk)(k log q)2+(log q)(k log q)2) = O(k3 log3

q + k2 log3 q) = O(k3 log3 q).
4. Computation of the Weil pairing el(P,Q′): this

procedure requires O(k3 log3 q+(log l)(k log q)2) =
O(k3 log3 q + k2 log3 q) = O(k3 log3 q).

Also, each procedure except the above requires at most
O(k3 log3 q). Therefore, our method is completed in
probabilistic polynomial time in k log q, more precisely,
O(k3 log3 q + log6 q).

4. Concluding Remarks

In this paper, we have proposed a method which effi-
ciently finds an l-torsion point needed to evaluate the
Weil pairing in the MOV reduction for ordinary ellip-
tic curves under l � |q − 1. Our method is completed
in probabilistic polynomial time in k log q, more pre-
cisely O(k3 log3 q) if #E(F q) is given beforehand and
otherwise O(k3 log3 q+log6 q), where k is the minimum
positive integer with qk ≡ 1 mod l. This seems to be
asymptotically optimal, since it is equal to that of ran-
domly picking a point in E(F qk), which seems to be
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needed in any situation, except for computing #E(F q).
Also, our method is completed in probabilistic

polynomial time in log q whenever k is small enough
to solve the DLP in F ∗

qk in subexponential time in
log q. As a result, we can obtain the MOV algorithm
which works under l � |q − 1 for ordinary elliptic curves
in subexponential time in log q if the DLP in F ∗

qk is
solved in subexponential time in log q. Concerning
the condition on k under which the DLP in F ∗

qk is
solved in subexponential time in log q, in [3], [13] it was
pointed out that one needs k = O((log q)2−ε), where
ε is any positive constant, under the currently opti-
mistic assumption that the DLP in F ∗

qk can be solved
in time Lqk [1/3,−] = exp(O((log qk)1/3(log log qk)2/3))
(See [23]).

In addition, our contribution allows us to finally
draw the conclusion that the MOV reduction is as pow-
erful as the FR reduction under l � |q − 1 not only from
the viewpoint of the minimum extension degrees of the
base field but also from that of the effectiveness of al-
gorithms.
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Théor. Nombres Bordeaux, vol.7, pp.255–282, 1995.

[20] H.G. Rück, “A note on elliptic curves over finite fields,”
Math. of Comp., vol.49, no.179, pp.301–304, 1987.

[21] T. Saito and S. Uchiyama, “A remark on the MOV algo-
rithm,” IEICE Technical Report, ISEC99-27, July 1999.

[22] T. Satoh and K. Araki, “Fermat quotients and the poly-
nomial time discrete log algorithm for anomalous elliptic
curves,” Commentarii Math. Univ. St. Pauli, vol.47, no.1,
pp.81–92, 1998.

[23] O. Schirokauer, D. Weber, and T. Denny, “Discrete loga-
rithms: The effectiveness of the index calculus method,”
Proc. ANTS-II, Lecture Notes in Computer Science,
vol.1122, pp.337–362, Springer-Verlag, 1996.

[24] R. Schoof, “Nonsingular plane cubic curves over finite
fields,” J. Combinatorial Theory, Series A, vol.46, pp.183–
211, 1987.

[25] R. Schoof, “Counting points on elliptic curves over finite
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