
0018-9162/00/$10.00 © 2000 IEEE2 Computer

Parasitic
Authentication To
Protect Your E-Wallet

T
he electronic wallet (e-wallet) has received
much attention lately. It promises to consol-
idate many of the personal items carried
around by the modern individual: wallet,
phone, pager, diary, and keys. In fact, Nokia’s

9001 Communicator already combines the phone,
pager, and diary into one unit.

The question arises, however, of how to provide user
authentication. Traditional protection mechanisms
require users to enter a PIN or password every time
they wish to perform a transaction. More sophisticated
techniques include using a biometric device, such as a
fingerprint scanner, which is integrated into the e-wal-
let. Both of these options, have disadvantages.
Usability problems due to authentication are a signif-
icant barrier to the adoption of e-wallets.

In this article, we present some novel uses of exist-
ing protocols whereby a concealable, wireless, and
portable device can temporarily act as an authentica-
tion proxy for the user. The e-wallet then becomes a
parasite—feeding off the small device for required
authentication and identification information.

E-PURSES AND AN E-ID?
The traditional wallet provides four main functions

for the user: It holds identification information such
as a driver’s license, facilitates two distinct payment
systems (cash and credit), and acts as a repository for
temporary tokens such as bus tickets.

There is little doubt that cunningly engineered cryp-
tographic protocols can efficiently perform these wal-
let-type functions, but can they add value? Indeed,
e-wallet and smart-card developers face a daunting

hurdle in convincing consumers to adopt an electronic
purse.

From the consumer’s point of view, the credit card
is an extremely attractive payment mechanism. In most
legal jurisdictions, the onus is on the merchant to prove
that a disputed transaction was made, thus placing
very little risk with the consumer. Cash is a highly reli-
able payment system that has worked for centuries.
How can the e-wallet compete?

The verification problem
Users expect some mechanism to prevent a thief

from using their e-wallet.1 This has proven quite dif-
ficult to achieve. The most obvious solution requires
the user to perform some kind of identification proto-
col with the e-wallet before each transaction.
Traditionally, the user must divulge some secret such
as a password or PIN. More recent innovations have
used biometrics.

Passwords and PINs
Neither passwords nor PINs are an ideal solution:

Not only are they a weak authentication measure, they
are also frequently misused.2,3 For example, banks
sometimes tell their users to use a word as their PIN
since an ATM keypad has letters associated with the
numbers. We extracted the four-letter words from our
/usr/dict/words file, encoded them as PINs
according to the keypad on a commercial ATM, and
eliminated duplicates. From 25,486 words, we
extracted 2,207 four-letter words, which reduced to
1,411 different PINs. So our keyspace ended up being
about 15 percent of its original size.

How can an e-wallet, a handheld computer that consolidates a user’s
personal items, stores vital information, and facilitates financial
transactions, guarantee security without being cumbersome? Parasitic
Authentication offers handheld computers security without reducing
convenience.

Tim Ebringer
Peter Thorne
University of
Melbourne

Yuliang
Zheng
Monash University

C O V E R F E A T U R E

This kind of security fault, where users unwittingly
weaken a theoretically secure system, flows directly
from poor usability aspects of PIN authentication sys-
tems. Formal security standards such as ITSEC assume
protocols are rigorously followed. For example, a pro-
tocol for choosing a PIN p might specify that p ∈R Z:
0000 ≤ p ≤ 9999, whereas humans might not be quite
so random in their PIN selections. Ross Anderson
argued that the failure of many real-world cryptosys-
tems stems from this kind of flaw.4

Both PINs and passwords suffer from the fact that an
attacker may learn the secret by observation. But per-
haps the biggest problem with PINs and passwords is
that entering them into a small, portable device is awk-
ward. On a dark, stormy night, a user trying to pay his
ferry fare home by tapping a PIN into a small device
may find himself with his short-circuited e-wallet splut-
tering in a puddle, the ferry disappearing into the gloam.
This failure has nothing to do with the correctness of
the protocol, and is primarily an engineering problem.

Biometrics
A more effective method might be to integrate a bio-

metric authentication device, such as a fingerprint scan-
ner, into the e-wallet. The e-wallet would not perform
a transaction unless a valid fingerprint is scanned.

Such a scheme raises two security concerns. First,
a sophisticated and determined attacker could bypass
the fingerprint scanner. Once perfected, knowledge of
the bypass technique would spread to hacker com-
munities with dazzling speed. As an example, the Sony
Playstation was initially engineered so that games
could not be duplicated, yet services are widely avail-
able to modify the original hardware so that it accepts
pirated games. Also, unlike passwords, it is impossi-
ble to use a hash of a biometric for verification pur-
poses because a scanned biometric image will always
be slightly different. Second, and perhaps more impor-
tantly, users feel uncomfortable storing a biometric—
something that makes them unique—on a computer,
especially on a portable computer. Many users feel
that a thief could steal their “identity” and masquer-
ade as the user—theoretically forever—since there is
no way to revoke a biometric.

PARASITIC AUTHENTICATION
With parasitic authentication users can temporar-

ily delegate their responsibility for authorizing a trans-
action to a small, portable secondary device, carried
and concealed by the user. As long as the e-wallet can
communicate with the secondary device and verify
that it is indeed the same secondary device that was
involved in the setup process, the e-wallet acts as if it
has the necessary authorization to complete a trans-
action. Thus, the continued proximity of the sec-
ondary device to the e-wallet is the source of

authentication. Existing identification proto-
cols ensure that secondary devices that do not
belong to the owner of the e-wallet cannot con-
fuse or spoof the e-wallet. This is akin to a con-
cept intimately familiar to most computer users:
sessional authentication.

Sessional authentication
In a database, transactions are atomic: Either

all the operations in a transaction are reflected
properly in the database, or none are. In such sit-
uations, it is both feasible and necessary to
authenticate every transaction. Conversely, when
a user enters data at a computer terminal, every
keystroke constitutes a transaction, yet authen-
ticating every keystroke would be absurd—and
recursively impossible for passwords. The sys-
tem assumes that the user who logs in is the same
user who presses the keys until she chooses to
log out. The authentication lasts for a session, and the
user decides the length of the session.

We use this approach as a basis for a more usable
system for authorizing e-wallet-based transactions.
The user initiates a session with the e-wallet and a sec-
ondary device, authorizing the e-wallet to complete
transactions during the session. The proximity of the
secondary device to the e-wallet sustains the session.

A session could end in several ways. The e-wallet
could end the session itself after a certain time period
has elapsed. Alternatively, the e-wallet might end the
session after a certain amount of money was spent,
thereby capping the possible losses. Another option
might be for the user to end the session by using a
panic button. But most important, the session ends
when the e-wallet and secondary device cannot com-
municate because of physical separation beyond their
communication range. Choosing more conservative
ways to end the session better protects the user in the
event that both the e-wallet and the secondary device
are lost simultaneously but decreases usability since
the user must begin a new session to use the e-wallet.

Expected economic and security benefits
Such a system offers two major benefits: usability

and security.
Usability. The user no longer has to enter a password

or PIN or perform any other kind of interactive secu-
rity procedure to authorize each transaction. Once
the user initiates the session, the secondary device
handles the interactive security procedures on the
user’s behalf.

Security. The user does not have to store a biomet-
ric yet is still protected against loss of the e-wallet. To
compromise security, the user must lose both the e-
wallet and the secondary device simultaneously. If the
chances of losing your e-wallet are p, given that the

October 2000 3

With parasitic
authentication users

can temporarily
delegate their

responsibility for
authorizing a

transaction to a
small, portable

secondary device,
carried and

concealed by
the user.

4 Computer

secondary device is small and concealable and
provided sensible precautions are taken, the
chances of losing the secondary device should
be q, where q < p. We argue that q < p because
the secondary device need not be handled or
produced for the duration of the session (which
is likely to be a day), and should be similar to an
item of apparel—like an earring or necklace—
that is not removed for the entire day. If these
precautions are taken, then the chance of los-

ing both the e-wallet and the secondary device simul-
taneously should be considerably less.

Secondary device characteristics
The problem is essentially one of providing a conve-

nient, fast, mobile and secure method of performing
entity identification. Entity identification techniques
can be divided into three main categories, depending
on whether the security is based on something known,
something possessed, or something inherent.5 Identifi-
cation measures based on something known, such as
passwords or PINs, are difficult for the user to remem-
ber and cumbersome to enter. Measures based on some-
thing inherent, such as fingerprints, are intrusive and
impossible to revoke. This leaves us with protocols
based on something possessed. In effect, we are
exchanging something known for something possessed.

The e-wallet becomes a parasite to the transpon-
der—feeding off it for identification. In fact, the
authentication device can now be the host to many
different parasites. We envision it as having the fol-
lowing physical characteristics.

Miniature. The authentication device must be small
enough to be unobtrusive and hidden somewhere in
the user’s apparel.

Self-powered. The authentication device must carry
enough power, or be able to draw power from an
energizing electric field, so that it can function for
extended periods of time away from a power source.
In recent years, battery technology has advanced
remarkably, as evidenced by the extended battery life
of tiny mobile phones.

Disposable. Loss of the authentication device should
not be a major catastrophe. At worst, simultaneous
loss of both the e-wallet and the authentication device
would mean a small window of time in which a user’s
e-wallet was vulnerable to abuse. No information that
an attacker might find extremely useful would be on
the authentication device. Clearly, it would also be
highly advantageous for the authentication device to
be inexpensive.

Wireless. To keep the authentication device hidden,
and not inconvenience the user, it must communicate
wirelessly.

We have not yet described the authentication
device’s computational abilities because there are cer-

tain engineering trade-offs in its design. As the device’s
computational power increases, it can perform
increasingly sophisticated identification routines.
However, it also becomes more complex, needs more
power, and correspondingly becomes less portable and
user friendly. Realistically, we reach a limit where the
authentication device has enough computational
power to satisfy the initial design goals, beyond which
additional complexity does not offer significantly
increased security.

Limitations
Attackers can subvert parasitic authentication by

using reverse engineering and modifying the e-wallet
to ignore the results of the authentication check. There
are ways to resist this, such as splitting crucial infor-
mation between the e-wallet and the transponder (and
even the merchant), but our goals were primarily to
ensure low power and cost in the transponder, and,
above all, useability. All the protocols we suggest are
at least as secure as passwords. We avoided public-
key operations because they are computationally
expensive, would raise the cost of the transponder,
and would delay its response time.

Alternative techniques for heightening security
might include marking the money on the e-wallet so
that it is only valid for the session for which it was ini-
tialized. Although this does not necessarily prevent
the reverse-engineering attack, it at least puts an upper
bound on the window of time in which the attack
must be performed. This, however, is an aspect of the
payment protocol, which takes advantage of the ses-
sional nature of parasitic authentication. Because we
are only offering a user-friendly framework for
approving transactions and saying nothing about the
nature of the transactions themselves, we will not spec-
ulate about what additional steps the payment proto-
col might use to increase security.

Deja vu?
The idea of parasitic authentication is partly an evo-

lution of ordinary wireless authentication, which has
been part of access-control mechanisms for some time
now. There are significant differences, however; We
designed parasitic authentication with low power and
portability in mind; in most traditional wireless authen-
tication mechanisms, the device doing the authentica-
tion is immobile. The service that the parasitic
authentication system provides also differs from that
expected from access-control systems, whose primary
responsibility is to prevent unauthorized access. A sec-
ondary consideration is to provide the service level
appropriate to the authentication level of the individ-
ual. For parasitic authentication, the normal mode of
operation is not to challenge the access right, but to
confirm authentication in a symbiotic relationship.

The idea of parasitic
authentication is

partly an evolution of
ordinary wireless
authentication.

SYSTEMS
Several systems are suitable for transponders, each

offering a different level of computational power. The
first is a completely passive transponder that can only
return a serial number. The second requires very little
computational ability but can store values, and sub-
sequently retrieve and transmit them. The third is a
host that, in addition to the capabilities described
above, can compute a one-way hash function. The
fourth is a transponder that can perform modular
arithmetic. Table 1 compares and summarizes all four
systems.

Polyrandom collections
Some of the systems we propose both assume and

require the existence of one-way functions.
Polyrandom collections from long bit strings to short
bit strings constitute very good hash functions.6 But to
ease interoperability and implementation, we suggest
using the SHA-1 hash function, which maps a string
of arbitrary length to a 160-bit string in a one-way
manner {0,1}k → {0,1}160.

We assume the existence of a one-way, polyno-
mial time-computable hash function, which we refer
to as H.

Schnorr identification protocol
Our final system uses an authentication protocol

that allows, in real time, one party (the verifier) to
know that the identity of another (the claimant) is as
declared. We have selected Schnorr because of the
small computation and communication overhead it
introduces, but another authentication scheme such
as Fiat-Shamir7 or Guillou-Quisquater8 could easily
be used, depending on exact requirements.

System 1: A passive, RFID-type transponder
Here we propose using a multibit Radio Frequency

Identification (RFID) transponder as the host.

Although we are not using anything particularly
sophisticated cryptographically, this system offers the
equivalent security of passwords, should be inexpen-
sive, and should effectively protect users from their
wallets being abused if they misplace them.

If we build reader capabilities into the e-wallet, we
can configure it to use a particular transponder. This
would involve telling the e-wallet to accept a new
transponder—perhaps by entering a password.
Although we try to avoid using passwords, users
would need to enter this particular password far less
frequently than if we used passwords entirely through
our system. The e-wallet would subsequently broad-
cast a query to which the nearby transponder would
respond with its ID string. For subsequent wallet use,
the e-wallet would broadcast a query and wait for the
expected ID string to be returned.

Setup. An individual purchases a transponder hav-
ing the random and unique ID string I, and places it
near, or plugs it into, the e-wallet. The individual
instructs the e-wallet to accept a new transponder by
entering a password. The e-wallet broadcasts a query
and receives the string I from the nearby transpon-
der, which it commits to memory. The individual
drops the transponder into a shoe and takes the e-
wallet shopping.

Operation. The user initiates a secure electronic trans-
action, for example, with the e-wallet. Before sending
order and payment information to the merchant, the
e-wallet broadcasts a query to the transponder and
verifies that it returns the string I. The SET protocol
resumes, and order and payment information go to
the merchant, as illustrated in Figure 1.

Now let’s say the user accidentally leaves his e-wal-
let in the shop. The merchant unfortunately takes the
e-wallet and tries to crank a few extra SET transac-
tions through it. The e-wallet, before it sends order
and payment information, first broadcasts a query.
Because the transponder is still in the user’s pocket,

October 2000 5

Table 1. Summary of protocols used between the e-wallet and transponder, where H represents a polynomial time-computable hash
function; log2 R[j] is the number of bits in the request number; and r is the random number that the e-wallet generates as a challenge.

Computational
Number complexity Security Efficiency Cost

1 None Provides casual security, approximately No computation, minimal communication Less than $1
equivalent to passwords, but will not thwart
a determined attacker

2 Store, retrieve, Secure if used correctly, but vulnerable to Computation: only store and retrieve About $10
and transmit data denial-of-service attacks. May also run-out required. Communication: only log2

of authentication replies at inconvenient R[j] + 160 bits need to be transferred.
times if not recharged

3 Must be able to Secure. Will never run out of authentication Computation: only a single block of a Needs memory,
compute H data. hash function needs to be computed. power supply,

Communication: log2 r + 160 bits must and
be transferred. microcontroller

4 Modular arithmetic Secure and offers flexibility with how the Computation: Needs modular exponentiation As in item 3,
security is implemented. (slow), but this can be precomputed elsewhere. but may need

The computation the transponder needs on more powerful
the fly is quite modest. microcontroller
Communication: 712 bits must be transferred.

6 Computer

the wallet cannot get the return value I and therefore
aborts the transaction.

Efficiency and security. This passive transponder is inef-
fective against a more sophisticated adversary. If the
merchant from the previous example possessed her own
receiver, it could have also picked up the return value
from the transponder and spoofed the return signal.

This system provides only casual protection against
an attacker, but it is at least as secure as password pro-
tection. If a password were entered, the merchant
might be able to observe what was entered, either by
carefully watching the user or using a hidden camera.

Another way around the transponder check is to
hack the software within the e-wallet itself. Modifying
the software to ignore the results of an authentication
check, while beyond the abilities of a casual computer
user, is easy for a specialist with the right tools. The
difficulty in making this modification on a handheld
computer depends to a large extent on the device
implementation. Thus, although subverting the
transponder in this manner is possible, whether it
would become common practice is unknown.

This system offers users the equivalent of password
protection, while significantly increasing the usability
and efficiency of entering authentication information
into their e-wallets. It is not trivial for a thief to force
the wallet to perform a transaction in the absence of
the user and the transponder.

Moreover, the transponder is certainly disposable—
such a device should cost less than $1.

System 2: A transponder with memory
Assume the transponder can store an array of hash

values—for example, 10,000 160-bit hash values in
an array R[0], …, R[9999]—and that it can retrieve
and transmit any of these values on demand.

Setup. The user brings the e-wallet within range of
the user’s transponder and out of range of any other
transponders, or else, more securely, plugs the

transponder into the e-wallet. The user then enters
her PIN into the e-wallet to authorize transfer of
authorization responsibilities from herself to the
transponder. The e-wallet generates a secret, random
key k. The e-wallet generates H(k, 0), H(k, 1), …,
H(k, 9999) and transmits these values to the
transponder, where they are stored in the array.

Operation. The e-wallet wants authorization to make
a transaction. The e-wallet requests R[j] from the
transponder. It checks that R[j] equals H(k, j). The
next time it wants authorization, the e-wallet requests
R[j + 1].

Efficiency and security. This system, if implemented
carefully, is computationally secure. However, the
transponder clearly must not transmit any values
more than once. Enforcing this policy, especially in
an environment where many e-wallets are requesting
values of R[j], could result in the transponder rapidly
running out of values. In this case, the transponder
needs to recharge with new hash values based on a
new key knew. There are several ways to reduce the
danger of running out of responses. For example, the
e-wallet could initially give the transponder a unique
identification string that the e-wallet must transmit
before requesting a hash value in order for the
transponder to respond, but this would do nothing
to stop a denial-of-service attack.

Race conditions might develop if several e-wallets
are up to the same R[j + 1] value and are all request-
ing authorization. This might result in the other e-wal-
lets accidentally and repeatedly using the hash values
stored in foreign transponders.

Assuming the hash function used is SHA-1, if the
transponder has an array of size M, the amount of
data that needs to be transferred during setup is 160M
bits. During a transaction, only log2 R[j] + 160 bits
need to be transferred.

Finally, performing a hash in hardware is slightly sim-
pler because the data that is being hashed is known to
be less than 448 bits. Thus SHA-1 treats this as a sin-
gle block of data. The hardware does not have to cope
with producing hashes for data of arbitrary lengths.

System 3: A transponder that can
compute a one-way hash function

In this model, we give the transponder slightly more
computational power by letting it perform the hash
algorithm H. We use the secret prefix technique devel-
oped by the Internet Security and Privacy Working
Group (SPWG) for use in the Simple Network
Management Protocol.9

Setup. The user brings the e-wallet within range of
her own transponder and out of range of any other
transponders or else temporarily connects the e-wal-
let to the transponder. The user enters her password
into the e-wallet to authorize transfer of authoriza-

 User
agreement

5 Begin e-cash

transaction

1 Payment request

4
RFID

respo
nse

3
RF

ID
re

qu
es

t

2

Figure 1. Intended
flow of usage and
authentication.

tion responsibilities from herself to the transponder.
The e-wallet generates a random key k, which it sends
to the transponder.

Operation. The e-wallet wants authorization to make
a transaction. The e-wallet generates a random num-
ber r, transmits it to the transponder, and also gener-
ates H(k, r). The transponder computes H(k, r) and
transmits this back to the host. The e-wallet checks
that the received value of the hash agrees with the
hash that it calculated itself and proceeds with the
transaction if this is true.

Efficiency and security. Unlike the passive system, this
system never runs out of replies, although the com-
plexity of performing the hash probably requires a 4-
or 8-bit microcontroller and an on-board power sup-
ply. A commercial off the shelf technology such as
Bluetooth10 can accomplish efficient and low-power
wireless communication.

When using this secret prefix system, as long as the
key is padded to the block size of the hash function
being used, the first block of the hash can be precom-
puted and the chaining variables remembered so that
you have a kind of initialization vector.11

The e-wallet must securely transmit the key to the
transponder. A simple way to enforce this security is
to require that the transponder be physically con-
nected to the e-wallet to transfer the key.

The amount of data that needs to be transferred is
quite minimal at log2 r + 160 bits.

System 4: A transponder that can
perform modular arithmetic

Modular arithmetic provides a third tier of security.
With this kind of computational power, we can use
cryptographic identification protocols such as Schnorr,
Fiat-Shamir, or Guillou-Quisquater. We chose Schnorr
for our example because of its low communications
overhead and because it minimizes computation for
the transponder.

Traditionally, Schnorr identification requires a
trusted authority (TA). This is so that Alice can iden-
tify herself to Bob, even if Bob has never met Alice
before, because Bob trusts the TA. With our system,
the e-wallet would not have gone through the setup
process with a particular transponder, so who takes
on the role of the TA?

Since the user owns, trusts, and uses the e-wallet and
transponder, the e-wallet might as well function as its
own TA. In this case, the e-wallet can choose and sub-
sequently forget the secret that the transponder will
use to identify itself as well as precomputing the accom-
panying modular exponentiations. In this case, the only
arithmetic that the transponder must perform in
response to an identification request is a modular addi-
tion and a modular multiplication. This is a very mod-
est amount of computation.

We use the e-wallet to precompute the mod-
ular exponentiations because we assume the e-
wallet has more computational power
available. However, this once again leaves the
transponder with the unattractive prospect of
running out of replies. If the transponder has
the silicon and power to perform modular
exponentiation, it can use its idle time to pre-
compute its own values.

A potential weakness with parasitic authen-
tication in general is that if attackers who get
hold of the wallet can guess the password used
to delegate authority to the transponder, they
can replace the original transponder with one
of their own. If the TA is truly a trusted third
party (such as the user’s bank), as Schnorr originally
intended, then this danger would be reduced because
the replacement transponder used by the attacker
would have to be signed by the user’s bank.

Again, the downside is that the transponder needs
to be significantly more complex so that it can gener-
ate random numbers, as well as perform modular
exponentiations. There is also an added inconvenience
if the user loses his transponder because the bank must
sign the replacement.

Setup. The TA generates or specifies two large
primes p and q such that q| (p − 1). The TA also gen-
erates α ∈ Zp with order q; a security parameter t <
40; a secure signature scheme with a secret signing
algorithm sigTA; a public verification algorithm verTA;
and a secure hash algorithm. The Digital Signature
Standard can be used for the signature algorithm and
SHA-1 for the hash. The transponder sends its ID
number a (where 0 ≤ a ≤ q−1) to the TA. The TA com-
putes v = α−a mod p and s = sigTA(v); chooses several
random values K = {k1, k2, … , kn} where 0 ≤ ki ≤ q −
1; and computes Γ = {γ1, γ2 … , γn} such that γi = αki

mod p. The TA gives s, K, and Γ to the transponder.
The e-wallet and transponder are now ready for use.

Operation. The e-wallet wants authorization to make
a transaction. It broadcasts a query to the transpon-
der for identification information. The transponder
sends the e-wallet s and γi (where i = 1 following the
setup process). The e-wallet verifies verTA(s) = true.
The e-wallet chooses a random number r, 1 ≤ r ≤ 2t

and transmits it to the transponder. The transponder
computes y = ki + ar mod q and sends y to the e-wal-
let, incrementing i. The e-wallet verifies that γ ≡ αyvr

mod p. If the congruence holds, the e-wallet goes
ahead with the transaction.

We have used the TA to precompute values of γi so
that the transponder does not have to perform a mod-
ular exponentiation.

Efficiency and security. The steps are similar to issuing
a certificate in the Schnorr identification protocol, but
we don’t require that the transponder keep its ID num-

October 2000 7

For parasitic
authentication, the

normal mode of
operation is not to

challenge the access
right, but to confirm
authentication in a

symbiotic
relationship.

8 Computer

ber a secret from the trusted authority. The TA could
theoretically impersonate the transponder, but this
makes no sense in our context because the user trusts
both devices. Attackers might extract the secret a from
the e-wallet, but if they can do that, they might as well
just hack the e-wallet so that it ignores invalid
responses from the transponder. Eavesdroppers on the
communications between the transponder and the e-
wallet gain nothing that will help them impersonate
the transponder.

This more complicated transponder—needing a
power supply, wireless communication capabilities,
memory, and some computational capabilities—will
be more expensive and less compact than the passive
device. However, the Schnorr protocol leaves us with
several implementation options.

The communication overhead is larger than in the
previous systems. The values that need to be trans-
mitted during the operation phase are γ, r, and y.

A lthough the e-wallet holds much promise in the
marketplace, key issues such as usability have
hindered its adoption. The devices we have pro-

posed, along with some novel uses of existing proto-
cols, address some crucial usability and security issues
related to using a portable e-wallet. Additional
research focuses on sharing the secret stored by the
transponder among multiple wireless cooperative
devices using secret-sharing schemes, partial digital
signatures, and proactive update of the shares. This
allows us to build a degree of loss-tolerance into the
system while retaining user privacy. This ongoing
work is the subject of a patent. ✸

Acknowledgments
This work was partly sponsored by a grant from the

Australian Research Council.

References
1. J.-P. Boly et al., “The ESPRIT Project Café,” Proc. Euro-

pean Symposium on Research in Computer Security ‘94,
Springer-Verlag, New York, 1994, pp. 217-230.

2. D. Kahn, The Codebreakers, MacMillan Publishing
Co., New York, 1967.

3. D.V. Klein, “Foiling the Cracker: A Survey of, and Impli-
cations to, Password Security,” Proc. Security Work-
shop, Assoc, Berkeley, Calif., 1990, pp. 5-14.

4. R. Anderson, “Why Cryptosystems Fail,” Proc. ACM
1st Conf. Computer and Comm. Security, ACM Press,
New York, 1993.

5. A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone,
Handbook of Applied Cryptography, CRC Press, Boca
Raton, FL, 1997.

6. O. Goldreich, S. Goldwasser, and S. Micali, “How to
Construct Random Functions,” J. ACM, Oct. 1986, pp.
792-807.

7. A. Fiat and A. Shamir, “How to Prove Yourself: Practi-
cal Solutions to Identification and Signature Problems,”
Proc. Crypto 86, Lecture Notes in Computer Science
263, Advances in Cryptology, Springer-Verlag, New
York, 1987, pp. 186-194.

8. L.C. Guillou and J.-J. Quisquater, “A Practical Zero-
Knowledge Protocol Fitted to Security Microprocessor
Minimizing Both Transmission and Memory,” Proc.
Eurocrypt 88, Lecture Notes in Computer Science 330,
Advances in Cryptology, Springer-Verlag, New York,
1988, pp. 123-128.

9. J. Galvin, K. McCloghrie, and J. Davin, “Secure Man-
agement of SNMP Networks,” Proc. IFIP Integrated
Network Management Symp., Elsevier Science Pub.,
Amsterdam, 1991.

10. Bluetooth Specification V1.0 A, 1999; http://www.blue-
tooth.com.

11. G. Tsudik, “Message Authentication with One-Way
Hash Functions,” Proc. Infocom 92, 11th Conf. Com-
puter Communications, IEEE Press, Los Alamitos,
Calif., 1992, pp. 2055-2059.

Tim Ebringer is a PhD student at the University of
Melbourne. His research interests include cryptographic
algorithms and protocols, engineering of practical
authentication, and security systems. Ebringer received
a BE in computer engineering from the University of
Melbourne. Contact him at tde@cs.mu. oz.au.

Peter Thorne is a reader in computer science at the Uni-
versity of Melbourne and a former head of the Depart-
ment of Computer Science and Software Engineering.
His research interests include computer forensics, com-
puter security and the early history of computing.
Thorne has a PhD in computation from the Univer-
sity of Melbourne. Contact him at pgt@cs.mu.oz.au.

Yuliang Zheng is a reader and founding director of
the Laboratory for Information and Network Secu-
rity at Monash University. He cofounded the PKC
annual international conference series dedicated to the
theory and practice in public key cryptography. His
research focuses on efficient data security techniques
and their applications in network computing and e-
commerce. Zheng received a PhD in electronic and
electrical engineering from Yokohama National Uni-
versity, Japan. He is a member of ACM and IACR and
a senior member of the IEEE. Contact him at
Yuliang.Zheng@infotech.monash.edu.au.

