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On Plateaued Functions

Yuliang Zheng, Senior Member, IEEE,and Xian-Mo Zhang

Abstract—The focus of this correspondence is on nonlinear character-
istics of cryptographic Boolean functions. First, we introduce the notion
of plateaued functions that have many cryptographically desirable proper-
ties. Second, we establish a sequence of strengthened inequalities on some of
the most important nonlinearity criteria, including nonlinearity, avalanche,
and correlation immunity, and prove that critical cases of the inequalities
coincide with characterizations of plateaued functions. We then proceed to
prove that plateaued functions include as a proper subset all partially bent
functions that were introduced earlier by Claude Carlet. This solves an in-
teresting problem that arises naturally from previously known results on
partially bent functions. In addition, we construct plateaued, but not par-
tially bent, functions that have many properties useful in cryptography.

Index Terms—Bent functions, cryptography, nonlinear characteristics,
partially bent functions, plateaued functions.

I. MOTIVATIONS

In the design of cryptographic functions, one often faces the problem
of fulfilling the requirements of a multiple number of nonlinearity cri-
teria. Some of the requirements contradict others. The most notable
example is perhaps bent functions—while these functions achieve the
highest possible nonlinearity and satisfy the avalanche criterion with
respect to every nonzero vector, they are not balanced, not correla-
tion-immune, and exist only when the number of variables is even.

Another example that clearly demonstrates how some nonlinear
characteristics may impede others is partially bent functions intro-
duced in [1]. These functions include bent functions as a proper subset.
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Partially bent functions are interesting in that they can be balanced and
also highly nonlinear. However, except those that are bent, all partially
bent functions have nonzero linear structures, which are considered to
be cryptographically undesirable.

The primary aim of this correspondence is to introduce a new class of
functions to facilitate the design of cryptographically good functions.
It turns out that some of these cryptographically good functions can
maintain all the desirable properties of partially bent functions while
not possessing nonzero linear structures. This new class of functions
are calledplateaued functions. To study the properties of plateaued
functions, we establish a sequence of inequalities concerning nonlinear
characteristics. We show that plateaued functions can be characterized
by the critical cases of these inequalities. In particular, we demonstrate
that plateaued functions reach the upper bound on nonlinearity given
by the inequalities.

We also examine relationships between plateaued functions and par-
tially bent functions. We show that partially bent functions must be
plateaued while the converse is not true. Other useful properties of
plateaued functions include that they exist both for even and odd num-
bers of variables, can be balanced and correlation-immune.

The remaining part of the correspondence is organized as follows.
Section II introduces basic concepts on Boolean functions that are
used. Section III surveys properties of bent functions and partially
bent functions that are relevant to this work. This is followed by
Sections IV, where the concept of plateaued functions is introduced.
Important properties of plateaued functions are studied in Sections V
and VI. Section VII investigates relationships between plateaued func-
tions and partially bent functions, while Section VIII shows methods
for constructing plateaued functions that have useful cryptographic
properties, such as balance, high algebraic degree, strict avalanche
criterion (SAC), and correlation immunity. Finally, Section IX closes
the correspondence with a pointer to some latest developments in the
research into plateaued functions.

II. BOOLEAN FUNCTIONS

We consider functions fromVn to GF(2) (or simply functions
on Vn), whereVn is the vector space ofn tuples of elements from
GF(2). Usually, we write a functionf on Vn as f(x), where
x = (x1; . . . ; xn) is the variable vector inVn. The truth tableof a
functionf onVn is a(0; 1)-sequence defined by

(f(�0); f(�1); . . . ; f(�2 �1))

and thesequenceof f is a(1; �1)-sequence defined by

((�1)f(� )
; (�1)f(� )

; . . . ; (�1)f(� ))

where

�0 = (0; . . . ; 0; 0)

�1 = (0; . . . ; 0; 1); . . . ; �2 �1 = (1; . . . ; 1; 1):

The matrix of f is a (1; �1)-matrix of order2n defined byM =
((�1)f(� �� )) where� denotes the addition inVn. f is said to be
balancedif its truth table contains an equal number of ones and zeros.

Given two sequences~a = (a1; . . . ; am) and~b = (b1; . . . ; bm),
theircomponentwise productis defined by~a�~b = (a1b1; . . . ; ambm)
and thescalar productof ~a and~b, denoted byh~a; ~bi, is defined as the
sum of the componentwise multiplications, where the operations are
defined in the underlying field. In particular, ifm = 2n and~a, ~b are
the sequences of functionsf andg onVn, respectively, then~a�~b is the
sequence off � g where� denotes the addition in GF(2).
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An affine functionf onVn is a function that takes the form of

f(x1; . . . ; xn) = a1x1 � � � � � anxn � c

where� denotes the addition in GF(2) andaj ; c 2 GF(2), j =
1; 2; . . . ; n. Furthermore,f is called alinear function if c = 0.

A (1; �1)-matrix A of orderm is called aHadamardmatrix if
AAT = mIm, whereAT is the transpose ofA andIm is the identity
matrix of orderm. A Sylvester–Hadamard matrix of order2n, denoted
byHn, is generated by the following recursive relation:

H0 = 1 Hn =
Hn�1 Hn�1

Hn�1 �Hn�1

; n = 1; 2; . . . :

Let `i, 0 � i � 2n � 1, be theith row of Hn. Then,`i is the
sequence of a linear function'i(x) defined by the scalar product
'i(x) = h�i; xi, where�i 2 Vn corresponds to the binary represen-
tation of an integeri, i = 0; 1; . . . ; 2n � 1.

TheHamming weightof a (0; 1)-sequence�, denoted by HW(�),
is the number of ones in the sequence. Given two functionsf and
g on Vn, the Hamming distanced(f; g) between them is defined as
the Hamming weight of the truth table off(x) � g(x), wherex =
(x1; . . . ; xn).

Definition 1: The nonlinearity of a function f on Vn, denoted
by Nf , is the minimal Hamming distance betweenf and all affine
functions onVn, i.e.,Nf = mini=1; 2; ...;2 d(f;  i), where 1;
 2; . . . ;  2 are all the affine functions onVn.

The following characterization of nonlinearity will be useful (for a
proof see for instance [2]).

Lemma 1: The nonlinearity off can be expressed by

Nf = 2n�1 �
1

2
maxfjh�; `iij; 0 � i � 2n � 1g

where � is the sequence off and `i is the ith row of Hn, i =
0; 1; . . . ; 2n � 1.

Definition 2: Let f be a function onVn. For a vector� 2 Vn,
denote by�(�) the sequence off(x� �). Thus,�(0) is the sequence
of f itself and�(0) � �(�) is the sequence off(x) � f(x � �). Set
�(�) = h�(0); �(�)i, the scalar product of�(0) and�(�). �(�) is
also called the autocorrelation off with a shift�.

Definition 3: Let f be a function onVn. We say thatf satisfies
the avalanche criterion with respect to� if f(x) � f(x � �) is a
balanced function, wherex = (x1; . . . ; xn) and� is a vector inVn.
Furthermore,f is said to satisfy theavalanche criterion of degreek if
it satisfies the avalanche criterion with respect to every nonzero vector
� whose Hamming weight is not larger thank (see [3]).

Thestrict avalanche criterion (SAC)[4] is the same as the avalanche
criterion of degree one.

Obviously,�(�) = 0 if and only if f(x)� f(x � �) is balanced,
i.e.,f satisfies the avalanche criterion with respect to�.

Definition 4: Let f be a function onVn. � 2 Vn is called alinear
structureof f if j�(�)j = 2n.

For any functionf , �(�0) = 2n, where�0 = 0, the zero vector
on Vn. Hence, the zero vector is a linear structure of every function
on Vn. It is known that the set of all linear structures of a functionf
form a subspace ofVn, whose dimension is called thelinearity of f .
It is also well known that iff has nonzero linear structures, then there
exists a nonsingularn � n matrixB over GF(2) such thatf(xB) =
g(y)� h(z), wherex = (y; z), x 2 Vn, y 2 Vp, z 2 Vq , p+ q = n,

g is a function onVp that does not have nonzero linear structures, and
h is a linear function onVq . Hence,q is equal to the linearity off .

There exist a number of equivalent definitions of correlation-im-
mune functions [5], [6]. The following definition is closely related to[5,
Definition 2.1].

Definition 5: Let f be a function onVn and let� be its sequence.
Thenf is called akth-order correlation immune functionif h�; `i = 0
for every`, the sequence of a linear function'(x) = h�; xi on Vn
constrained by1 � W (�) � k.

The following lemma is the restatement of a relation proved in [1,
Sec. II].

Lemma 2: For every functionf onVn, we have

(�(�0); �(�1); . . . ; �(�2 �1))Hn

= h�; `0i
2
; h�; `1i

2
; . . . ; h�; `2 �1i

2

where`i is theith row ofHn, j = 0; 1; . . . ; 2n � 1.

III. B ENT FUNCTIONS AND PARTIALLY BENT FUNCTIONS

Notation 1: Let f be a function onVn, � the sequence off , and`i
denote theith row ofHn, i = 0; 1; . . . ; 2n � 1. Set

= = fi j 0 � i � 2n � 1; h�; `ii 6= 0g

< = f� j�(�) 6= 0; � 2 Vng

and

�M = maxfj�(�)j; � 2 Vn � f0gg:

Note that to be more precise,=,<, and�M should have been written
as=f , <f , and�M;f , respectively. The subscript is omitted when no
confusion occurs.
=,<, and�M share an interesting property. Namely,#=,#<, and

�M are invariant under any nonsingular linear transformation on the
variables, where# denotes the cardinal number of a set.

Parseval’s equation states that

2 �1

j=0

h�; `ji
2 = 22n

([7, p. 416]). Noticing�(�0) = 2n, we can see that neither= nor<
is an empty set.= reflects the correlation-immune property off , while
< reflects its avalanche characteristics and�M forecasts its avalanche
property. Therefore, information on#=, #<, and�M is useful in
investigating cryptographic characteristics off .

Definition 6: A function f on Vn is called abent function[8] if
h�; `ii

2 = 2n for everyi = 0; 1; . . . ; 2n� 1; where`i is theith row
of Hn, i = 0; 1; . . . ; 2n � 1.

A bent function onVn exists only whenn is even, and it achieves

the maximum nonlinearity2n�1 � 2
1

2
n�1. From [8] and Parseval’s

equation, we have the following theorem.

Theorem 1: Let f be a function onVn and� denote the sequence of
f . Then the following statements are equivalent:

i) f is bent;

ii) for eachi, 0 � i � 2n � 1, h�; `ii2 = 2n, where`i is theith
row ofHn, i = 0; 1; . . . ; 2n � 1;

iii) #< = 1;
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iv) �M = 0;

v) the nonlinearity off , Nf , satisfiesNf = 2n�1 � 2
1

2
n�1;

vi) the matrix off is an Hadamard matrix.

An interesting theorem of [1] explores a relationship between#=
and#<. This result can be expressed as follows.

Theorem 2: For any functionf onVn, we have(#=)(#<) � 2n,
where the equality holds if and only if there exists a nonsingularn�n

matrixB over GF(2) and a vector� 2 Vn such thatf(xB � �) =
g(y)� h(z), wherex = (y; z), x 2 Vn, y 2 Vp, z 2 Vq , p+ q = n,
g is a bent function onVp, andh is a linear function onVq .

Based on the above theorem, the concept ofpartially bentfunctions
was also introduced in the same paper [1].

Definition 7: A function onVn is called apartially bent functionif
(#=)(#<) = 2n.

One can see that partially bent functions include both bent functions
and affine functions. Applying Theorem 2 together with properties of
linear structures, or using [9, Theorem 2] directly, we have the fol-
lowing.

Proposition 1: A functionf onVn is a partially bent function if and
only if eachj�(�)j takes the value of2n or 0 only. Equivalently,f is a
partially bent function if and only if< is composed of linear structures.

Some partially bent functions are highly nonlinear and satisfy the
SAC. Furthermore, some partially bent functions are balanced. All
these properties are useful in cryptography.

IV. PLATEAUED FUNCTIONS

Now we introduce a new class of functions called plateaued func-
tions. Here is the definition.

Definition 8: Let f be a function onVn and� denote the sequence
of f . If there exists an even numberr, 0 � r � n, such that#= = 2r

and eachh�; `ji2 takes the value of22n�r or 0 only, wherè j denotes
thejth row ofHn, j = 0; 1; . . . ; 2n�1, thenf is called anrth-order
plateaued functiononVn. f is also simply called aplateaued function
onVn if we ignore the particular orderr.

Due to Parseval’s equation, the condition that#= = 2r can be ob-
tained from the condition that “eachh�; `ji2 takes the value of22n�r

or0 only, wherè j denotes thejth row ofHn, j = 0; 1; . . . ; 2n�1.”
For the sake of convenience, however, we have mentioned both condi-
tions in Definition 8.

The following result can be obtained immediately from Definition 8.

Proposition 2: Let f be a function onVn. Then we have

i) if f is anrth-order plateaued function thenr must be even;

ii) f is annth-order plateaued function if and only iff is bent;

iii) f is a0th-order plateaued function if and only iff is affine.

To help understand the definition of plateaued functions together
with their relationships with affine and bent functions, profiles of
jh�; `jij, j = 0; 1; . . . ; 2n � 1; of plateaued functions are depicted
in Fig. 1. The following is a consequence of [9, Theorem 3].

Proposition 3: Every partially bent function is a plateaued function.

An interesting question that arises naturally from Proposition 3 is
whether a plateaued function is also partially bent. In the following
sections, we characterize plateaued functions and disprove the converse
of the proposition.

Fig. 1. Profiles ofjh�; ` ij of plateaued (including affine and bent) functions.

V. CHARACTERIZATIONS OFPLATEAUED FUNCTIONS

Notation 2: Let f be a function onVn and� denote the sequence
of f . Let � denote the real-valued(0; 1)-sequence defined as� =
(c0; c1; . . . ; c2 �1); where

cj =
1; if j 2 =
0; otherwise

and�j 2 Vn is the binary representation of an integerj. Write

�Hn = (s0; s1; . . . ; s2 �1) (1)

where eachsj is an integer.
We note that

�

h�; `0i
2

h�; `1i
2

...
h�; `2 �1i

2

=

2 �1

j=0

h�; `ji
2 = 22n

where the second equality holds thanks to Parseval’s equation. By using
Lemma 2, we have

�Hn

�(�0)

�(�1)
...

�(�2 �1)

= 22n:

Noticing�(�0) = 2n, we obtains02n +
2 �1

j=1
sj�(�j) = 22n.

Since

�(�j) = 0; if �j 62 < (2)

we have

s02
n +

� 2<; j>0

sj�(�j) = 22n:

As s0 = #=, where# denotes the cardinal number of a set, we have

� 2<; j>0

sj�(�j) = 2n(2n �#=):

Note that

2n(2n �#=) =
� 2<; j>0

sj�(�j)

�
� 2<; j>0

jsj�(�j)j

� sM�M (#<� 1) (3)
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wheresM = maxfjsj j; 0 < j � 2n � 1g. Hence, the following
inequality holds:

sM�M (#<� 1) � 2n(2n �#=): (4)

From (1), we obtain

#= � 2n =
2 �1

j=0

s
2
j

or

#=(2n �#=) =
2 �1

j=1

s
2
j : (5)

Now we prove the first inequality that helps us understand properties
of plateaued functions.

Theorem 3: Let f be a function onVn and� denote the sequence
of f . Then

2 �1

j=0

�2(�j) � 23n

#=

where the equality holds if and only iff is a plateaued function.
Proof: By using (3), the property of Hölder’s inequality [10], and

(5), we obtain

22n =
� 2<

sj�(�j) �
� 2<

jsj�(�j)j

�
� 2<

s2j
� 2<

�2(�j)

�
2 �1

j=0

s2j

2 �1

j=0

�2(�j)

= #=2n
2 �1

j=0

�2(�j): (6)

Hence2
#=

� 2 �1

j=0
�2(�j). We have proved the inequality in the

theorem.
Assume that the equality in the theorem holds, i.e.,2 �1

j=0

�2(�j) =
2

#=
. This implies that all the equalities in (6) hold. Hence

22n =
� 2<

sj�(�j) =
� 2<

jsj�(�j)j

=
� 2<

s2j
� 2<

�2(�j)

=

2 �1

j=0

s2j

2 �1

j=0

�2(�j)

= #=2n
2 �1

j=0

�2(�j): (7)

Applying the property of Hölder’s inequality to (7), we conclude that

j�(�j)j = �jsjj; �j 2 < (8)

where� > 0 is a constant. Applying (8) and (5) to (7), we have

22n =
� 2<

jsj�(�j)j = #=2n�2
2 �1

j=0

s2j = �#=2n: (9)

From (7), we have

� 2<

sj�(�j) =
� 2<

jsj�(�j)j:

Hence, (8) can be expressed more accurately as follows:

�(�j) = �sj ; �j 2 < (10)

where� > 0 is a constant. From (7), it is easy to see that

� 2<

s
2
j =

2 �1

j=0

s
2
j :

Hence

sj = 0; if �j 62 <: (11)

Combining (10), (11), and (2), we have

�(s0; s1; . . . ; s2 �1)

= (�(�0); �(�1); . . . ; �(�2 �1)): (12)

Noting (1), we obtain

��Hn = (�(�0); �(�1); . . . ; �(�2 �1)): (13)

Furthermore, noting the equation in Lemma 2, we obtain

2n�� = h�; `0i2; . . . ; h�; `2 �1i2 : (14)

It should be pointed out that� is a real-valued(0; 1)-sequence, con-
taining#= ones. By using Parseval’s equation, we obtain2n�(#=) =
22n. Hence�(#=) = 2n, and there exists an integerr with 0 � r � n

such that#= = 2r and� = 2n�r. From (14), it is easy to see that
h�; `ji2 = 22n�r or 0. Hence,r must be even. This proves thatf is a
plateaued function.

Conversely, assume thatf is a plateaued function. Then there exists
an even numberr, 0 � r � n, such that#= = 2r andh�; `ji2 =
22n�r or 0. Considering Lemma 2, we have

2 �1

j=0

�2(�j) = 2�n
2 �1

j=0

h�; `ji4 = 2�n � 2r � 24n�2r = 23n�r:

Hence we have proved that 2 �1

j=0
�2(�j) =

2

#=
.

Lemma 3: Let f be a function onVn and� denote the sequence of
f . Then the nonlinearityNf of f satisfies

Nf � 2n�1 � 2n�1p
#=

where the equality holds if and only iff is a plateaued function.
Proof: Set

pM = maxfjh�; `jij; j = 0; 1; . . . ; 2n � 1g
where`j is thejth row ofHn. Using Parseval’s equation, we obtain
p2M#= � 22n. Due to Lemma 1, we obtain

Nf � 2n�1 � 2n�1p
#= :

Assume thatf is a plateaued function. Then there exists an even
numberr, 0 � r � n, such that#= = 2r and eachh�; `ji2 takes
either the value of22n�r or 0 only, where`j denotes thejth row of

Hn, j = 0; 1; . . . ; 2n � 1. Hence,pM = 2n�
1

2
r . Once again noting

Lemma 1, we have

Nf = 2n�1 � 2n� r�1 = 2n�1 � 2n�1p
#= :

Conversely, assume that

Nf = 2n�1 � 2n�1p
#= :
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From Lemma 1, we have alsoNf = 2n�1 � 1

2
pM . Hence,

pM
p
#= = 2n. Since bothpM and

p
#= are integers and, more

importantly, powers of two, we can let#= = 2r , wherer is an integer
with 0 � r � n. HencepM = 2n�

r

2 . Obviously,r is even. From
Parseval’s equation,

j2=
h�; `ji2 = 22n, together with the fact that

p2M#= = 22n, we conclude thath�; `ji2 = 22n�r for all j 2 =.
This proves thatf is a plateaued function.

From the proof of Lemma 3, we can see that Lemma 3 can be stated
in a different way as follows.

Lemma 4: Let f be a functionf onVn and� denote the sequence
of f . Set

pM = maxfjh�; `jij; j = 0; 1; . . . ; 2n � 1g
where`j is the jth row of Hn. ThenpM

p
#= � 2n, where the

equality holds if and only iff is a plateaued function.

Summarizing Theorem 3, Lemmas 3 and 4, we conclude.

Theorem 4: Let f be a function onVn and� denote the sequence
of f . Set

pM = maxfjh�; `jij; j = 0; 1; . . . ; 2n � 1g
wherè j is thejth row ofHn. Then the following statements are equiv-
alent:

i) f is a plateaued function onVn;

ii) 2 �1

j=0
�2(�j) =

2

#=
;

iii) the nonlinearity off , Nf , satisfiesNf = 2n�1 � 2p
#=

;

iv) pM
p
#= = 2n;

v) Nf = 2n�1 � 2�
n

2
�1 2 �1

j=0
�2(�j).

Proof: Due to Theorem 3, Lemmas 3 and 4, i)-iv) hold. v) follows
from ii) and iii).

We now proceed to prove the second inequality that relates�(�j)
to nonlinearity.

Theorem 5: Let f be a function onVn and� denote the sequence of
f . Then the nonlinearityNf of f satisfies

Nf � 2n�1 � 2�
n

2
�1

2 �1

j=0

�2(�j)

where the equality holds if and only iff is a plateaued function onVn.
Proof: Set

pM = maxfjh�; `jij; j = 0; 1; . . . ; 2n � 1g:
Multiplying the equality in Lemma 2 by itself, we have

2n
2 �1

j=0

�2(�j) =

2 �1

j=0

h�; `ji4 � p
2
M

2 �1

j=0

h�; `ji2:

Applying Parseval’s equation to the above equality, we have

2 �1

j=0

�2(�j) � 2np2M :

Hence

pM � 2�
n

2

2 �1

j=0

�2(�j):

Thanks to Lemma 1, we have proved the inequality

Nf � 2n�1 � 2�
n

2
�1

2 �1

j=0

�2(�j):

The rest part of the theorem can be proved by using Theorem 4.

Theorem 3, Lemmas 3 and 4, and Theorem 4 represent characteri-
zations of plateaued functions.

To close this section, let us note that since�(�0)=2n and#=�2n,
we have

2n�1 � 2�
n

2
�1

2 �1

j=0

�2(�j) � 2n�1 � 2
n

2
�1

and

2n�1 � 2n�1p
#= � 2n�1 � 2

n

2
�1
:

Hence both inequalities

Nf � 2n�1 � 2�
n

2
�1

2 �1

j=0

�2(�j)

and

Nf � 2n�1 � 2n�1p
#=

are improvements on a more commonly used inequality

Nf � 2n�1 � 2
n

2
�1
:

VI. OTHER CRYPTOGRAPHICPROPERTIES OFPLATEAUED FUNCTIONS

Lemma 1 implies that the following statement holds.

Proposition 4: Let f be anrth-order plateaued function onVn.
Then the nonlinearityNf of f satisfiesNf = 2n�1 � 2n�

r

2
�1.

The following result is the same as [11, Theorem 18].

Lemma 5: Let f be a function onVn (n � 2), � be the sequence
of f , andp is an integer,2� p� n. If h�; `ji � 0 (mod 2n�p+2),
where`j is thejth row ofHn, j=0; 1; . . . ; 2n�1, then the algebraic
degree off is at mostp�1.

Using Lemma 5, we obtain:

Proposition 5: Let f be anrth-order plateaued function onVn.
Then the algebraic degree off , denoted bydeg(f), satisfiesdeg(f) �
r

2
+ 1.

We note that the upper bound on algebraic degree in Proposition 5 is
tight forr < n. For the case ofr = n, thenth-order plateaued function
is a bent function onVn. Reference [8] gives a better upper bound on
the algebraic degree of a bent function onVn. That bound isn

2
.

The following property of plateaued functions can be verified by
noting their definition.

Proposition 6: Let f be anrth-order plateaued function onVn, B
be any nonsingularn � n matrix over GF(2), and� be any vector in
Vn. Then,f(xB � �) is also anrth-order plateaued function onVn.

Next we show thatrth-order plateaued functions have the property
that their linearity is bounded from above byn � r.
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Theorem 6: Let f be anrth-order plateaued function onVn. Then
the linearity off , denoted byq, satisfiesq � n�r, where the equality
holds if and only iff is partially bent.

Proof: There exists a nonsingularn � n matrixB over GF(2)
such thatf(xB) = g(y) � h(z), wherex = (y; z), y 2 Vp, z 2 Vq,
p + q = n, g is a function onVp that does not have nonzero linear
structures, andh is a linear function onVq . Hence,q is equal to the
linearity of f . Setf�(x) = f(xB).

Let �, �, and� denote the sequences off�, g, andh, respectively.
Then,� = � � �, where� denotes the Kronecker product [12]. From
the structure ofHn, we know that each rowL of Hn can be expressed
asL = ` � e, where` is a row ofHp ande is a row ofHq. Then we
have

h�; Li = h�; `ih�; ei: (15)

Sinceh is linear,� must be a row ofHq. Replacinge by � in (15), we
have

h�; L0i = h�; `ih�; �i = 2qh�; `i (16)

whereL0 = ` � � is still a row ofHn.
Note thatf� is also anrth-order plateaued function onVn. Hence,

h�; Li takes the value of�2n�
1

2
r or 0 only. Due to (16),h�; `i takes

the value of�2n�
1

2
r�q = �2p�

1

2
r or 0 only. This proves thatg is an

rth-order plateaued function onVp. Hencer � p andr � n � q, i.e.,
q � n � r.

Assume thatq = n � r. Thenp = r. From (16), eachh�; `i takes

the value of�2
r

2 = �2
p

2 or 0 only, wherè is any row ofHp. Hence,
applying Parseval’s equation tog, we can conclude that for each row
` of Hp, h�; `i cannot take the value of zero. In other words, for each

row ` ofHp, h�; `i takes the value of�2
p

2 only. Hence we have proved
thatg is a bent function onVp. Due to Theorem 2,f is partially bent.
Conversely, assume thatf is partially bent. Due to Theorem 2,g is a
bent function onVp. Hence eachh�; `i takes the value of�2

p

2 only,
where` is any row ofHp. As both� ande are rows ofHq, h�; ei
takes the value2q or 0 only. From (15), we conclude thath�; Li takes

the value�2q+
p

2 or 0 only. Recall thatf is an rth-order plateaued
function onVn. Hence,q + p

2
= n � r

2
. This implies thatr = p, i.e.,

q = n� r.

VII. RELATIONSHIPSBETWEEN PARTIALLY BENT FUNCTIONS AND

PLATEAUED FUNCTIONS

To examine more profound relationships between partially bent
functions and plateaued functions, we introduce a new characterization
of partially bent functions as follows.

Theorem 7: For every functionf onVn, we have
2n �#=

#=
�
�M

2n
(#<� 1)

where the equality holds if and only iff is partially bent.
Proof: From Notation 2, we havesM � s0 = #=. As a conse-

quence of (4), we obtain the inequality in the theorem. Next we consider
the equality in the theorem. Assume that the equality holds, i.e.,

�M(#<� 1)#= = 2n(2n �#=): (17)

From (3), we have

2n(2n �#=) �
� 2<; j>0

jsj�(�j)j

��M

� 2<; j>0

jsj j

��M(#<� 1)#=: (18)

From (17), we can see that all the equalities in (18) hold. Hence,

�M (#<� 1)#= =
� 2<; j>0

jsj�(�j)j: (19)

Note thatjsj j � #= and j�(�j)j � �M , for j > 0. Hence, from
(19), we obtain

jsj j = #=; whenever�j 2 < and j > 0 (20)

andj�(�j)j = �M for all �j 2 < with j > 0.
Applying (20) to (5), and noticing thats0 = #=, we obtain

#= � 2n =

2 �1

j=0

s
2

j �
� 2<

s
2

j = (#<)(#=)2:

This results in2n � (#<)(#=). Together with the inequality in The-
orem 2, it proves that(#<)(#=) = 2n, i.e.,f is a partially bent func-
tion.

Conversely, assume thatf is a partially bent function, i.e.,
(#=)(#<) = 2n. Then the inequality in the theorem is specialized as

�M (2
n �#=) � 2n(2n �#=): (21)

We need to examine two cases. Case 1:#= = 2n. Obviously, the
equality in (21) holds. Case 2:#= 6= 2n. From (21), we have�M �
2n. Thus,�M = 2n. This completes the proof.

Next we consider a nonbent functionf . With such a function we
have�M 6= 0. Thus, from Theorem 7, we have the following result.

Corollary 1: For every nonbent functionf onVn, we have

(#=)(#<) �
2n(2n �#=)

�M

+#=

where the equality holds if and only iff is partially bent (but not bent).

Proposition 7: For every nonbent functionf , we have

2n(2n �#=)

�M

+#= � 2n

where the equality holds if and only if#= = 2n or f has a nonzero
linear structure.

Proof: Since�M � 2n, the inequality is obvious. On the other
hand, it is easy to see that the equality holds if and only if

(2n ��M )(2
n �#=) = 0:

From Proposition 7, one observes that for any nonbent functionf ,
Corollary 1 implies Theorem 2.

Theorem 8: Let f be anrth-order plateaued function. Then the fol-
lowing statements are equivalent.

i) f is a partially bent function;

ii) #< = 2n�r;

iii) �M (#< � 1) = 22n�r � 2n;

iv) the linearityq of f satisfiesq = n � r.

Proof:
i) =) ii). Sincef is a partially bent function, we have(#=)(#<) =

2n. As f is also anrth-order plateaued function,#= = 2r and hence
#< = 2n�r.

ii) =) iii). Whenr = n, we have#< = 1 and hence iii) holds. For
the case ofr < n, using Theorem 7, we have

2n �#=

#=
�
�M

2n
(#<� 1)

which is specialized as

2n�r � 1 �
�M

2n
(2n�r � 1): (22)
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From (22) and the fact that�M � 2n, we obtain

2n�r � 1 �
�M

2n
(2n�r � 1) � 2n�r � 1:

Hence�M=2n. Since ii) holds, we have�M (#<�1)=22n�r�2n.
iii) =) i). Note that iii) implies

2n �#=

#=
=

�M

2n
(#<� 1)

where#= = 2r. By Theorem 7,f is partially bent.
Due to Theorem 6, we have iv)() i).

VIII. C ONSTRUCTION OFPLATEAUED FUNCTIONS AND DISPROOF OF

THE CONVERSE OFPROPOSITION3

A. Existence of Balancedrth-Order Plateaued Functions and
Disproof of The Converse of Proposition 3

Lemma 6: For any integerk with k � 2, there existk + 1 nonzero
vectors inVk, say0, 1, . . ., k, such that for any nonzero vector
 2 Vk, we have

(h0; i; h1; i; . . . ; hk; i) 6= (0; 0; . . . ; 0)

and

(h0; i; h1; i; . . . ; hk; i) 6= (1; 1; . . . ; 1):

Proof: We choosek linearly independent vectors inVk, say
1; . . . ; k. From linear algebra,(h1; i; . . . ; hk; i) goes through
all the nonzero vectors inVk exactly once while goes through all
the nonzero vectors inVk.

Hence, there exists a unique� satisfying

(h1; 
�i; . . . ; hk; 

�i) = (1; . . . ; 1):

As a consequence, for any nonzero vector 2 Vk with  6= �,
fh1; i; . . . ; hk; ig contains both one and zero.

Let0 be a nonzero vector inVk, such thath0; �i = 0. Obviously,
0 62 f1; . . . ; kg. It is easy to see that0, 1; . . . ; k satisfy the
property in the lemma.

Let t andk be positive integers withk < 2t < 2k. Setn = t+k and
r = 2n� 2k = 2t. We now prove the existence of balancedrth-order
plateaued functions onVn and disproves the converse of Proposition 3.
In this section, we will not discussnth-order and0th-order plateaued
function onVn as they are simply bent and affine functions, respec-
tively.

Sincet < k, there exists a mappingP from Vt to Vk satisfying

i) P (�) 6= P (�0) if � 6= �0;

ii) 0; 1; . . . ; k 2 P (Vt), whereP (Vt) = fP (�)j� 2 Vtg;

iii) 0 62 P (Vt) where 0 denotes the zero vector inVk.

We define a functionf onVt+k as follows:

f(x) = f(y; z) = P (y)zT (23)

wherex = (y; z), y 2 Vt, andz 2 Vk. Denote the sequence off by
�.

Let L be a row ofHt+k. Hence,L = e � ` wheree is a row
of Ht and ` is a row of Hk. Once again from the properties of
Sylvester–Hadamard matrices,L is the sequence of a linear function
Vt+k, denoted by ,  (x) = h�; xi, � = (�; ), andx = (y; z)
wherey; � 2 Vt andz;  2 Vk. Hence, (x) = h�; yi � h; zi.

Note that

h�; Li =
y2V ; z2V

(�1)P (y)z �h�; yi�h; zi

=
y2V

(�1)h�;yi

z2V

(�1)(P(y)�)z

=2k

P (y)=

(�1)h�; yi

= 2k(�1)h�;P ()i; if P�1() exists
0; otherwise.

(24)

Thus,f is anrth-order plateaued function onVn.
Next we prove thatf has no nonzero linear structures. Let� =

(�; ) be a nonzero vector inVt+k where� 2 Vt and 2 Vk

�(�) = h�; �(�)i

=
y2V ; z2V

(�1)P(y)z �P (y��)(z�)

=
y2V

(�1)P(y��)

z2V

(�1)(P(y)�P (y��))z : (25)

There exist two cases to be considered:� 6= 0 and� = 0. When� 6= 0,
due to the property i) ofP , we haveP (y) 6= P (y��). Hence we have

z2V

(�1)(P(y)�P (y��))z = 0

from which it follows that�(�) = 0. On the other hand, when� = 0,
we have

�(�) = 2k

y2V

(�1)P(y) :

Due to Lemma 6,P (y)T cannot be a constant. Hence,

y2V

(�1)P(y) 6= �2t

which implies that�(�) 6= 2t+k. Thus, we can conclude thatf has no
nonzero linear structures.

Finally, due to the property iii) ofP , f must be balanced. Therefore,
we have the following lemma.

Lemma 7: Let k; t be possible integers withk < 2t < 2k, n =
t + k, andr = 2t. Then there exists a balancedrth-order plateaued
function onVn that does not have a nonzero linear structure.

Lemma 7 not only indicates the existence of balanced plateaued
function of any orderr with 0 < r < n, but also shows that the con-
verse of Proposition 3 is not true.
f has some other interesting properties. In particular, due to Propo-

sition 4, the nonlinearityNf of f satisfiesNf = 2n�1 � 2n�
r

2
�1.

Sincef is not partially bent, Theorem 2 tells us that(#=)(#<) > 2n.
This proves that#< > 2n�r. On the other hand, from (25), we have

#< � 2k = 2n�
1
2
r . Thus, we have2n�r < #< � 2n�

1
2
r . It is

important to note that such functions asf exist onVn both forn even
and odd.

Now we summarize the relationships among bent, partially bent, and
plateaued functions. LetBnBnBn denote the set of bent functions onVn,PnPnPn
denote the set of partially bent functions onVn, andFnFnFn denote the
set of plateaued functions onVn. Then the above results imply that
BnBnBn � PnPnPn � FnFnFn, where� denotes the relationship of proper subset.
We further letGnGnGn denote the set of plateaued functions onVn that are
not bent and donot have nonzero linear structures. The relationships
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Fig. 2. Relationship among bent, partially bent, and plateaued functions.

among these classes of functions are shown in Fig. 2. Lemma 7 ensures
thatGnGn

Gn is nonempty.

B. Constructing Balancedrth-Order Plateaued Functions
Satisfying SAC

Next we consider how to improve the function in the proof of Lem-
ma 7 so as to obtain anrth-order plateaued function onVn satisfying
the SAC, in addition to all the properties mentioned in Section VIII-A.

Note that ifr > 2, i.e., t > 1, then from Section VIII-A, we have

#< � 2n�
1

2
r < 2n�1. In other words,#<c > 2n�1 where<c

denotes the complementary set of<. Hence, there existn linearly in-
dependent vectors in<c. In other words, there existn linearly indepen-
dent vectors with respect to whichf satisfies the avalanche criterion.
Therefore, we can choose a nonsingularn � n matrixA over GF(2)
such thatg(x) = f(xA) satisfies the SAC (see [13]). The nonsingular
linear transformationA does not alter any of the properties off dis-
cussed in Section VIII-A. Thus, we have the following lemma.

Lemma 8: Let n be a positive number andr be any even number
with 0 < r < n. Then, there exists a balancedrth-order plateaued
function onVn that does not have a nonzero linear structure and satis-
fies the SAC.

C. Constructing Balancedrth-Order Plateaued Functions Satisfying
SAC and Having Maximum Algebraic Degree

We can further improve the function described in Section VIII-B
so as to obtain anrth-order plateaued functions onVn that have the
highest algebraic degree and satisfy all the properties mentioned in Sec-
tion VIII-B.

Reference [7, Theorem 1, Ch. 13] allows us to verify that the fol-
lowing lemma is true.

Lemma 9: Let g be a function onVn. Then the degree ofg is equal
to n if and only if#f�jg(�) = 1, � 2 Vng is odd.

As k > t, it is easy to construct two mappingsP 0 andP 00 from
Vt to Vk such that both satisfy properties i)–iii), mentioned in Sec-
tion VIII-A, furthermore,P 0(�) = P 00(�) for � 6= 0, andP 0(0) 6=
P 00(0).

Note thatP 0(�) = P 00(�) if � 6= 0, andP 0(0) 6= P 00(0). Due
to Lemma 9, it is easy to see that a component function ofP 0 � P 00

has degreet, and hence a component function ofP 0 orP 00 has degree
t. Without loss of generality, we assume that a component function
of P 0 has degreet, alsoP 0 is identified withP , which we used in
Sections VIII-A and VIII-B. Hence, the functionf has degreet+ 1.

We have now constructed anrth-order plateaued function with alge-
braic degreer2 + 1. Applying the discussions in Sections VIII-A and

VIII-B, we can obtain anrth-order plateaued function onVn having
algebraic degreer

2
+1 and satisfying all the properties of the function

constructed in Sections VIII-A and VIII-B. It should be noted that the
function constructed in this subsection achieves the highest possible
algebraic degree given in Proposition 5. Thus, the upper bound on the
algebraic degree of plateaued functions, mentioned in Proposition 5, is
tight. Hence, we have the following result.

Theorem 9: Let k; t be possible integers withk < 2t < 2k,
n = t+k, andr = 2t. Then there exists a balancedrth-order plateaued
function onVn that does not have a nonzero linear structure, satisfies
the SAC, and has the highest possible algebraic degreer

2
+ 1.

D. Constructing Balancedrth-Order Plateaued and Correlation
Immune Functions

Let Vn, � be the sequence off and`i denote theith row of Hn,
i = 0; 1; . . . ; 2n � 1. Recall that in Notation 1, we defined

=f = fi j 0 � i � 2n � 1; h�; `ii 6= 0g:

Now let

@f = f�i j 0 � i � 2n � 1; i 2 =fg:

@f will be used in the following description of constructing plateaued
functions that are correlation immune.

Lemma 10: Let f be a function onVn, � be the sequence off , and
`i denote theith row ofHn. Also letW be anr-dimensional linear
subspace ofVn such that@f � W , ands = bn

r
c, wherebn

r
c denotes

the maximum integer not larger thann
r

. Then, there exists a nonsingular
n�nmatrixB on GF(2) such thath(y) = f(yB) is an(s�1)th-order
correlation-immune function.

Proof: For the sake of convenience, let0i denote the all-zero se-
quence of lengthi and1i denote the all-one sequence of lengthi. De-
fine �j 2 Vn, j = 1; . . . ; r; as follows:

�1 =(1s; 0s; . . . ; 0s; 0n�(r�1)s)

�2 =(0s; 1s; 0s; . . . ; 0s; 0n�(r�1)s)

� � �

�r�1 =(0s; . . . ; 0s; 1s; 0n�(r�1)s)

�r =(0s; . . . ; 0s; 1n�(r�1)s):

Sincen � rs, the length of1n�(r�1)s is at leasts. Note that the linear
combinations of�1; . . . ; �r form anr-dimensional linear subspaceU
ofVn, and each nonzero vector inU has a Hamming weight of at leasts.
Since bothW andU arer-dimensional, there exists a nonsingularn�n
matrixB on GF(2) satisfyingUB =W , whereUB = fBj 2 Ug.
Define a functionh onVn such thath(y) = f(yB). Since@f � W ,
we have@h � U . Let � be a nonzero vector inVn whose Hamming
weight is at mosts� 1. Obviously,� 62 U and hence� 62 @h. There-
fore, for any sequencèof a linear function'(x) = h�; xi on Vn,
constrained by1 � W (�) � s � 1, we haveh�; `ii = 0, where
� denotes the sequence ofh. This proves thath(y) = f(yB) is an
(s� 1)th-order correlation-immune function.

By using the method described in Section VIII-A, we can construct
plateaued functions that are correlation-immune, highly nonlinear, and
do not have nonzero linear structures. More specifically, sincek �
t+1, there exists a(t+1)-dimensional subspace ofVk. Denote the sub-
space byW . In the proof of Lemma 6, we can impose on the mapping
P a condition thatP (Vt) �W . From (24), we have� = (�; ) 2 @f
if and only ifP�1() exists, where� 2 Vt and 2 Vk. In other words,
@f = (Vt; P (Vt)) where

(Vt; P (Vt)) = f(�; )j� 2 Vt;  2 P (Vt)g:
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Hence,@f � (Vt; W ). Note that(Vt; W ) is a(2t + 1)-dimensional
subspace ofVt+k. From Lemma 10, we know that there exists a non-
singularn � n matrix B on GF(2) such thath(y) = g(yB) is an
(s � 1)th-order correlation-immune function, wheres = b t+k

2t+1
c or

s = b n

r+1
c. The functionh satisfies all the other useful properties men-

tioned in Section VIII-A. That is, in addition to being correlation-im-
mune,h is balanced, highly nonlinear, and does not have nonzero linear

structures. Furthermore,h satisfies2n�r < #<h � 2n�
1

2
r . Hence

we have proved the following.

Theorem 10: Let t andk be positive integers withk < 2t < 2k. Let
n = k+ t andr = 2t. Then, there exists anrth-order plateaued func-
tion onVn that is also an(s�1)th-order correlation-immune function,
wheres = b n

r+1
c or s = b t+k

2t+1
c, and does not have a nonzero linear

structure.

IX. CONCLUSION

We have introduced and characterized a new class of functions called
plateaued functions. These functions bring together various nonlinear
characteristics. We have also shown that partially bent functions are
a proper subset of plateaued functions. We have further demonstrated
methods for constructing plateaued functions that have many crypto-
graphically desirable properties including balance, SAC, high algebraic
degree, as well as high nonlinearity and correlation immunity.

Building on the results obtained in this work, more recently we have
introducedcomplementaryplateaued functions. These functions have
made it possible for us to discover new methods for constructing bent
functions, as well as highly nonlinear balanced functions. Details on
these new developments can be found in [14]. Finally, we note that
a close relationship between plateaued functions and highly nonlinear
correlation-immune functions has recently been identified in [15].
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Compression of Sparse Matrices by Blocked Rice Coding

Bruce J. McKenzie and Timothy Bell

Abstract—This correspondence considers the compression of matrices
where the majority of the entries are a fixed constant (most typically zero),
usually referred to as sparse matrices. We show that using Golomb or Rice
encoding requires significantly less space than previous approaches. Fur-
thermore, compared to arithmetic coding, the space requirements are only
slightly increased but access is ten times faster for both Golomb and Rice
encoding. By blocking the data, the access time can be kept constant as only
a single block needs to be decoded to access any element. Although such
blocking increases the space overheads, this is marginal until the block sizes
become so small that only a few nonzero values will be found in a block. We
provide formulas giving the space overhead of blocked Rice encoding and
validate these empirically.

Index Terms—Compression, Golomb codes, Rice codes, sparse matrices.

I. INTRODUCTION

The compression of matrices where the majority of the entries are
a fixed constant (most typically zero), usually referred to as sparse
matrices, has received much attention. A good overview of both the
methods of storing such matrices and the forms of operations that are
performed upon them is provided by Duffet al.[1]. In a previous paper
[2], we evaluated the performance of existing methods, and showed
how arithmetic coding can be applied to the problem to achieve better
compression. In this correspondence, we show how Golomb [3], [4]
and Rice [5] coding achieve compression that is nearly as good and
allow significantly faster access speed. Furthermore, it is shown that
by blocking the matrix, reasonable constant-time random access is pos-
sible.
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