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s Researchers have concentrated on linear resilient functions, with
one exception being the work by Stinson and Massey [5]. The aim
in [5] was solely to disprove a conjecture posed in [1] (namely, if

sntipere exists a nonlinear resilient function then there exists a linear
resilient function with the same parameters) rather than to explore

" afryptographic merits of nonlinear resilient functions. Recent advances
in cryptanalysis, in particular the discovery of the linear cryptanalytic

M ttack [6], have shown the vital importance of nonlinear functions in
data encryption and one-way hashing algorithms. With the further

jitabvelation of the potential power of the linear attack, we might see
its serious implications on the security of many other cryptographic
routines, including those employing resilient functions. A relevant
but earlier development is the best affine approximation (BAA)
attack proposed by Ding, Xiao, and Shan in [7]. It has been shown
that the BAA attack can successfully break a number of types of
key stream generators that employ a combining or filtering function
which, though correlation-immune, haslaw nonlinearity. Success

Cryptographically Resilient Functions of these attacks clearly shows a need to investigate highly nonlinear
resilient functions.
Xian-Mo Zhang and Yuliang Zhengdember, IEEE The rest of the correspondence is organized as follows: Section I

introduces basic definitions. It also reviews important properties of
resilient functions, as well as previous work in the area. Section Ill
Abstract—This correspondence studies resilient functions which have presents a number of methods for constructing new resilient functions
applications in fault-tolerant distributed computing, quantum crypto-  from old. Some of these methods significantly generalize previously
g_rar?hm '\‘/Sy distribution, a”bd rarf]dom seduerce generation for stream - known methods. An exceptional feature of our methods is that they
ciphers. We present a number of new methods for synthesizing resilient : - - - :
functions. An interesting aspect of these methods is that they are ap- can _be appliedboth to linear and to nonlln_gareSIIIenF functlons.
plicable both to linear and nonlinear resilient functions. Our second Section IV shows how to turn a known resilient functlpn Into a new
major contribution is to show that every linear resilient function can  one. As a result, we can obtain a large number of highly nonlinear
be transformed into a large number of nonlinear resilient functions with  resilient functions from a linear one. Some miscellaneous results on
the same parameters. As a result, we obtain resilient functions that are resilient functions, including a discussion on algebraic degree, are

highly nonlinear and have a high algebraic degree. . . . . .
oy on &9 9 included in Section V, and the paper is closed by some concluding
Index Terms—Correlation-immune functions, cryptography, nonlinear-  remarks in Section VI.

ity, resilient functions.

Il. PRELIMINARIES

The vector space oi-tuples of elements from GR) is denoted
. INTRODUCTION by V... These vectors, in ascending lexicographical order, are denoted
An (n, m, t)-resilient function is am-input m-output functionF” by ao, a1, ---, asn_1. As vectors inV;, and integers iff0, 2" — 1]

with the property that it runs through every possible outputuple have a natural one-to-one correspondence, it allows us to switch from
an equal number of times whenarbitrary inputs are fixed and thea vector inV,, to its corresponding integer i), 2" — 1], andvice
remainingn — ¢ inputs run through all th@”~* input tuples once. versa
The concept of a resilient function was first introduced by Cébbr Let f be a function fromV,, to GF(2) (or simply, a function on
al. [1] and independently, by Bennett, Brassard, and Robert in [J]..). The sequencedf f is defined as
It turned out thatalancedcorrelation immune functions introduced
by Siegenthaler [3] are a special case of resilient functions. Areas (=1)f o) (—p)flen) oo (o1)fleenn)y
where resilient functions find their applications include fault-tolerant

distributed computing [1], quantum cryptographic key distributiopgjhere each exponent is regarded as being real-valued, whiteuthe
[2], and random sequence generation for stream ciphers [4]. table of f is defined as

(flao), flar), -+, flaan_i)).
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f is the number of coordinates in the longest product in the algebraic  runs through all the vectors i, each2”~™~" times while

normal form representation of the function. THamming weighof (ziy, ---, i, _,) runs throughV,,_, once, where > 0
a vectorv, denoted byi¥ (v), is the number of ones in. Let f and
g be functions onV,,. Then {iv, oooyin ey ={1, -, n} = {j1, -+ je}
af,p= >, 1 andiy < iy < o0 < in_s.
F@)#g(x) 2) F is said to be &n, m, t)-resilient function if F' is unbiased
. . . . with respect to every subsét of {1, ---, n} with |T| = t¢.

where the addition is over the reals, is called Hemming distance The parametet is called theresiliencyof the function
betweenf andg. Let ¢o, -+, ©on be the affine functions on . . i
v Thei g o » Panti—i Obviously,n — m > ¢ holds for all(n, m, t)-resilient functions.

Resilient functions are closely related to correlation immune func-
tions introduced by Siegenthaler [3]. As was noticed by Stingon,

Ny = 0 .?Fl§3§+1,1d(f’ ®i) al., an(n, 1, t)-resilient function is the same asdalancedtth-order
T correlation immune function. We will come back to this issue shortly.
is called thenonlinearityof f. It is wel known that the nonlinearity of The foIIowmg 'Iemma |s_helpful n understanding the r_elatlonshlp
S - ne1 o(1/2)n—1 o .~~~ between a resilient function and its component functions. It has

fonV, satisfiesV; < 2 -2 . An extensive investigation : .

f highl i bal d functi has b ied out been calledXOR Lemmaand expressed in terms of independence
of ‘highly noniinear balanced functions has been carmed oult f} anqom variables in [1] and [2]. It also appears as [13, Corollary

[8]-{10]. 7.39]. Here we follow the version described in [14].
Algebraic degree and nonlinearity can also be defined for mappings grnma 1: Let F = (fi, -, fm) be a function fromV,, to V;
or tuples of functions. Lef" = (i, -+, fm) be afunction fromV..  \yhere, and m are integers withe > m > 1 and eachf; is a

toV:. (where eacly; is a function ori;,). The algebraic degree &%,  fynction onV,,. Then F is unbiased, namely, it runs through all the
denoted byleg (), is defined as the minimum among the algebraigectors inV,,, each2”—™ times whilex runs throughy,, once, if and

degrees of all nonzero linear combinations of the component functiqgmy if each nonzero linear combinations ff, - - -, f.. is balanced.
of F, namely, Hence, we have
Lemma 2: Let F = (fi, ---, f.) be a function fromV;, to V,,.,
) i wheren andm are integers witle > m > 1 and eacly; is a function
deg (F) = min qdeg(g)lg = P citi. i € GF(2), onV,. ThenF is unbiased with respect 6 = {ji, ---, j}, a fixed
’ J=t subset of( 1, - - -, n}, if and only if every nonzero linear combination
of R m
(c1v cas -y em) 2 (0, 07...70)}_ fioooo f .
@)= €D i)
j=1
Similarly, the nonlinearity ofF’, denoted byNr, is defined as the ) . J i )
minimum among the nonlinearities of all nonzero linear combinatior$ u_nb!ased ("‘?" bala;]fced) with respectlte= {ji. ---. ji}, where
of the component functions of v = (21, s an) € Vi
As an immediate consequence, we have
Theorem 1:Let F = (fi, ---, fm) be afunction fron¥’, to V...,
Np = min { N,|g = @ ¢ifis c; € GF(2), wher_e n and m are int_egers withn > m > 1 and_ ea_chfj is a
g = function onV,,. ThenF is an(n, m, t)-resilient function if and only
if every nonzero linear combination ¢f, ---, f.
(01302,---7(’”7);&(0‘ 0-70)} -
fla) =P cifila)
j=t
This definition regardingVr was first introduced by Nyberg in [11]. js a(n, 1, t)-resilient function, where: = (1, ---, 2,) € V4,
= (fi,-++, fm) is said to be linear if all its component |t follows from Theorem 1 that ifFf = (fi, -+, fm) iS an
functions are linear, and to be nonlinear otherwiseFlfis linear, (n, m, t)-resilient function, therG = (fi, ---, f.) is an(n, s, t)-
thendeg (F) = 1 and N = 0. The converse, however, is notresilient function for each integer < s < m.
always true. Theorem 1 shows that eadm, m, t)-resilient function gives
2™ — 1 distinct balancedth-order correlation immune functions on
A. Properties of Resilient Functions V... It also indicates that we can study, m, t)-resilient functions,

Now we summarize a number of facts regarding resilient function§cluding their properties and constructions, through investigating the
Though most of these results are either previously known from, féprrelation immune characteristics of their component functions.
instance, [1], [2], and [12], or can be proven easily, they are coIIectedTO facilitate our investigations, we introduce the following lemma.
here with the intent to help the reader to understand our results. Weé-€mma 3: A function f on V., is unbiased with respect 6 =

start with a formal definition of a resilient function. l_le "f Jji}, a fixed subset of1, ---, n}, if and only if for each
Definition 1: Let F = (f1. -+, f.) be a function fromy; to n€ar function
Vin, wheren 2m 21, and letz = ('771-, ) Tn) € Vn. P(»L) =cj x5 D - Doy,
1) F is said to beunbiasedwith respect to a fixed subsét = on V.., where
{ji, -+, ey of {1, ..., n}, if for every(a, ---, a;) € Vi

= (21, -, xn)f(2) D ()
(fi(@), <+ fnl@))|ej =ay, 0z, =ay is balanced. (Note that. = 1 here.)
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Proof: First, we consider the simplest case wheéfe = As H: has an inverse, we have
{1, ---, t}. Let (a1, ---, ax) be an arbitrary but fixed vector in
‘/Yt Then <£0 o 0o f”) = <£0 oo 01 6”) == <£1 oo 11 6”) =0.
(F(2) & (@) ]er=ar, e, Rewritep(x) = ¢'(«') & " («"), wherex' € Vi andz" € V.
= flar, -\ ar, Tigrs e, n) Now (' is the sequence op’ whereas(” is the sequence of”.
Note that
‘ditﬁ(ah cets Aty T, vty ‘T")'
. . . ’ﬂ/(atl) =cx1 P - Dy
Now suppose thay is unbiased with respect 8 = {1, ---, t}. ks v v
Then

Thus¢” =0 and¢” = (1, ---, 1). As a result

f(a17 trty Aty Tpdl, vty ‘EVL)

(Eay o apy 0"y =0

is balanced. Note that
which implies that{,, ... ., is balanced and hence

lay, -, ar, Tygr, ++, Ty
v oo ) flay, --+, a, o1, -+, @n)
is a constant. Thus . . . Lo .
is balanced, wher¢a,, ---, a;) is an arbitrary vector iV;. This
(F(2) & ()] shows thatf is unbiased with respect t6 = {1, ---, t}.
)P er=ar, e we=ag For the more general case wheéfe= {ji, ---, j¢}, set
is balanced. Asa, -- -, as) is arbitrary, f(x) @ ¢(«) is a balanced Flor, oo mn) = gag, ooy @y Ty s 25,,)

function onV,,.
Conversely, suppose thitx) & ¢(2) is balanced for an arbitrary where {ji, ---, j;} = T and

olr) = 11 @ - D ey
Let &, ... o, be the sequence of {0y Tjpgs ooy g,y ={1, -+, n} = T.
f(al, s, Uty Tl t iL'n)- Also set
i =YL, ., L = Yn.

By [8, Lemma 2] J1 = Y, » Ljm = Yn

Thus
5250 0.50 1§"'./£1 e 1

Glrjys s Ty gy s ) = 9(Y1s s Yoy Yebts s Yn)-

is the sequence of (zi, -, z,).

Recall that a1, —1) matrix H of orderm is called aHadamard Now write
matrix if H H" = m1,,, whereH ' is the transpose df and/,, is the
identity matrix of orderm (see [15, ch. 2]). A Sylvester—-Hadamard YY) =v(yi, o yn) =yt @ oo Dy
matrix of order2™, denoted byH,, is generated by the following )
recursive relation: wherey = (y1. -+, yn). Obviously

H,_ H17,—1:| n w(yle Tt yn) = 57(5':1» Tty ‘/l”n)'

Hy=1, H,= |:Hn,1 —H,_, n=1,2---

Hence

Now let I be the sequence af. ThenL is a row of H,,. Since

() D () = O Y (y).
H, = Hy x H,_,, wherex denotes the Kronecker product, we have F@) @) =9(y) ©vy)

L/ = (' x (", where(" is a row of H, agdlz" IS arow /(/?fH'l—f- Write  Clearly, f is unbiased with respect i, - - -, j;} if and only if g is
t'=(do, -+, dye_y). ThenL = (dol", -+, dy._, (") and hence  npiased with respect tfl. - -, ¢}, and by the above discussions,

if and only if g(y) ® ¥ (y) = f(x) B ¢(x) is balanced. O
(€& LY = do(€o . 0. ") +dr(€o - 01, £7) A corollary of Lemma 3 is

+-tdye (& 11, (”), 1) Corollary 1: fis an(n, 1, t)-resilient function if and only if for
each linear function
Since f(z) @ ¢(=) is balanced,(¢, LY = 0. Note that{ = ’
(do, -~ -, dyt_1), a row or column offl,, is also the sequence of ple) =@ - Deawn

with W(er, - -, cn) < t, f(x) @ @(x) is balanced.

From this corollary and Theorem 1, it follows

Corollary 2: F' is an(n, m, t)-resilient function if and only if it
is an(n, m, s)-resilient function for eacl) < s < ¢.

Note that Corollary 2 also follows immediately from the orthogonal
) . . . array characterization in [16]. Now we go back to correlation-immune
((€o w0, €7) (€0 w01, €7), =5 (&1 o a1, €0)) Hy functions. Work by Xiao and Massey provides us with an equivalent

=(0,0,---,0). definition of the concept [17].

PE)=cxi D - Doy,

A fact with H, is that the rows (columns) o, comprise all the
linear sequences (see [8, Lemma 1]). Then from (1)
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Definition 2: A function f on V, is said to be tth-order to construct new resilient functions from old. These techniques have
correlation-immune if for each linear function been further enriched by Stinson’s work on the equivalence between
resilient functions and large sets of orthogonal arrays [16]. Some
concrete examples on constructing new functions from old can be

with 1 < W(er, -+, ca) < t, f(2) @ ¢(2) is balanced. found in [12]. _ o
As W(ci, -+, cn) = 0 is excluded, the definition covers both The main purpose of this section is to present a number of methods

balanced and nonbalanced correlation-immune functions, althodgh directly synthesizing large resilient functions from small ones. A

stream ciphers prefer balanced to nonbalanced functions. istinctive feature of these methods is that they are applicable both
Comparing the definition with Corollary 1, it becomes clear thdf linear and_nonllnear resilient f””_Ct'O_nS- _

a balancedth-order correlation-immune function is indeed identical We start with (balanced) correlation immune functions. febe

to an (n, 1, t)-resilient function. an (n;, 1, t;)-resilient function,i = 1, 2. Then fi(x) © f2(y) is
Having presented essential facts on resilient functions, next 8 (71 + 72, 1. f1 4 7; + 1)-resilient function, wherer € V,,, and

consider transformations on the coordinates of a resilient functigh€ Ve T show that this is correct, let be a linear function on

Unlike nonlinearity and algebraic degree, the resiliency of functiong1+n». defined by

ple)y=ciz1 @ -+ Beata

is not. invariant_ under a nonsingular linear tr_ansformation onthe (2, y)=c1my @ -+ @ Cry oy Ddign @ -+ B dngln,
coordinates. This can be seen from the following example.
Let wherez = (x1, -+, Tny), ¥ = (Y1, -, Uny), ¢, di € GF(2).

Suppose that
fle)=21 @a2a® -+ D, i
Wict, - oy Cnps diy vy dng) <t1+ 62+ 1.
where » = (w1, ---, #,). Then f is an (n, 1, n — 1)-resilient

function. Now letB be a matrix of order. over GF(2) satisfying 1 "€" eitherW(ci, -+, cny) <t OF W(dy, -+, dny) < B2, By

Corollary 1, eitherfi(x) @ ¢1(x) or fo(y) @ ¢2(y) is balanced,

- where
(r1, w2y =+, X1, 20)B = | 22, 23, -+, Tp_1, @T] )
j=1 o) =1 @& - & Crq s

Setg(x) = f(«B™"). Theng(z) = «,, whose resiliency is zero. and

Another issue is in relation to the transformation of the com- e2(y) =diyn B -+ D duyYny-
E:n;rsliljigggo;sagg ?;?rl]y Soeuégg;’ I(:; ?/vtzeesrglev:/]cta f:r?g\:\l,ogﬁ -:-r:'so‘r’\tlglklpte that the sum of two functions with disjoint variables is balanced
. . . L . . Portagt e of the two functions is balanced. Hence

result regarding invariant properties of resilient functions under
transformations of (output) component functions. fi(@) @& f2(y) D ez, y) = [fi(z) @ pi(x)] @ [f2(y) D p2(y)]

is balanced. Again by Corollary ¥, (z) @ f2(y) is an(ni + ns, 1,

B. Related Work t1 + t2 + 1)-resilient function.

The concept of a resilient function was introduced in [1] and By induction, we have the following result.
[2]. The equivalence between linear resilient functions and linearLemma 4: Let #, be an (n,, 1, ¢;)-resilient function, i =
error-correcting codes was also established in [1] and [2], while the---, s. Thenfi(x) @ -+ D fs(y) is a (Z;’T:l nj, I, s =1+
equivalence between resilient functions and large sets of orthogo@}?:l t;)-resilient function, where: € V., ---, y € V,,_.
arrays was proved in [16]. Two upper bounds on resiliency which As an application of Lemma 4, we can combine known re-
are the best known so far were derived in [12] and [18]. In [5kilient functions to obtain a new one. First we show tHatFF =
Stinson and Massey disproved the conjecture that if there existgfa, ---, f,,) is an (n, m, t)-resilient function, then
nonlinear resilient function then there exists a linear resilient function .
with the same parameters. The nonlinear resilient functions they Glr.y, z) = (F(2) D F(y). Fly) © F(2))
constructed were based on the (nonlinear) Kerdock and Prepangtan (3n, 2m. 2t 4 1)-resilient function, where:, y, = € V;..
codes [15]. Some linear resilient functions achieving an upper boundro prove thatG is a (3n, 2m, 2t + 1)-resilient function, we first
on resiliency can be found in [12] and [18]. Resilient functions whicRote that
are symmetric were studied in [1] and [19], while nonbinary resilient , P
functions were examined in [20]. A} @ fily) s fn(@) & finly)

Soon after the concept of a correlation-immune function was [ @ fi(z), ooy fuly) D fru(2)

intr_oc_il_Jced_ by Siegenthaler [3], Xiao and Massey gave an eqUiV‘"‘l(:cr(yr‘nprise all the2m component functions off. Consider a nonzero
definition in [17]. These were followed in [21] and [22], wherqinear combination of thesm component functions
various methods for constructing correlation-immune functions were

m

presented. fla,y, ) =@ eifi@) & £w) & @D difiy) & £5(2)
j=1 i=1
[1l. CONSTRUCTING NEW RESILIENT FUNCTIONS FROM OLD where either(cr, -, em) # (0, 0) OF (dis«ev, dw) %
Constructing new resilient functions from old ones is an interesting ... ).

problem that has many practical applications. There are two opposité\ote that

directions in relation to this problem, these being constructing “large” m m m

functions from “small” ones and “small” functions from “large” ones. f(z, y, 2) = @ cjfi(z) ® @ (c; Dd;)fi(y) @ @ d;f;(2).
Due to a close relationship between resilient functions and error- j=1 j=1 j=1

correcting codes (in particular, the equivalence between linear co%es
and linear resilient functions as was revealed in [1] and [2]), numerotg
techniques can be borrowed from the theory of error-correcting codes (c1y 5 em)# (0, ---,0).

Theorem 16P7", ¢; f;(z) is an(n, 1, ¢)-resilient function when



1744 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 43, NO. 5, SEPTEMBER 1997

Similarly, @7_, d,f;(=) is an(n, 1, t)-resilient function when Proof: Consider an arbitrary nonzero linear combination of the
component functions of’(z), say
(d1a ) dm) # (O~ Tt 0)

p(Z) — @ Cj[f]'(l’) [S5) gj(y)]

and@’., (¢; © d;)f;(y) is an(n, 1, t)-resilient function when

J=1
(cr @di, ooy cm @ dm) # (0, -+, 0). = @ cifi(x) @ @ ¢i9i(y)-
=1 =1
Since either(ci, -+, &) # (0,-+-,0) or (dv, -+, dw) # ’ !
(0, ---, 0), at least two among the following three inequalities hold3y Theorem 1,7, ¢;f;(x) is a ti-resilient function, while
DL, ¢;9;(y) is atz-resilient function. Hence, by Lemma #(z) is
(c1y =y em) #(0,-+-,0) at +t2+1-resilient function. A (=) is arbitrary, again by Theorem
(di, -, dm) # (0, -+, 0) 1, P(z) is_ an(ni + naz, m, t1 + t2 +_1)?resilier_1t function. O
and ‘ A special case of the technique indicated in Corollary 3, namely,

when bothF' and G are linear, has been employed by Bierbrauer,
(1 @diy ooy em B dm) #(0, -+, 0). Gopalakrishnan, and Stinson in proving [12, Theorem 7].
The following result is concerned with placing resilient functions
By Lemma 4, when two hold (z, y, z) is a(3n, 1, 2t+1)-resilient in parallel.

function, while when all three hold it is &n, 1, 3¢ 4+ 2)-resilient Corollary 4: Let F = (f1, --+, fm,) be a(n1, m1, t1)-resilient
function. By Theorem 1((z, y, z) is indeed a(3n, 2m, 2t + 1)-  function andG = (g1, - - -, gmy) be a(ny, ma, ts)-resilient func-
resilient function. tion. Then

It was first observed in [1] that
) P(Z) = (fl<l)v T fml (l) g (y)= Tty Omg (y))
g1, -y xsn) = (1@ -+ Daon, The1 P -+ Dasn)
is an(ni + n2, mi + ma, p)-resilient function, where: = (z, y),
is a linear (3h, 2, 2h — 1)-resilient function. We can view this @ € Vu,, ¥y € Va,, andp = min{t1, t2}.
function as being obtained from Proof: Consider an arbitrary nonzero linear combination of the
component functions of(z)

i, ~yan)=x1 P -+ Day my o
which is an(h, 1, h — 1)-resilient function, by using the technique »() ]62 eif5(e) @ ]62 4595(9).
described above. Conversely, we can also regard our technique as a
significant generalization of the idea underling the construction of As (c1, -+, ¢y, d1, -+ -, dwm,) iS @ NONzero vector, without loss of
generality, we can assume th@t, ---, ¢y ) # (0, ---, 0). Now
gz, -+, x3n) = (1@ -+ B Toh, Thpr & -0 P asn). consider
Now applying the same technique to the resultig, 2m, 2¢+1)- eé i Fi () es mag, s —ay
resilient functionG itself, we obtain a3n, 22m, 2*(1 +t) — 1)- P o A
resilient function. In general, repeating the technique Hfotimes,
k = 1,2, ---, we obtain a(3*n, 2"m, 2"(1 + ¢) — 1)-resilient for an arbitrary\-subset
function from an(n, m, t)-resilient function. . .
The technique can also be generalized in other directions. In {drs s b CH{L - i}

particular, it is easy to prove that if = (fi, - -, fm) iS an

(n, m, t)-resilient function, then and an arbitraryl,-subset

- . - {ila"'aiz\z}g{lﬂ"'>772}

Gz, y, 2, w) = (F(2) © F(y), F(y) @ F(2), F(2) @ F(u))
whereA+X, =p, and arbitraryes, - - -, ax,, b1, -+, b, € GF(2). By

is a (4n, 3m. 2t + 1)-resilient function, wherer. y. z, v € Va.  Theorem 1, and the fact that the sum of two functions with disjoint

Again by iterating the technique, we can construct fronfianm. ¢)-  yariables is balanced if one of the two functions is balanced

resilient function a(4*n, 3%m, 2%(1 + ) — 1)-resilient function for

all k= 1,2, -
To summarize the discussions, we have 6_91 €515 (#)es, =as, TN TN
Lemma 5: Given an(n, m, t)-resilient function, there is an itera- =

tive method to construct affi+1) n, hFm, 28(14+#)—1)-resilient is balanced. Thus

function for allh = 2,3, ..-andk =1, 2, -

my

mi mo
As another application of Lemma 4, we give the following result. i fi(2)] =ay & dia: (i
: 9 &b D)o zmar, ey, = axy & @D digi(¥)ly:
Corollary 3: Let F = (fi, -+, fm) be a(ni, m, t,)-resilient AT PN
function andG = (g1, -+, gm) @ (n2, m, t2)-resilient function. — by b =D
Then = Y1 » Dy, = Oxg

is balanced. It follows from Theorem 1 that

P(Z) = (fl(I)a Tty fml(l')'/ gl(y) s Umg (y))

P(z) = F(x) © Gy) = (f1(x) © g1(y), ==+, (@) © g (y))

is an(ni +na, m, t1 +t2 + 1)-resilient function, where = (z, y),
z € Vu,, andy € V,,. is an(n{ + n2, mi + mo, p)-resilient function. (I
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IV. TRANSFORMING LINEAR RESILIENT FUNCTIONS Then P = G o F takes the form of

TO NONLINEAR ONES
. o . o P(z) = G(F(z)) = (p1(2), p2(x), ps(z))
Recall that a resilient function is said to lieear if its component
functions are all linear, and said to henlinearotherwise. When the wherex = (1, ---, 2¢) and
concept of resilient functions was introduced, it was conjectured that

. . . . . . . 1(T) =22 B a3 D x6 P r103 B T1T4 DT1T5P
if there exists anonlinearresilient function with certain parameters, (@) ¢ >

then there exists kinear resilient function with the same parameters w35 O w376 D 2aws O raxe O 526
[1], [2]. This conjecture was disproved by Stinson and Massey po(T) =20 B a4 B as B ar17s B r123 B 1T

[5]. In particular, they showed that there exists an infinite class
of nonlinear resilient functions for which there do not exist linear
resilient functions with the same parameters. They used nonlinear p3(x) =21 D s S we B T173 D X174 D T1T5D
error-correcting codes in their proof. In this section, we investigate
this topic from a different point of view. In particular, we show that by
permuting the output:-tuples (i.e., al™ vectors inV,,,), instead of By Theorem 2,P = G o I is also a(6, 3, 2)-resilient function.
only reordering then component functions of afn, m, t)-resilient Note that all component functions of the resulting resilient func-
function, we can obtai@™! distinct (n, m, ¢)-resilient functions. A tion P are quadratic. The rest of this section is devoted to this
consequence of this result is that t@nverseof the conjecture in [1] direction, namely, converting linear resilient functions to nonlinear
and [2] is true, namely, if there existdiaear resilient function with ones. We also show how to calculate the nonlinearity of a resulting
certain parameters, then there exist®ianlinear resilient function nonlinear resilient function. The following lemma will be used in the
with the same parameters. discussions.

Here is the main result in this section. Lemma 6: Let g be a function onV,,, whose nonlinearity isV,.

Theorem 2: Let F' be an(n, m, t)-resilient function and7 be a Let n > m and B be ann x m matrix over GH2) whose rank
permutation onV;,,. ThenP = G o F, namely,P(z) = G(F(z)), is m. Set
is also an(n, m, t)-resilient function.

Proof: Since F is an (n, m, t)-resilient function, for each

2126 D xoxs O roxes D x3r5 O T376

ror3 O wows D rows O w324 O T375.

By, - an) = g((x1, - 2m)B).

{, gy C{1,---, n} andai, -+, a; € GF(2), Then the nonlinearityN;,, of h, a function onV,,, satisfiesN;, =
Fla 2"7™ N4, and the algebraic degree bfis the same as that @f
(‘L)|”j1:“1’ T Proof: First we note that this lemma is a generalization of the
runs through all the vectors iV, each 2"~™~' times while following result: Let/(z1, -+, 2.) = g(z1, -, 25). Thenh, a

function onV;,, satisfiesN, = 2"~ ™N,. A proof for this special

(i, ---, 2i,_,) runs throughV, once, where . )
case can be found in, for instance, [22].
{iv, -y in—t}={L, -, n} —{j1, - -, Jt} To prove this lemma, we append B ann X (n — m) matrix C
_ _ so thatd = [B, (] is a nonsingular matrix of order over GF(2).
andi; < -+ <i,_¢. As G is a permutation o, Set(ur, -+, un) = (x1, -+, ¥.)A. Now define a function o,,,
say g*, as follows:
P@)]o; =ay,ioj,=ar = GF(2))]a; =ay. 25, = )
. . . g (i, ey un) = glur, ooy Um).
runs through all the vectors i, each 2"~™~' times while . _ ) _
(2iy, -~ @;,_,) runs through?;, once. It immediately follows that ThenN,« = 2""N,, andg” andg share the same algebraic degree.
P is an (n, m, t)-resilient function. On the other hand, from the construction /of
Note that the total number of difft_arent permutationsion is 2! h(xy, -+, xn) =g((z1, -+, x,)B)
which is far larger tham:!. The latter is the number of ways to reorder e A
the m-component functions. New resilient functions generated using =g (w1, -5 wn)A).

these permutations are all different. To prove this, (&t and By noting the fact that the nonlinearity and algebraic degree of a
G> be two different permutations ofi,,. We want to prove that function are invariant under a nonsingular linear transformation on
Gio F # G2 o F. Suppose for contradiction thét, o F = G2 o F.  coordinates, we havé/, = Ny, = 2" ™N,, and thath has the
Then F = Gi' o G2 o F. As F is unbiased, for eacl¥ € V.., same algebraic degree as thaydf which is the same as that of
there exis™ ™ different vectorsx € V,, such thatF’(«) = 3. This Now we prove a significant result on constructing new resilient
causes? = G7' o Go(3). As 3 is arbitrary,G7' o G2 must be the functions from old, linear ones.
identity permutation ofY.,, which contradicts the fact that, # G-. Theorem 3: Let F be a linear(n, m, t)-resilient function and
Thus we have proved the following: be a permutation of;,, whose nonlinearity isVi. ThenP = Go F
Corollary 5: Given an (n, m, t)-resilient function, Theorem 2 is an (n, m, t)-resilient function and
produces2™! distinct (n, m, )-resilient function. 1) the nonlinearityN, of P satisfiesNp = 2"~ Ng,
Now we describe an example to show applications of Theorem 2.2) the algebraic degree @ is the same as that @f.

It is easy to verify that . ) . . . .
Y fy Proof: As F'is a linear resilient function, it can be written as

F(zx1, x2, 23, 24, x5, T6) Fa1, -y ) = (21, -, ) B

= (21 D2 Das, x3 D xs D as, ¥s Dae D 1) . .
where B is an » x m matrix of rank m over GK2) and

is a linear(6, 3, 2)-resilient function. Consider a permutatichon (1, ---, z,) € V,. The theorem follows immediately from

V3 defined by Lemma 6.
We turn our attention back to the nonline&s, 3, 2)-resilient
Glur, uz, us) function constructed above. It is easy to verify that the nonlinearity

= (u1 D us P uzusz, ur P us Purus, us Husz P uiuz). of each nonzero linear combination of the component functions of
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G is 2. By Theorem 3, the nonlinearity a? is 16, and as we have In [18], Friedman proved that the resilien¢yof an (n, m, t)-

seen, the algebraic degree Bfis indeed2. resilient function is bounded from above by
Theorem 3 implies that highly nonlinear resilient functions can N
. o . . . 2m—1y
be constructed from linear resilient functions by applying highly B, = {_J _1. (3)
nonlinear permutations in the transforming process. A number of 2m -1

highly nonlinear permutations which are based on polynomials @ferpraueret al. [12, Theorem 3] give another upper bound

a finite field have been shown in [23] and [24]. In particular, it is ‘

shown in [23] that the nonlinearity of a permutatiGhbased on the B —9 2" 2+ 1| 1

inverse function on GR2") satisfiesNg > 271 —2(1/2™ and the R R T )

algebraic degree off is m — 1. Hence, the following is proved: ) ) . . -~ )
Corollary 6: If there exists a lineatn, m, t)-resilient function, ~ AS shownin[12], alineaf2™ —1, m, 2™~ —1)-resilient function

then there exists a nonlineén, m, #)-resilient function P whose Can be obtained from a simplex code. This function achieves the

nonlinearity satisfiesVp > 2°7! — on=(1/2)m and whose algebraic uppgr bound pn resiliency. 3). App!ying Corollaries 5 and 6 to this

degree ism — 1. res!l!ent functl_on, we obtair2™! pllstlnct (2m — 1,.m7 2_”"‘ —-1)
Another important implication of Theorem 3 is that from eacﬁ‘g?n'“im fyygctllonis!some of which have a nonlinearity of at least

linear resilient function, we can derive a large number of nonlinedr =2 ' o, and whose algebraic degreesis-1. All the

resilient functions with the same parameters. This, together Wﬁﬁsultlng functions achieve the upper bound on resiliency indicated

the result by Stinson and Massey [5], shows that we have 15 (3).

more freedom in choosing nonlinear resilient functions than in linear

resilient functions, both in terms of the numbers and the parameters. VI. CONCLUSION

(4)

The main results of this correspondence are related to the con-
V. REMARKS ON ALGEBRAIC DEGREE struction of nonlinear resilient functions. Of particular importance to

In his pioneering work [3], Siegenthaler showed, by a lengt ractllcal qppllcatlorls is the method for transforming linear resilient
nctions into nonlinear ones.

argument, that the algebraic degree of a balanced correlation-immune
function, i.e., an(n, 1, t)-resilient function, is at most — ¢ — 1,
except for the case when= »n — 1. Here we show that the proof
can be substantially shortened by employing [15, p. 372, Theore
1]. A short proof for the same result was also given in [16], in
different approach.

Let f be an(n, 1, t)-resilient function. Asf is a function onV/,,
by [15, p. 372, Theorem 1], it can be expressed in the algebraic
normal form, namely,
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