
1740 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 43, NO. 5, SEPTEMBER 1997

[13] J. H. Conway and N. J. Sloane,Sphere Packing, Lattices and Groups.
New York: Springer, 1988.

[14] A. J. Viterbi and J. K. Omura,Principles of Digital Communication and
Coding. New York: McGraw-Hill, 1979.

[15] J. Conan, “The weight spectra of some short low-rate convolutional
codes,”IEEE Trans. Commun., vol. 32, pp. 1050–1053, Sept. 1984.

[16] B. M. Oliver, J. R. Pierce, and C. E. Shannon, “The philosophy of
PCM,” Proc. IRE, vol. 36, pp. 1324–1331, Nov. 1948.

[17] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit
error correcting coding and decoding: Turbo-codes,” inProc. ICC’93
(Geneva, Switzerland, May 1993), pp. 1064–1070.

[18] U. Wachsmann and J. Huber, “Power and bandwidth efficient digital
communication using turbo codes in multilevel codes,”European Trans.
Telecommun., vol. 6, pp. 557–567, Sept. 1995.

Cryptographically Resilient Functions

Xian-Mo Zhang and Yuliang Zheng,Member, IEEE

Abstract—This correspondence studies resilient functions which have
applications in fault-tolerant distributed computing, quantum crypto-
graphic key distribution, and random sequence generation for stream
ciphers. We present a number of new methods for synthesizing resilient
functions. An interesting aspect of these methods is that they are ap-
plicable both to linear and nonlinear resilient functions. Our second
major contribution is to show that every linear resilient function can
be transformed into a large number of nonlinear resilient functions with
the same parameters. As a result, we obtain resilient functions that are
highly nonlinear and have a high algebraic degree.

Index Terms—Correlation-immune functions, cryptography, nonlinear-
ity, resilient functions.

I. INTRODUCTION

An (n; m; t)-resilient function is ann-input m-output functionF
with the property that it runs through every possible outputm-tuple
an equal number of times whent arbitrary inputs are fixed and the
remainingn � t inputs run through all the2n�t input tuples once.
The concept of a resilient function was first introduced by Choret
al. [1] and independently, by Bennett, Brassard, and Robert in [2].
It turned out thatbalancedcorrelation immune functions introduced
by Siegenthaler [3] are a special case of resilient functions. Areas
where resilient functions find their applications include fault-tolerant
distributed computing [1], quantum cryptographic key distribution
[2], and random sequence generation for stream ciphers [4].
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Researchers have concentrated on linear resilient functions, with
one exception being the work by Stinson and Massey [5]. The aim
in [5] was solely to disprove a conjecture posed in [1] (namely, if
there exists a nonlinear resilient function then there exists a linear
resilient function with the same parameters) rather than to explore
cryptographic merits of nonlinear resilient functions. Recent advances
in cryptanalysis, in particular the discovery of the linear cryptanalytic
attack [6], have shown the vital importance of nonlinear functions in
data encryption and one-way hashing algorithms. With the further
revelation of the potential power of the linear attack, we might see
its serious implications on the security of many other cryptographic
routines, including those employing resilient functions. A relevant
but earlier development is the best affine approximation (BAA)
attack proposed by Ding, Xiao, and Shan in [7]. It has been shown
that the BAA attack can successfully break a number of types of
key stream generators that employ a combining or filtering function
which, though correlation-immune, has alow nonlinearity. Success
of these attacks clearly shows a need to investigate highly nonlinear
resilient functions.

The rest of the correspondence is organized as follows: Section II
introduces basic definitions. It also reviews important properties of
resilient functions, as well as previous work in the area. Section III
presents a number of methods for constructing new resilient functions
from old. Some of these methods significantly generalize previously
known methods. An exceptional feature of our methods is that they
can be appliedboth to linear and to nonlinearresilient functions.
Section IV shows how to turn a known resilient function into a new
one. As a result, we can obtain a large number of highly nonlinear
resilient functions from a linear one. Some miscellaneous results on
resilient functions, including a discussion on algebraic degree, are
included in Section V, and the paper is closed by some concluding
remarks in Section VI.

II. PRELIMINARIES

The vector space ofn-tuples of elements from GF(2) is denoted
by Vn. These vectors, in ascending lexicographical order, are denoted
by �0; �1; � � � ; �2 �1. As vectors inVn and integers in[0; 2n� 1]
have a natural one-to-one correspondence, it allows us to switch from
a vector inVn to its corresponding integer in[0; 2n � 1], and vice
versa.

Let f be a function fromVn to GF(2) (or simply, a function on
Vn). The sequenceof f is defined as

((�1)f(� )
; (�1)f(� )

; � � � ; (�1)f(� ))

where each exponent is regarded as being real-valued, while thetruth
table of f is defined as

(f(�0); f(�1); � � � ; f(�2 �1)):

f is said to bebalancedif its truth table assumes an equal number of
zeros and ones. We callh(x) = a1x1 � � � � � anxn � c an affine
function, wherex = (x1; � � � ; xn) andaj ; c 2 GF(2). In particular,
h will be called alinear functionif c = 0. The sequence of an affine
(linear) function will be called anaffine (linear) sequence.

Functions onVn can be represented by polynomials ofn coordi-
nates. We are particularly interested in the so-calledalgebraic normal
form representation in which a function is viewed as the sum of
products of coordinates. Thealgebraic degreedeg (f) of a function
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f is the number of coordinates in the longest product in the algebraic
normal form representation of the function. TheHamming weightof
a vectorv, denoted byW (v), is the number of ones inv. Let f and
g be functions onVn. Then

d(f; g) =

f(x) 6=g(x)

1

where the addition is over the reals, is called theHamming distance
betweenf and g. Let '0; � � � ; '2 �1 be the affine functions on
Vn. Then

Nf = min
i=0; ���;2 �1

d(f; 'i)

is called thenonlinearityof f . It is wel known that the nonlinearity of
f onVn satisfiesNf � 2n�1

�2(1=2)n�1. An extensive investigation
of highly nonlinear balanced functions has been carried out in
[8]–[10].

Algebraic degree and nonlinearity can also be defined for mappings
or tuples of functions. LetF = (f1; � � � ; fm) be a function fromVn
to Vm (where eachfi is a function onVn). The algebraic degree ofF ,
denoted bydeg (F ), is defined as the minimum among the algebraic
degrees of all nonzero linear combinations of the component functions
of F , namely,

deg (F ) = min
g

deg (g)jg =

m

j=1

cjfj ; cj 2 GF(2);

(c1; c2; � � � ; cm) 6= (0; 0; � � � ; 0) :

Similarly, the nonlinearity ofF , denoted byNF , is defined as the
minimum among the nonlinearities of all nonzero linear combinations
of the component functions ofF

NF = min
g

Ngjg =

m

j=1

cjfj ; cj 2 GF(2);

(c1; c2; � � � ; cm) 6= (0; 0; � � � ; 0) :

This definition regardingNF was first introduced by Nyberg in [11].
F = (f1; � � � ; fm) is said to be linear if all its component

functions are linear, and to be nonlinear otherwise. IfF is linear,
then deg (F ) = 1 and NF = 0. The converse, however, is not
always true.

A. Properties of Resilient Functions

Now we summarize a number of facts regarding resilient functions.
Though most of these results are either previously known from, for
instance, [1], [2], and [12], or can be proven easily, they are collected
here with the intent to help the reader to understand our results. We
start with a formal definition of a resilient function.

Definition 1: Let F = (f1; � � � ; fm) be a function fromVn to
Vm, wheren � m � 1, and letx = (x1; � � � ; xn) 2 Vn.

1) F is said to beunbiasedwith respect to a fixed subsetT =

fj1; � � � ; jtg of f1; � � � ; ng, if for every (a1; � � � ; at) 2 Vt

(f1(x); � � � ; fm(x))jx =a ; ���; x =a

runs through all the vectors inVm each2n�m�t times while
(xi ; � � � ; xi ) runs throughVn�t once, wheret � 0

fi1; � � � ; in�tg = f1; � � � ; ng � fj1; � � � ; jtg

and i1 < i2 < � � � < in�t.
2) F is said to be a(n; m; t)-resilient function ifF is unbiased

with respect to every subsetT of f1; � � � ; ng with jT j = t.
The parametert is called theresiliencyof the function.

Obviously,n�m � t holds for all(n; m; t)-resilient functions.
Resilient functions are closely related to correlation immune func-

tions introduced by Siegenthaler [3]. As was noticed by Stinson,et
al., an(n; 1; t)-resilient function is the same as abalancedtth-order
correlation immune function. We will come back to this issue shortly.

The following lemma is helpful in understanding the relationship
between a resilient function and its component functions. It has
been calledXOR Lemmaand expressed in terms of independence
of random variables in [1] and [2]. It also appears as [13, Corollary
7.39]. Here we follow the version described in [14].

Lemma 1: Let F = (f1; � � � ; fm) be a function fromVn to Vm,
wheren and m are integers withn � m � 1 and eachfj is a
function onVn. ThenF is unbiased, namely, it runs through all the
vectors inVm each2n�m times whilex runs throughVn once, if and
only if each nonzero linear combinations off1; � � � ; fm is balanced.

Hence, we have
Lemma 2: Let F = (f1; � � � ; fm) be a function fromVn to Vm,

wheren andm are integers withn � m � 1 and eachfj is a function
onVn. ThenF is unbiased with respect toT = fj1; � � � ; jtg, a fixed
subset off1; � � � ; ng, if and only if every nonzero linear combination
of f1; � � � ; fm

f(x) =

m

j=1

cjfj(x)

is unbiased (i.e., balanced) with respect toT = fj1; � � � ; jtg, where
x = (x1; � � � ; xn) 2 Vn.

As an immediate consequence, we have
Theorem 1: Let F = (f1; � � � ; fm) be a function fromVn to Vm,

wheren and m are integers withn � m � 1 and eachfj is a
function onVn. ThenF is an(n; m; t)-resilient function if and only
if every nonzero linear combination off1; � � � ; fm

f(x) =

m

j=1

cjfj(x)

is a (n; 1; t)-resilient function, wherex = (x1; � � � ; xn) 2 Vn.
It follows from Theorem 1 that ifF = (f1; � � � ; fm) is an

(n; m; t)-resilient function, thenG = (f1; � � � ; fs) is an (n; s; t)-
resilient function for each integer1 � s � m.

Theorem 1 shows that each(n; m; t)-resilient function gives
2m � 1 distinct balancedtth-order correlation immune functions on
Vn. It also indicates that we can study(n; m; t)-resilient functions,
including their properties and constructions, through investigating the
correlation immune characteristics of their component functions.

To facilitate our investigations, we introduce the following lemma.
Lemma 3: A function f on Vn is unbiased with respect toT =

fj1; � � � ; jtg, a fixed subset off1; � � � ; ng, if and only if for each
linear function

'(x) = cj xj � � � � � cj xj

on Vn, where

x = (x1; � � � ; xn)f(x)� '(x)

is balanced. (Note thatm = 1 here.)
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Proof: First, we consider the simplest case whereT =

f1; � � � ; tg. Let (a1; � � � ; at) be an arbitrary but fixed vector in
Vt. Then

(f(x)� '(x))jx =a ; ���; x =a

= f(a1; � � � ; at; xt+1; � � � ; xn)

� '(a1; � � � ; at; xt+1; � � � ; xn):

Now suppose thatf is unbiased with respect toT = f1; � � � ; tg.
Then

f(a1; � � � ; at; xt+1; � � � ; xn)

is balanced. Note that

'(a1; � � � ; at; xt+1; � � � ; xn)

is a constant. Thus

(f(x)� '(x))jx =a ; ���; x =a

is balanced. As(a1; � � � ; at) is arbitrary,f(x)�'(x) is a balanced
function onVn.

Conversely, suppose thatf(x)�'(x) is balanced for an arbitrary
'(x) = c1x1 � � � � � ctxt.

Let �a ��� a be the sequence of

f(a1; � � � ; at; xt+1; � � � ; xn):

By [8, Lemma 2]

� = �0 ��� 0; �0 ��� 1; � � � ; �1 ��� 1

is the sequence off(x1; � � � ; xn).
Recall that a(1; �1) matrixH of orderm is called aHadamard

matrix if HHt
= mIm, whereHt is the transpose ofH andIm is the

identity matrix of orderm (see [15, ch. 2]). A Sylvester–Hadamard
matrix of order2n, denoted byHn, is generated by the following
recursive relation:

H0 = 1; Hn =
Hn�1 Hn�1

Hn�1 �Hn�1
; n = 1; 2; � � � :

Now let L be the sequence of'. ThenL is a row ofHn. Since
Hn = Ht�Hn�t, where� denotes the Kronecker product, we have
L = `0�`00, where`0 is a row ofHt and`00 is a row ofHn�t. Write
`0 = (d0; � � � ; d2 �1). ThenL = (d0`

00; � � � ; d2 �1`
00

) and hence

h�; Li = d0h�0 ��� 0; `
00i+ d1h�0 ��� 01; `

00i

+ � � �+ d2 �1h�1 ��� 11; `
00i: (1)

Since f(x) � '(x) is balanced,h�; Li = 0. Note that `0 =

(d0; � � � ; d2 �1), a row or column ofHt, is also the sequence of

'
0

(x
0

) = c1x1 � � � � � ctxt:

A fact with Ht is that the rows (columns) ofHt comprise all the
linear sequences (see [8, Lemma 1]). Then from (1)

(h�0 ��� 0; `
00i; h�0 ��� 01; `

00i; � � � ; h�1 ��� 11; `
00i)Ht

= (0; 0; � � � ; 0):

As Ht has an inverse, we have

h�0 ��� 0; `
00i = h�0 ��� 01; `

00i = � � � = h�1 ��� 11; `
00i = 0:

Rewrite'(x) = '0

(x0)�'00

(x00), wherex0 2 Vt andx00 2 Vn�t.
Now `0 is the sequence of'0 whereas`00 is the sequence of'00.
Note that

'
0

(x
0

) = c1x1 � � � � � ctxt:

Thus'00

= 0 and `00 = (1; � � � ; 1). As a result

h�a ��� a ; `
00i = 0

which implies that�a ��� a is balanced and hence

f(a1; � � � ; at; xt+1; � � � ; xn)

is balanced, where(a1; � � � ; at) is an arbitrary vector inVt. This
shows thatf is unbiased with respect toT = f1; � � � ; tg.

For the more general case whereT = fj1; � � � ; jtg, set

f(x1; � � � ; xn) = g(xj ; � � � ; xj ; xj ; � � � ; xj )

wherefj1; � � � ; jtg = T and

fxj ; xj ; � � � ; xj g = f1; � � � ; ng � T:

Also set

xj = y1; � � � ; xj = yn:

Thus

g(xj ; � � � ; xj ; xj ; � � � ; xj ) = g(y1; � � � ; yt; yt+1; � � � ; yn):

Now write

 (y) =  (y1; � � � ; yn) = c1y1 � � � � � ctyt

wherey = (y1; � � � ; yn). Obviously

 (y1; � � � ; yn) = '(x1; � � � ; xn):

Hence

f(x)� '(x) = g(y)�  (y):

Clearly,f is unbiased with respect tofj1; � � � ; jtg if and only if g is
unbiased with respect tof1; � � � ; tg, and by the above discussions,
if and only if g(y)�  (y) = f(x)� '(x) is balanced.

A corollary of Lemma 3 is
Corollary 1: f is an(n; 1; t)-resilient function if and only if for

each linear function

'(x) = c1x1 � � � � � cnxn

with W (c1; � � � ; cn) � t, f(x)� '(x) is balanced.
From this corollary and Theorem 1, it follows
Corollary 2: F is an(n; m; t)-resilient function if and only if it

is an (n; m; s)-resilient function for each0 � s � t.
Note that Corollary 2 also follows immediately from the orthogonal

array characterization in [16]. Now we go back to correlation-immune
functions. Work by Xiao and Massey provides us with an equivalent
definition of the concept [17].
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Definition 2: A function f on Vn is said to be tth-order
correlation-immune if for each linear function

'(x) = c1x1 � � � � � cnxn

with 1 � W (c1; � � � ; cn) � t, f(x)� '(x) is balanced.
As W (c1; � � � ; cn) = 0 is excluded, the definition covers both

balanced and nonbalanced correlation-immune functions, although
stream ciphers prefer balanced to nonbalanced functions.

Comparing the definition with Corollary 1, it becomes clear that
a balancedtth-order correlation-immune function is indeed identical
to an (n; 1; t)-resilient function.

Having presented essential facts on resilient functions, next we
consider transformations on the coordinates of a resilient function.
Unlike nonlinearity and algebraic degree, the resiliency of functions
is not invariant under a nonsingular linear transformation on the
coordinates. This can be seen from the following example.

Let

f(x) = x1 � x2 � � � � � xn

where x = (x1; � � � ; xn). Then f is an (n; 1; n � 1)-resilient
function. Now letB be a matrix of ordern over GF(2) satisfying

(x1; x2; � � � ; xn�1; xn)B = x2; x3; � � � ; xn�1;

n

j=1

xj :

Setg(x) = f(xB�1). Theng(x) = xn whose resiliency is zero.
Another issue is in relation to the transformation of the com-

ponent functions, namely output, of a resilient function. This will
be discussed in detail in Section IV, where we show an important
result regarding invariant properties of resilient functions under
transformations of (output) component functions.

B. Related Work

The concept of a resilient function was introduced in [1] and
[2]. The equivalence between linear resilient functions and linear
error-correcting codes was also established in [1] and [2], while the
equivalence between resilient functions and large sets of orthogonal
arrays was proved in [16]. Two upper bounds on resiliency which
are the best known so far were derived in [12] and [18]. In [5],
Stinson and Massey disproved the conjecture that if there exists a
nonlinear resilient function then there exists a linear resilient function
with the same parameters. The nonlinear resilient functions they
constructed were based on the (nonlinear) Kerdock and Preparata
codes [15]. Some linear resilient functions achieving an upper bound
on resiliency can be found in [12] and [18]. Resilient functions which
are symmetric were studied in [1] and [19], while nonbinary resilient
functions were examined in [20].

Soon after the concept of a correlation-immune function was
introduced by Siegenthaler [3], Xiao and Massey gave an equivalent
definition in [17]. These were followed in [21] and [22], where
various methods for constructing correlation-immune functions were
presented.

III. CONSTRUCTING NEW RESILIENT FUNCTIONS FROM OLD

Constructing new resilient functions from old ones is an interesting
problem that has many practical applications. There are two opposite
directions in relation to this problem, these being constructing “large”
functions from “small” ones and “small” functions from “large” ones.
Due to a close relationship between resilient functions and error-
correcting codes (in particular, the equivalence between linear codes
and linear resilient functions as was revealed in [1] and [2]), numerous
techniques can be borrowed from the theory of error-correcting codes

to construct new resilient functions from old. These techniques have
been further enriched by Stinson’s work on the equivalence between
resilient functions and large sets of orthogonal arrays [16]. Some
concrete examples on constructing new functions from old can be
found in [12].

The main purpose of this section is to present a number of methods
for directly synthesizing large resilient functions from small ones. A
distinctive feature of these methods is that they are applicable both
to linear and nonlinear resilient functions.

We start with (balanced) correlation immune functions. Letfi be
an (ni; 1; ti)-resilient function,i = 1; 2. Then f1(x) � f2(y) is
an (n1 + n2; 1; t1 + t2 + 1)-resilient function, wherex 2 Vn and
y 2 Vn . To show that this is correct, let' be a linear function on
Vn +n defined by

'(x; y) = c1x1 � � � � � cn xn � d1y1 � � � � � dn yn

wherex = (x1; � � � ; xn ), y = (y1; � � � ; yn ), cj ; di 2 GF(2).
Suppose that

W (c1; � � � ; cn ; d1; � � � ; dn ) � t1 + t2 + 1:

Then eitherW (c1; � � � ; cn ) � t1 or W (d1; � � � ; dn ) � t2. By
Corollary 1, eitherf1(x) � '1(x) or f2(y) � '2(y) is balanced,
where

'1(x) = c1x1 � � � � � cn xn

and

'2(y) = d1y1 � � � � � dn yn :

Note that the sum of two functions with disjoint variables is balanced
if one of the two functions is balanced. Hence

f1(x)� f2(y)� '(x; y) = [f1(x)� '1(x)]� [f2(y)� '2(y)]

is balanced. Again by Corollary 1,f1(x)� f2(y) is an(n1 + n2; 1;
t1 + t2 + 1)-resilient function.

By induction, we have the following result.
Lemma 4: Let fi be an (ni; 1; ti)-resilient function, i =

1; � � � ; s. Thenf1(x) � � � � � fs(y) is a ( s

j=1
nj ; 1; s � 1 +

s

j=1
tj)-resilient function, wherex 2 Vn ; � � � ; y 2 Vn .

As an application of Lemma 4, we can combine known re-
silient functions to obtain a new one. First we show thatif F =
(f1; � � � ; fm) is an (n; m; t)-resilient function, then

G(x; y; z) = (F (x)� F (y); F (y)� F (z))

is an (3n; 2m; 2t+ 1)-resilient function, wherex; y; z 2 Vn.
To prove thatG is a (3n; 2m; 2t+ 1)-resilient function, we first

note that

f1(x)� f1(y); � � � ; fm(x)� fm(y)

f1(y)� f1(z); � � � ; fm(y)� fm(z)

comprise all the2m component functions ofG. Consider a nonzero
linear combination of these2m component functions

f(x; y; z) =

m

j=1

cj(fj(x)� fj(y))�

m

j=1

dj(fj(y)� fj(z))

where either (c1; � � � ; cm) 6= (0; � � � ; 0) or (d1; � � � ; dm) 6=
(0; � � � ; 0).

Note that

f(x; y; z) =

m

j=1

cjfj(x)�

m

j=1

(cj � dj)fj(y)�

m

j=1

djfj(z):

By Theorem 1, m

j=1
cjfj(x) is an(n; 1; t)-resilient function when

(c1; � � � ; cm) 6= (0; � � � ; 0):
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Similarly, m

j=1
djfj(z) is an (n; 1; t)-resilient function when

(d1; � � � ; dm) 6= (0; � � � ; 0)

and m

j=1
(cj � dj)fj(y) is an(n; 1; t)-resilient function when

(c1 � d1; � � � ; cm � dm) 6= (0; � � � ; 0):

Since either(c1; � � � ; cm) 6= (0; � � � ; 0) or (d1; � � � ; dm) 6=

(0; � � � ; 0), at least two among the following three inequalities hold:

(c1; � � � ; cm) 6= (0; � � � ; 0)

(d1; � � � ; dm) 6= (0; � � � ; 0)

and

(c1 � d1; � � � ; cm � dm) 6= (0; � � � ; 0):

By Lemma 4, when two holdf(x; y; z) is a(3n; 1; 2t+1)-resilient
function, while when all three hold it is a(3n; 1; 3t + 2)-resilient
function. By Theorem 1,G(x; y; z) is indeed a(3n; 2m; 2t + 1)-
resilient function.

It was first observed in [1] that

g(x1; � � � ; x3h) = (x1 � � � � � x2h; xh+1 � � � � � x3h)

is a linear (3h; 2; 2h � 1)-resilient function. We can view this
function as being obtained from

f(x1; � � � ; xh) = x1 � � � � � xh

which is an(h; 1; h � 1)-resilient function, by using the technique
described above. Conversely, we can also regard our technique as a
significant generalization of the idea underling the construction of

g(x1; � � � ; x3h) = (x1 � � � � � x2h; xh+1 � � � � � x3h):

Now applying the same technique to the resulting(3n; 2m; 2t+1)-
resilient functionG itself, we obtain a(32n; 22m; 22(1 + t) � 1)-
resilient function. In general, repeating the technique fork times,
k = 1; 2; � � �, we obtain a(3kn; 2km; 2k(1 + t) � 1)-resilient
function from an(n; m; t)-resilient function.

The technique can also be generalized in other directions. In
particular, it is easy to prove that ifF = (f1; � � � ; fm) is an
(n; m; t)-resilient function, then

G(x; y; z; u) = (F (x)� F (y); F (y)� F (z); F (z)� F (u))

is a (4n; 3m; 2t + 1)-resilient function, wherex; y; z; u 2 Vn.
Again by iterating the technique, we can construct from an(n; m; t)-
resilient function a(4kn; 3km; 2k(1 + t)� 1)-resilient function for
all k = 1; 2; � � �.

To summarize the discussions, we have
Lemma 5: Given an(n; m; t)-resilient function, there is an itera-

tive method to construct an((h+1)
kn; hkm; 2k(1+t)�1)-resilient

function for all h = 2; 3; � � � andk = 1; 2; � � �.
As another application of Lemma 4, we give the following result.
Corollary 3: Let F = (f1; � � � ; fm) be a (n1; m; t1)-resilient

function andG = (g1; � � � ; gm) a (n2; m; t2)-resilient function.
Then

P (z) = F (x)�G(y) = (f1(x)� g1(y); � � � ; fm(x)� gm(y))

is an(n1+n2; m; t1+ t2+1)-resilient function, wherez = (x; y),
x 2 Vn , and y 2 Vn .

Proof: Consider an arbitrary nonzero linear combination of the
component functions ofP (z), say

p(z) =

m

j=1

cj [fj(x)� gj(y)]

=

m

j=1

cjfj(x)�

m

j=1

cjgj(y):

By Theorem 1, m

j=1
cjfj(x) is a t1-resilient function, while

m

j=1
cjgj(y) is at2-resilient function. Hence, by Lemma 4,p(z) is

a t1+t2+1-resilient function. Asp(z) is arbitrary, again by Theorem
1, P (z) is an(n1 + n2; m; t1 + t2 + 1)-resilient function.

A special case of the technique indicated in Corollary 3, namely,
when bothF andG are linear, has been employed by Bierbrauer,
Gopalakrishnan, and Stinson in proving [12, Theorem 7].

The following result is concerned with placing resilient functions
in parallel.

Corollary 4: Let F = (f1; � � � ; fm ) be a(n1; m1; t1)-resilient
function andG = (g1; � � � ; gm ) be a(n2; m2; t2)-resilient func-
tion. Then

P (z) = (f1(x); � � � ; fm (x); g1(y); � � � ; gm (y))

is an (n1 + n2; m1 +m2; �)-resilient function, wherez = (x; y),
x 2 Vn , y 2 Vn , and� = min ft1; t2g.

Proof: Consider an arbitrary nonzero linear combination of the
component functions ofP (z)

p(z) =

m

j=1

cjfj(x)�

m

j=1

djgj(y):

As (c1; � � � ; cm ; d1; � � � ; dm ) is a nonzero vector, without loss of
generality, we can assume that(c1; � � � ; cm ) 6= (0; � � � ; 0). Now
consider

m

j=1

cjfj(x)jx =a ; ���; x =a

for an arbitrary�1-subset

fj1; � � � ; j� g � f1; � � � ; n1g

and an arbitrary�2-subset

fi1; � � � ; i� g � f1; � � � ; n2g

where�1+�2=�, and arbitrarya1; � � � ; a� , b1; � � � ; b� 2GF(2). By
Theorem 1, and the fact that the sum of two functions with disjoint
variables is balanced if one of the two functions is balanced

m

j=1

cjfj(x)jx =a ; ���; x =a

is balanced. Thus

m

j=1

cjfj(x)jx =a ; ���; x = a� �

m

j=1

djgj(y)jy

= b1; � � � ; bi = b�

is balanced. It follows from Theorem 1 that

P (z) = (f1(x); � � � ; fm (x); g1(y); � � � ; gm (y))

is an(n1 + n2; m1 +m2; �)-resilient function.
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IV. TRANSFORMING LINEAR RESILIENT FUNCTIONS

TO NONLINEAR ONES

Recall that a resilient function is said to belinear if its component
functions are all linear, and said to benonlinearotherwise. When the
concept of resilient functions was introduced, it was conjectured that
if there exists anonlinear resilient function with certain parameters,
then there exists alinear resilient function with the same parameters
[1], [2]. This conjecture was disproved by Stinson and Massey
[5]. In particular, they showed that there exists an infinite class
of nonlinear resilient functions for which there do not exist linear
resilient functions with the same parameters. They used nonlinear
error-correcting codes in their proof. In this section, we investigate
this topic from a different point of view. In particular, we show that by
permuting the outputm-tuples (i.e., all2m vectors inVm), instead of
only reordering them component functions of an(n; m; t)-resilient
function, we can obtain2m! distinct (n; m; t)-resilient functions. A
consequence of this result is that theconverseof the conjecture in [1]
and [2] is true, namely, if there exists alinear resilient function with
certain parameters, then there exists anonlinear resilient function
with the same parameters.

Here is the main result in this section.
Theorem 2: Let F be an(n; m; t)-resilient function andG be a

permutation onVm. ThenP = G � F , namely,P (x) = G(F (x)),
is also an(n; m; t)-resilient function.

Proof: Since F is an (n; m; t)-resilient function, for each
fj1; � � � ; jtg � f1; � � � ; ng anda1; � � � ; at 2 GF(2),

F (x)jx =a ; ���; x =a

runs through all the vectors inVm each 2n�m�t times while
(xi ; � � � ; xi ) runs throughVn once, where

fi1; � � � ; in�tg = f1; � � � ; ng � fj1; � � � ; jtg

and i1 < � � � < in�t. As G is a permutation onVm

P (x)jx =a ; ���; x =a = G(F (x))jx =a ; ���; x =a

runs through all the vectors inVm each 2n�m�t times while
(xi ; � � � ; xi ) runs throughVn once. It immediately follows that
P is an (n; m; t)-resilient function.

Note that the total number of different permutations onVm is 2m!

which is far larger thanm!. The latter is the number of ways to reorder
them-component functions. New resilient functions generated using
these permutations are all different. To prove this, letG1 and
G2 be two different permutations onVm. We want to prove that
G1 �F 6= G2 �F . Suppose for contradiction thatG1 �F = G2 �F .
Then F = G�1

1
� G2 � F . As F is unbiased, for each� 2 Vm,

there exist2n�m different vectors� 2 Vn such thatF (�) = �. This
causes� = G�1

1
�G2(�). As � is arbitrary,G�1

1
�G2 must be the

identity permutation onVm, which contradicts the fact thatG1 6= G2.
Thus we have proved the following:

Corollary 5: Given an (n; m; t)-resilient function, Theorem 2
produces2m! distinct (n; m; t)-resilient function.

Now we describe an example to show applications of Theorem 2.
It is easy to verify that

F (x1; x2; x3; x4; x5; x6)

= (x1 � x2 � x3; x3 � x4 � x5; x5 � x6 � x1)

is a linear(6; 3; 2)-resilient function. Consider a permutationG on
V3 defined by

G(u1; u2; u3)

= (u1 � u3 � u2u3; u1 � u2 � u1u3; u2 � u3 � u1u2):

ThenP = G � F takes the form of

P (x) = G(F (x)) = (p1(x); p2(x); p3(x))

wherex = (x1; � � � ; x6) and

p1(x) =x2 � x3 � x6 � x1x3 � x1x4 � x1x5�

x3x5 � x3x6 � x4x5 � x4x6 � x5x6

p2(x) =x2 � x4 � x5 � x1x2 � x1x3 � x1x5�

x1x6 � x2x5 � x2x6 � x3x5 � x3x6

p3(x) =x1 � x4 � x6 � x1x3 � x1x4 � x1x5�

x2x3 � x2x4 � x2x5 � x3x4 � x3x5:

By Theorem 2,P = G � F is also a(6; 3; 2)-resilient function.
Note that all component functions of the resulting resilient func-

tion P are quadratic. The rest of this section is devoted to this
direction, namely, converting linear resilient functions to nonlinear
ones. We also show how to calculate the nonlinearity of a resulting
nonlinear resilient function. The following lemma will be used in the
discussions.

Lemma 6: Let g be a function onVm whose nonlinearity isNg.
Let n � m andB be ann � m matrix over GF(2) whose rank
is m. Set

h(x1; � � � ; xn) = g((x1; � � � ; xm)B):

Then the nonlinearityNh of h, a function onVn, satisfiesNh =

2n�mNg, and the algebraic degree ofh is the same as that ofg.
Proof: First we note that this lemma is a generalization of the

following result: Leth(x1; � � � ; xn) = g(x1; � � � ; xk). Then h, a
function onVn, satisfiesNh = 2n�mNg. A proof for this special
case can be found in, for instance, [22].

To prove this lemma, we append toB ann � (n�m) matrix C
so thatA = [B; C] is a nonsingular matrix of ordern over GF(2).
Set (u1; � � � ; un) = (x1; � � � ; xn)A. Now define a function onVn,
say g�, as follows:

g
�

(u1; � � � ; un) = g(u1; � � � ; um):

ThenNg = 2n�mNg, andg� andg share the same algebraic degree.
On the other hand, from the construction ofh

h(x1; � � � ; xn) = g((x1; � � � ; xn)B)

= g
�

((x1; � � � ; xn)A):

By noting the fact that the nonlinearity and algebraic degree of a
function are invariant under a nonsingular linear transformation on
coordinates, we haveNh = Ng = 2n�mNg, and thath has the
same algebraic degree as that ofg�, which is the same as that ofg.

Now we prove a significant result on constructing new resilient
functions from old, linear ones.

Theorem 3: Let F be a linear(n; m; t)-resilient function andG
be a permutation onVm whose nonlinearity isNG. ThenP = G�F

is an (n; m; t)-resilient function and

1) the nonlinearityNP of P satisfiesNP = 2n�mNG,
2) the algebraic degree ofP is the same as that ofG.

Proof: As F is a linear resilient function, it can be written as

F (x1; � � � ; xn) = (x1; � � � ; xn)B

where B is an n � m matrix of rank m over GF(2) and
(x1; � � � ; xn) 2 Vn. The theorem follows immediately from
Lemma 6.

We turn our attention back to the nonlinear(6; 3; 2)-resilient
function constructed above. It is easy to verify that the nonlinearity
of each nonzero linear combination of the component functions of
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G is 2. By Theorem 3, the nonlinearity ofP is 16, and as we have
seen, the algebraic degree ofP is indeed2.

Theorem 3 implies that highly nonlinear resilient functions can
be constructed from linear resilient functions by applying highly
nonlinear permutations in the transforming process. A number of
highly nonlinear permutations which are based on polynomials on
a finite field have been shown in [23] and [24]. In particular, it is
shown in [23] that the nonlinearity of a permutationG based on the
inverse function on GF(2m) satisfiesNG � 2

m�1
�2

(1=2)m and the
algebraic degree ofG is m� 1. Hence, the following is proved:

Corollary 6: If there exists a linear(n; m; t)-resilient function,
then there exists a nonlinear(n; m; t)-resilient functionP whose
nonlinearity satisfiesNP � 2

n�1
� 2

n�(1=2)m and whose algebraic
degree ism � 1.

Another important implication of Theorem 3 is that from each
linear resilient function, we can derive a large number of nonlinear
resilient functions with the same parameters. This, together with
the result by Stinson and Massey [5], shows that we have far
more freedom in choosing nonlinear resilient functions than in linear
resilient functions, both in terms of the numbers and the parameters.

V. REMARKS ON ALGEBRAIC DEGREE

In his pioneering work [3], Siegenthaler showed, by a lengthy
argument, that the algebraic degree of a balanced correlation-immune
function, i.e., an(n; 1; t)-resilient function, is at mostn � t � 1,
except for the case whent = n � 1. Here we show that the proof
can be substantially shortened by employing [15, p. 372, Theorem
1]. A short proof for the same result was also given in [16], in a
different approach.

Let f be an(n; 1; t)-resilient function. Asf is a function onVn,
by [15, p. 372, Theorem 1], it can be expressed in the algebraic
normal form, namely,

f(x1; � � � ; xn) =

a ; ���; a 2GF (2)

g(a1; � � � ; an)x
a
1 � � � x

a
n

where

g(a1; � � � ; an) =

(b ; ���; b )�(a ; ���; a )

f(b1; � � � ; bn)

and by(b1; � � � ; bn) � (a1; � � � ; an) we mean that ifbj = 1 then
aj = 1.

Consider the coefficient of the termx1 � � � xn�t, that is,

b ; ���; b 2GF (2)

f(b1; � � � ; bn�t; 0; � � � ; 0): (2)

Sincef is an (n; 1; t)-resilient function, (2) becomes zero, except
for n�t = 1 in which case (2) becomes one. By the same reasoning,
we can see that the coefficient of every term of algebraic degreen�t

is zero. This proves that the algebraic degree off is at mostn�t�1.
By noting our Theorem 1, we have
Corollary 7: The algebraic degree of an(n; m; t)-resilient func-

tion is at mostn � t� 1, except for the case whent = n � 1.
Recall that it is easy to construct linear(n; n � 1; 1)-resilient

functions from linear error-correcting codes. Using Corollaries 5 and
6, we obtain2n�1! distinct (n; n� 1; 1)-resilient functions, a large
number of which have a nonlinearity of at least2

n�1
�2

(n+1=2) and
whose algebraic degree isn � 2.

It should be noted, however, that due to Corollary 7, applying
Theorem 3 to anonlinear (n; n � 1; 1)-resilient function does not
always yield a function that has a higher algebraic degree.

In [18], Friedman proved that the resiliencyt of an (n; m; t)-
resilient function is bounded from above by

B1 =
2
m�1n

2m � 1
� 1: (3)

Bierbraueret al. [12, Theorem 3] give another upper bound

B2 = 2
2
m�2

(n+ 1)

2m � 1
� 1: (4)

As shown in [12], a linear(2m�1; m; 2m�1�1)-resilient function
can be obtained from a simplex code. This function achieves the
upper bound on resiliency (3). Applying Corollaries 5 and 6 to this
resilient function, we obtain2m! distinct (2m � 1; m; 2m�1 � 1)

resilient functions, some of which have a nonlinearity of at least
2
2 �2

�2
2 �1�(1=2)m, and whose algebraic degree ism�1. All the

resulting functions achieve the upper bound on resiliency indicated
in (3).

VI. CONCLUSION

The main results of this correspondence are related to the con-
struction of nonlinear resilient functions. Of particular importance to
practical applications is the method for transforming linear resilient
functions into nonlinear ones.
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Addendum to “Non-BCH Triple-Error-Correcting Codes”

M. van der Vlugt

One of the subjects in the above-mentioned paper [3] is the deter-
mination of the weight distribution of the dual codeC? of the binary
cyclic codesC of lengthn = 2

m

� 1 with zeros�; �2 +1; �2 +1.
Herem = 2t + 1 and� generates the multiplicative group of the
finite field 2 . After the publication of [3], Tor Helleseth drew
my attention to the fact that Kasami’s paper [1] contains the key
to an essentially different way of deriving the weight enumerator of
C
?. Indeed, combining [1, Theorem 15 (ii)-1] with the fact that the

minimum distancedmin = 7 (see [2, p. 290]) also yields the weight
distribution of C?.
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