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Abstract

Testing of database applications is of great importance.
A significant issue in database application testing consists
in the availability of representative data. In this paper we
investigate the problem of generating a synthetic database
based on a-priori knowledge about a production database.
Our approach is to fit general location model using various
characteristics (e.g., constraints, statistics, rules) extracted
from the production database and then generate the syn-
thetic data using model learnt. The generated data is valid
and similar to real data in terms of statistical distribution,
hence it can be used for functional and performance testing.
As characteristics extracted may contain information which
may be used by attacker to derive some confidential infor-
mation about individuals, we present our disclosure anal-
ysis method which applies cell suppression technique for
identity disclosure analysis and perturbation for value dis-
closure.

1. Introduction

Database application software testing is by far the most
popular activity currently used by developers or vendors to
ensure high software quality. A significant issue in database
testing consists in the availability of representative data.

Recently, the authors in [17, 18] have proposed a general
framework for privacy preserving database application test-
ing and investigated the method of generating synthetic data
sets based on a-priori knowledge (e.g., constraints, statis-
tics, rules etc.) about the current production data sets. In
testing the functions of database applications, the generated
data need to satisfy all the constraints (e.g., no-Null, unique-
ness, referential integrity constraints, domain constraints,
and semantic constraints) and business rules underlying the
live data. In testing the performance of database applica-
tions, it will be imperative that the data is resembling real
data in terms of statistical distribution since the statistical
nature of the data determines query performance.

In addition to valid (in terms of constraints and rules)

and resembling real data (in terms of statistical distribu-
tion), the generated data need to preserve privacy. To be
privacy preserving, the generated data should not disclose
any confidential information that the database owner would
not want to reveal. There are several kinds of confiden-
tial information that a database owner would like to pro-
tect. An incomplete list could include: the existence of
some fields in a table, some statistical data about the live
database, some deterministic or non-deterministic business
rules or constraints of the live database, and users’ records
in the tables. Since the synthetic database is generated from
a-priori knowledge about the live database, how to preclude
confidential information from a-priori knowledge becomes
an important issue.

In this paper, we examine how to generate a synthetic
database, which is similar to the production database and
does not disclose confidential information, for privacy pre-
serving database application testing. This issue is related
to, but not identical to, the widely recognized problem of
privacy preserving data mining (e.g., [1]). In the situa-
tion we present, we extract characteristics from production
databases and use characteristics to generate a synthetic
database. Our disclosure analysis is conducted at model
level instead of tuple level.

Our contributions are as follows:

• First, the context in this paper is to use the general lo-
cation model to model databases and investigate how
to use model learned to generate synthetic database.
As the model learned is the only means to generate
data for release, all confidential information which at-
tackers can derive is guaranteed to be contained in
those parameters. Furthermore, as the search space of
parameters is much smaller than the space of perturbed
data, this approach is more effective and efficient.

• Second, we evaluate the effect of data distribution
on workload performance using TPC benchmarks and
show the data generated need to be statistically simi-
lar to original data in order to fulfill requirements of
application testing.



• Third, we examine how to resolve the potential disclo-
sure (both identity disclosure and value disclosure) of
confidential information entailed in the general loca-
tion model. We extend the concept of a uni-variate
confidence interval to a multi-variate confidence re-
gion to measure privacy and confidentiality for mul-
tiple confidential attributes simultaneously.

The remainder of the paper is structured as follows. In
section 2 we review the related work. We describe our pri-
vacy aware data generation system in section 3 and briefly
revisit how to fit the general location model in section 4. In
section 5, we present in detail how to screen out confiden-
tial information from characteristics. In section 6, we first
evaluate the effect of data distribution on workload perfor-
mance using TPC Benchmarks, and show the performance
of our disclosure analysis. In section 7 we draw conclusions
and describe directions for future work.

2. Related Work

Testing of database applications is of great importance
since undetected faults in these applications may result in
incorrect modification or accidental removal of crucial data.
Although various studies have been conducted to investigate
testing techniques for database design, relatively few efforts
have been made to explicitly address the testing of database
applications. The problem of database application testing
can be categorized into three parts: database generation, in-
put test cases preparation and test outcomes verification[2].
In this paper, we focus on database generation.

There have been some prior investigations into data gen-
eration. For example, Transaction Processing Performance
Council has released a dozen of TPC Benchmarks and
many researchers have evaluated those Benchmarks (e.g.,
[8, 10, 12]). There are also some other data generation tools
(e.g., [13, 11]) available. However, both TPC Benchmarks
and other data generation tools are built for assessing the
performance of database management systems, rather than
for testing complex real world database applications. They
lack the required flexibility to produce more realistic data
needed for application testing, i.e., the generated data also
need to satisfy all the constraints and business rules under-
lying the live data.

To generate realistic data for database applications, the
authors in [3, 4] investigate how to populate the database
with meaningful data that satisfy database constraints. They
present a tool which inputs a database schema definition,
along with some additional information from the user,
and outputs a valid database state. The tool can han-
dle not-NULL, uniqueness, referential integrity constraints,
and some domain constraints and semantic constraints.
Most constraints are included in data schemas which are

expressed by SQL data definition language (DDL). The
tool parses the schema definition for the database un-
derlying the application to be tested using PostgreSQL
(http://www.postgresql.org), then collects relevant infor-
mation about tables, attributes, and constraints from the
parse tree. The generation technique was motivated by the
category-partition testing technique.

The inherent challenge of generating data for database
applications is the tradeoff between similarity and privacy
preservation. If the data is too synthetic (e.g., completely
uniform distributions), it runs the risk of being rejected for
not capturing he interesting patterns of a real data set. Con-
versely, if it employs data from the real world directly, it
risks the violation of privacy issues. In terms of perfor-
mance testing, using a large amount ofresemblingdata is
necessary to guarantee its satisfied performance when soft-
ware is deployed. The generated data need to resemble
real data in terms of statistical distribution in order to ful-
fill requirements of applications testing. The authors in [14]
points out the importance of providing meaningful, repre-
sentative data with realistic skew, sparcity and data distri-
butions for benchmarking database system performance as
the current development of DBGEN for TPC-D used a rel-
atively simple, third-normal-form schema and modest re-
quirements in terms of data complexity and scaling (e.g.,
all data was uniformly distributed). Zheng et al. in [19]
show that artificial data sets have very different characteris-
tics from the real-world data sets and hence there is a great
need to use real-world data sets as benchmarks for associa-
tion rule mining. As many databases maintain data on sen-
sitive or confidential information such as income and assets
for real customers. It is imperative to guarantee the data
generated can not disclose any private or confidential infor-
mation.

3. System Overview

Figure 1 shows the architecture of synthetic database
generation system. The system is intended to generate a
synthetic database using various characteristics extracted
from the production database for testing database applica-
tions, instead of generating benchmark for use in the per-
formance evaluation of DBMS. We assume databases are
based on the relational model in our paper. A relational
database is a set of relation schemas together with a set of
integrity constraints which restrict the possible values of the
database states.

We would like automate the data generation process as
much as possible. We use the same approach as in [3] to
extract various constraint information from schemes which
are defined by DDL. It is desirable that the generated data
in synthetic databases also satisfy the constraints. A ma-
jor advantage is that our system can extract more complex
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Figure 1. Architecture of data generation system

characteristics (e.g., statistics and rules) in addition to con-
straints from data catalog and data when the underlying pro-
duction database is available. As we discussed in introduc-
tion, even if one synthetic database satisfies all constraints,
it does not mean it can fulfill users’ testing requirement as
it may have different data distribution than the production
database. Hence our approach extracts characteristics (e.g.,
statistics, rules) from the production database, fits general
location model using characteristics extracted, and gener-
ates synthetic database using model learnt. As shown in
Figure 1, the characteristics of production databases can be
extracted from three parts: DDL, Data Dictionary, and Data.
In order to ensure that the data is close looking or statisti-
cally similar to real data, or at least from the point of view of
application testing, we need to have the statistical descrip-
tions,S, and non-deterministic rules,NR, of real data in
production databases. These two sets describe the statistical
distributions or patterns of underlying data and may affect
the size of relations derived as a result of the evaluations
of queries the application will need to execute. Our intu-
ition is that, for database applications, if two databases are
approximately the same from a statistical viewpoint, then
the performance of the application on the two databases
should also be approximately the same1. Furthermore, our
system includes one disclosure analysis component which
helps users remove those characteristics which may be used
by attackers to derive confidential information in the pro-
duction database. As all information used to generate syn-

1Here we assume that file organizations, sorted fields, and index struc-
tures of the production databasex are not private information and the syn-
thetic data generator use these information to build the synthetic database
in the same way that production database has been built.

thetic data in our system are contained in characteristics ex-
tracted, our disclosure analysis component can analyze and
preclude the potential disclosure of confidential information
at the characteristics (i.e., statistics and rules) level instead
of data level.

4. Database Modeling via the General Location
Model

Our approach is to derive an approximate statistical
model from the characteristics (e.g., constraints, statistics,
rules, and data summary) of the real databases and generate
a synthetic data set using model learned.

In our system, we use the general location model to de-
scribe the general data set which may contain a number
of categorical attributes (e.g., Zip, Race, Age, Gender in
Table 1) and a number of numerical attributes (e.g., Bal-
ance, Income, InterestPaid in Table 1). Here we assume
SSN and Name are confidential information and should be
marked. The general location model is defined in terms of
the marginal distribution of categorical attributes and the
conditional distribution of numerical attributes given each
cell determined by categorical attribute values. The former
is described by a multinomial distribution on the cell count
with parameterπ when we summarize the categorical part
as a multi-dimensional contingency table.

The general location model assumes the numerical at-
tributes (i.e., Balance, Income, InterestPaid) of tuples
in each cell follow a multivariate normal distribution
with its parametersµ, Σ, whereµ is a vector of means
and Σ is a covariance matrix. For example, the Bal-



Table 1. An Example of Mortgage Dataset

Categorical Numerical
SSN Name Zip Race Age Gender Balance Income InterestPaid

1 28223 Asian 20 Male 10k 85k 2k
2 28223 Asian 30 Female 15k 70k 18k
3 28262 Black 20 Male 50k 120k 35k
. . . . . . . .
n 28223 Black 25 Male 80k 110k 15k

ance, Income and InterestPaid of customers in the cell
{28223, Asian, 20, Male} follow a 3-variate normal distri-
bution with parameterµ1, Σ1, whereµ1 is a 3-vector means
andΣ1 is a3 × 3 covariance matrix while those in the cell
{28223, Asian, 20, F emale} may follow a 3-variate nor-
mal distribution with different means and covariance ma-
trix. The cell {28223, Asian, 20, ALL}, which denotes
a cell in 4-dimensional cube, contains all the customers
with Zip = 28223, Race = Asian, and Age = 20. For for-
mal description of the general location model, refer [18]
which also presents how to extract various characteristics
from production databases and how to fit the general loca-
tion model using characteristics extracted. In this paper,we
focus on how to analyze the model and check whether it
contains confidential information.

It is straightforward to see we can easily generate a
dataset when the parameters of general location model are
given. Generally, it involves two steps. First, we estimate
the number of tuples in each celld and generatexd tuples,
wherexd is the number of entries in celld. All xd tuples
from this cell have the same categorical attribute values in-
herited from the cell location of contingency table. Second,
we estimate the mean and covariance matrix for those tuples
in this cell and generate numerical attribute values based on
the multi-variate normal model.

5. Disclosure Analysis

Disclosures which can occur as a result of inferences by
attackers include two classes: identity disclosure and value
disclosure. Identity disclosure relates to the disclosureof
the identity of an individual in the database while value dis-
closure relates to the disclosure of the value of a certain
confidential attribute of that individual.

Given characteristicsDB = {S ∪R∪NR} and a set of
confidential informationD̄B = {S̄ ∪ R̄ ∪ N̄R}, our initial
problem is to find aD̂B such that 1)D̂B ⊆ DB and 2)
no confidential information inD̄B can be entailed fromD̂B
within a given bound. We can see this initial problem is
very complex as rules and statistics have different formats.
In our system, we use the general location model, which is

built from rules and statistics, to generate the final data. So
all the information are contained in the parameters of the
general location model, i.e.,θ = (π, µ, Σ) 2.

From section 4, we know 1)π is only used for multi-
nomial distribution and can be estimated usingπ̂d = xd

n
,

wherexd is the number of entries in celld; and 2)µ, Σ is
only used for multi-variate normal distribution of numerical
attributes for those entries in a given celld. As πd is only
related to categorical attributes andµ, Σ are only related to
numerical attributes, we can analyze them separately. In
the remainder of this subsection, we discuss in detail how
to check whetherπd incurs identity disclosure and whether
µ, Σ incurs value disclosure.

5.1. Identity Disclosure

During the data generation process, data have been de-
identified by suppressing SSN and Name so not to disclose
the identities of the individuals to whom the data refer.
However, values of other released attributes, such as Zip,
Race, and Age can also appear in some external table (e.g.,
voter list as shown in Table 3) jointly with the individuals’
identities, and can therefore allow them to be tracked. For
example, the individual Alice can be identified and linked
to Mortgage table when there is only one Asian female with
age 30 and living in the 28223 area, thus revealing that her
confidential financial information. While the above exam-
ple demonstrated an exact match, in some cases, linking can
allow the identification of a restricted set of individuals to
whom the released information could refer.

In order to preserve the confidentiality of individuals,
we typically will not release any rule which involves few
records. However, attackers may still be able to derive or
estimate the values of some confidential cells by analyz-
ing some cells from the released characteristics. In our sce-
nario, confidential information may even exist at aggregate
level. For example, in the table which records the number
of patients visiting physicians to receive treatments, thein-

2Here we assume the general location model itself is not confidential.
In other words, attacker may know our synthetic data is generated by using
general location model.



Table 2. Reidentifying anonymous data by linking to extenra l data

Name Address City ZIP DOB Sex Party ...
. . . . . . . .

Alice 9201 University City Blvd Charlotte 28223 03/18/74 Female democrat .
. . . . . . . .

formation on Patient-Doctor and Doctor-Treatment are not
sensitive and are publicly accessible. However, the Patient-
Treatment information is sensitive, and so, confidential.
This problem is referred as determining upper and lower
bounds on the cells of the cross-classification given a set of
margins [6, 5]. Upper and lower bounds induced by some
fixed set of marginal on the cell entries of a contingency ta-
ble are of great importance in measuring the disclosure risk
associated with the release of these marginal totals. If the
induced upper and lower bounds are too tight or too close
to the actual sensitive value in a confidential cell entry, the
information associated with that cell may be disclosed.

In our system, from characteristicsDB = {S ∪ R ∪
NR}, we extract a set of cells,C0, and the number of en-
tries in each cellc ∈ C0. From a list of private rules and
statistics,D̄B = {S̄ ∪ R̄ ∪ N̄R}, we similarly extract a list
of confidential cells,C1. For each confidential cellc ∈ C1, a
confidential range[xl

c, x
u
c ] which contains the true value of

the number of entries,xc, is derived.[xl
c, x

u
c ] here denotes

the confidential range which database owner does not want
attackers to predict. It is clear that predicting confidential
value within a smaller confidential range constitutes com-
promise. Now our identity disclosure problem is to find a
set of cells,C2, which can be released for data generation,
such that 1)C2 ⊆ C1 and 2) no confidential information
xc (c ∈ C1) can be predicted in range[xl

c, x
u
c ] from the

information contained inC2. As this problem is NP-hard,
in our system we apply similar heuristics as presented in
[7] to remove confidential information contained inC1 one
by one. Basically, it identifies those cells contained inC0

which need to be suppressed in order to hide the specific
confidential information inC1. We present the details in
Appendix A.

5.2. Value Disclosure

Value disclosure represents the situation where attackers
are able to estimate or infer the value of a certain confiden-
tial numerical attribute of an entity or a group of entities
with a level of accuracy than a pre-specified level. Here an
entity or a group of entities can be characterized by cell they
locate in. Attackers may use various techniques to estimate
and predict the confidential values of individual customers.
The accuracy with which attackers are able to predict the

confidential attribute determines whether disclosure occurs.
The greater the accuracy, the closer the estimates are to the
true value, and the higher the chance of disclosure. In gen-
eral, database owner may specify some accuracy levels for
some confidential numerical attributes. If attackers are able
to estimate a given confidential attribute with a level of ac-
curacy that is greater than that pre-specified, partial disclo-
sure is said to occur.

In our scenario, all numerical attribute values are gen-
erated from multi-variate normal distributions. As we dis-
cussed before, multivariate normal distribution itself isnot
considered confidential information, only the parameters
µ, Σ which are used for data generation may contain con-
fidential information. We expect database owner specifies
a confidential range[zl, zu] (z is a confidential numerical
attribute) for an entity or a group of entities. Our problem
is to make sure that a given set ofµ, Σ, which are used for
data generation, can not be used by attackers to derive con-
fidential values for an entity or a group of entities in a small
confidential bound.

P (β1 ≤ z ≤ β2) = Φ(
β2 − µ

σ
) − Φ(

β1 − µ

σ
)

Φ(z) =

∫ z

−∞

1
√

(2π)
e−

v
2

2 dv (1)

Equation 1 shows the probability of variablez, which
follows a 1-dimensioanl normal distributionN(µ, σ2), re-
sides in range[β1, β2]. If the confidence interval[ẑl, ẑu] de-
rived by snoopers are close to the confidential range[zl, zu]
specified by database owner, we say value disclosure oc-
curs.

d(z | ẑ) =
[zl, zu] ∩ [ẑl, ẑu]

[zl, zu] ∪ [ẑl, ẑu]
(2)

Equation 2 defines the measure of disclosure for one
confidential attribute. Here compromise is said to occur if
d(z | ẑ) is greater thanτ , specified by database owner. The
greater thed(z | ẑ), the closer the estimates are to the true
distribution, and the higher the chance of disclosure. In this
case, we need to replace the parameters[µ, σ] with a modi-
fied [µ′, σ′] using perturbation approach.

As multiple confidential attributes are present in our sce-
nario, in the following we apply some known results about



density contour of multi-variate normal distribution from
statistics.

Proposition 1 (Constant probability density contour)
([9], page 134) Let Z be distributed asNp(µ,Σ)
with | Σ |> 0. Then, theNp(µ,Σ) distribution
assigned probability 1 − α to the solid ellipsoid

{z : (z − µ)
′

Σ
−1(z − µ) ≤ χ2

p(α)}, where χ2

p(α)
denotes the upper (100α-th) percentile of theχ2

p distribu-
tion with p degrees of freedom. The ellipsoid is centered
at µ and have axes±c

√
λiei, where c2 = χ2

p(α) and
Σei = λiei, i = 1, · · · , p.

Figure 2. A constant density contour for a bi-
variate normal distribution

The multi-variate normal density is constant on surfaces

where the squared distance(z − µ)
′

Σ
−1(z−µ) is constant

c2. The chi-square distribution determines the variability of
the sample variance. Probabilities are represented by vol-
umes under the surface over regions defined by intervals of
the zi values. The axes of each ellipsoid of constant den-
sity are in the direction of the eigenvectors ofΣ

−1 and their
lengths are proportional to the the square roots of the eigen-
values (λi) of Σ.

The ellipsoid{z : (z − µ)
′

Σ
−1(z−µ) ≤ χ2

p(α)}, which
is yielded by the paths ofz values, contains a fixed percent-
age, (1 − α)100% of customers. In our scenario, snoopers
may use various techniques to estimate and predict the con-
fidential values of individual customers. However, all con-
fidential information which snoopers can learn is the bound
of ellipsoid.

Figure 2 shows one constant density contour containing
95% of the probability under the ellipse surface for one

bi-variatez =

(

z1

z2

)

, which follows a bi-variate nor-

mal distributionN(µ, Σ) with µ =

(

µ1

µ2

)

and Σ =

(

σ11 σ12

σ21 σ22

)

. λ =

(

λ1

λ2

)

is the eigenvalues of covari-

ance matrixΣ and two axies have length ofc
√

λ1 andc
√

λ2

respectively, herec = 2.45 as
√

χ2

2
(0.05) =

√
5.99 =

2.45. We can see the major axis of ellipse is associated with
the largest eigenvalue (λ1).

To compute the projection of one ellipsoid on each axis,
we have the following results as shown in Proposition 2.

Proposition 2 (Simultaneous Confidence Intervals)Let
Z be distributed asNp(µ,Σ) with | Σ |> 0. The projection

of this ellipsoid{z : (z − µ)
′

Σ
−1(z − µ) ≤ χ2

p(α)} on

axiszi = (0, · · · , 1, · · · , 0)
′

(only the ith elemenet is 1, all
other elements are 0) has bound:

[µi −
√

χ2
p(α)σii, µi +

√

χ2
p(α)σii]

See Proof in Appendix B.
To check whether a given distribution ofz may incur

value disclosure, our strategy here is to compare the dis-
closure measured(z | ẑ) with τ , specified by the database
owner. If disclosure occurs, we need to modify parameters
µ,Σ. As we know from Proposition 2, the mean vectorµ
determines the center of ellipsoid or the center of projec-
tion interval while the covariance matrixΣdetermines the
size of ellipsoid or the length of projection interval. As
the change ofµ will significantly affect the data distribu-
tion (it will affect the accuracy of analysis or mining sub-
sequently), in the remainder of this paper we focus only on
how to change variance matrixΣ to satisfy users’ security
requirements.

Now we are able to provide adequate security for each
individual numerical attribute independently. However,
there may exist some non-confidential attributes and linear
combination attributes even exist. Although our strategy is
able to provide adequate security for individual attributes,
the security it provides for linear combinations of attributes
could be significantly lower. We are currently investigating
how to evaluate and prevent value disclosure when these
combinations exist.

6. Experimental Evaluation

The experiments were conducted in a DELL Precision
340 workstation with one 2.4G processor, 1Gbytes of RAM,
and 100Gbytes hard disk. The operating system is Mi-
crosoft Windows 2000 and the database system is Oracle9i.

6.1. The Effect of Data Distribution on Workload
Performance

We used two benchmark datasets, TPC-C [15] and TPC-
H [16] from Transaction Processing Performance Coun-
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Figure 3. Comparison of workload execution time on TPC-C wit h varied distributions

cil. The TPC-C benchmark is widely used for comparing
databases running a medium complexity online transaction
processing workload. Its workload is primarily a transaction
processing workload with multiple SQL calls per transac-
tion. The original TPC-C workload includes five transac-
tion types: New Order (43%), Payment(44%), Order Sta-
tus(4%), Delivery(5%), and Stock Level(4%). See [15] for
a more thorough treatment.

An important aspect of TPC-C is that it specifies a non-
uniform random number generation function to generate
tuple-ids. The non-uniform random number generating
function was defined in [15] as follows:

NU(A, x, y) = (((rand(0, A) | rand(x, y))+C)%(y−x))+x
(3)

where
rand(x, y) stands for randomly selected within[x, y]
C is a constant within[0..A]
A is a constant chosen according to the size of the range
[x, y]
exp-1% exp-2 stands for exp-1 modulo exp-2
exp-1| exp-2 stands for the bitwise logical OR operation
between exp-1 and exp-2
In our experiment, we first generated one TPC-C dataset

using the above default distribution and then replaced the
original distribution with two Gaussian distributions. The
first one is a standard Gaussian distribution with mean 0
and standard variance 1 while the second with mean 1 and
standard variance 2. The number of warehouses (w) was
set as 10 for all three datasets. Figure 3(a) shows the com-
parison of workload execution time on TPC-C generated
by these three distributions. Note that execution time on
Gaussian(1,2) is 40% less than that on original distribu-

tion. We also changed the composition of TPC-C workload
as follows: New Order (30%), Payment(30%), Order Sta-
tus(15%), Delivery(25%), and Stock Level(10%). We got
similar results as shown in Figure 3(b). We observe most
transactions in TPC-C workload are insert transaction and
data distribution has relatively less effect on execution time
of insert transaction.
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Figure 4. Comparison of query execution time
on TPC-H with varied distributions

Our second experiment was done with TPC-H. TPC-
H is an ad-hoc decision support benchmark. One im-
portant aspect of TPC-H is that knowledge about query
workload is not assumed, i.e., database administrator does
not know which queries will be executed against database.
We first generated a 1GB dataset with default distribution
(scale factor SF =1) and then generated a new 1GB dataset
with a modified distribution. In the new dataset, Orders
and LineItem tables were generated in a manner as fol-



lows: every second customer is not assigned any order and
PARTKEY is generated randomly from [1 ..SF*2,000]3.
We run queries 5, 11,14,18,19, and 21 on these two data
sets. Figure 4 shows comparison of query execution time.
Note the execution times of query 14, 18, 19, 21 on two data
sets are significantly different (10 times different) whilethat
of query 5 and 11 are close. We observe most queries in
TPC-H workload are aggregate ones and query 14, 18, 19
and 21 access Orders and LineItem tables.

6.2. Performance of Disclosure Analysis
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Figure 5. Comparison of disclosure analysis
performance vs. the size of confidential rules

The Mortgage dataset we used in our experiment con-
tains nearly 250k tuples. The phase of generating data from
the general location model is very fast compared with dis-
closure analysis. We extracted 1091 and 1561 rules from
Mortgage dataset (shown as case 1 and case 2 respectively
in figure 5). For each case, we specified the number of con-
fidential rules as 10, 20, 30 and 40 respectively. Figure 5
shows the performance of our disclosure analysis. We can
see disclosure analysis takes less than 6 minutes. As we
screened confidential rules one by one, the execution time
is almost linear of the size of confidential rules.

7. Conclusion and Future Work

In this paper we investigated how to conduct disclosure
analysis on the general location model which is used to

3The original setting was every third customer is not assigned any order
and PARTKEY is generated randomly from [1..SF*200,000], refer [16] for
details

generate synthetic data. Hence the synthetic database gen-
erated has similar distributions or patterns as the produc-
tion database while preserving privacy. There are some as-
pects of this work that merit further research. Among them,
we are trying to figure out how to better screen out confi-
dential information from released characteristics, especially
when linear combinations exist among numerical attributes.
We will also conduct a complete study on how different
data distributions affect workload performance using TPC
Benchmarks. Another area for future work is centered on
refining the architecture of the data generator itself. This
could include changes to allow further use of real world data
sources (e.g., historical data) for increased realism and more
rapid adjustment to emerging data trends or perturbation.
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A. Cell Suppression

Several cell suppression problem formulations have been
given in [7]. It is not directly applicable to our questions
since some values in the original contingency table are un-
known in our case. In the following, we modify these for-
mulations so that they could be used in our case.

Let a = {ai}n
i=1

be a contingency table. Some of these
valuesai may be undefined. Ifai is undefined, then we
write ai = ∗. Let H be anm by n matrix describing the
linear constraints on the feasible contingency table. Thatis,
a feasible contingency tabley should satisfy

Hy = 0
y ≥ 0.

Let P = {i1, . . . , ip} ⊂ {1, . . . , n} be the original spec-
ified suppressions. For eachik ∈ P , there is a lower
bound requirementlk and an upper bound requirementuk.
The interpretation of these bounds is as follows. For each
ik ∈ P , the dataset owner does not want the public to
infer from the published data that the value ofcik

lies in
(aik

− lik
, aik

+ uik
). In order to achieve this goal, some

other cells of the contingency table may need to be sup-
pressed also. Thus the aim of the suppression is to find a set
C = {j1, . . . , jc} that is as “small” as possible and that, for
eachk = 1, . . . , p, there are two feasible contingency tables
y andz with the following properties:

1. yik
≥ aik

+ uik
,

2. zik
≤ aik

− lik
,

3. yi = zi = ai for i /∈ P ∪ C.

In some cases, only the bounduik
is given. Then we do not

need to meet the requirement for the existence ofz.

A.1. Exact Solution

We use a binary variable arrayx = (x1, · · · , xn) to rep-
resent whether each cell is suppressed. That is,

xi =

{

1 if i ∈ P ∪ C
0 otherwise

Let c be an array of subjective weight on cells andyk, zk

be variables representing the potential feasible contingency
tables for the conditionik ∈ P . Then the suppression prob-
lem could be formulated as the following questions.

minimizecT x (4)

subject to











































ai − aixi ≤ yk
i ≤ ai + xiT for ai 6= ∗

ai − aixi ≤ zk
i ≤ ai + xiT for ai 6= ∗

yk
ik

≥ aik
+ uik

, k = 1, . . . , p

zk
ik

≤ aik
− lik

, k = 1, . . . , p

Hyk = 0; Hzk = 0, k = 1, . . . , p

xi = 1 for i ∈ P

x ∈ {0, 1}n; yk ≥ 0, zk ≥ 0, k = 1, . . . , p

(5)

whereT is a large enough integer. The above mixed integer
programming (MIP) could be split into small MIPs. That is,
for eachik ∈ P , one can construct an MIP and solve it.

A.2. Heuristic methods

When the number of variables increase, it may be infea-
sible to solve the MIPs in the previous section. Fagan [7]
recommended several heuristic mehtods. In the following,
we describe one that is useful for our problem.

Let y andz ben-ary variables, andc be the subject value
such that it takes0’s on known parts ofP ∪ C. We hope
that a + y − z will be the feasible contingency table wit-
nessing the fact that the public cannot infer the upper bound
of aik

within an error ofuik
if we suppress these cellsj with

yj 6= zj . That is, we want to haveaik
+yik

−zik
= aik

+uik

and keep the nonzero entries iny−z as small as possible ac-
cording to the subjective weight. The heuristic formulation
is as follows:

minimizecT (y + z) (6)



subject to














zi ≤ ai for ai 6= ∗
H(y − z) = 0

yik
− zik

≥ uik

y ≥ 0, z ≥ 0

(7)

For the lower bound, we have the similar linear program-
ming formulations as follows.

minimizecT (y + z) (8)

subject to














z ≤ a

H(y − z) = 0

zik
− yik

≥ lik

y ≥ 0, z ≥ 0

(9)

Remark. In some cases, it may be possible that the
boundslik

anduik
are not given directly. That is, instead of

giving lik
anduik

, onlyLik
= aik

−lik
andUik

= aik
+uik

are given. Whenaik
is given, then one can easily compute

lik
anduik

directly. If aik
iis unknown, then one may esti-

mate the values oflik
anduik

roughly as

lik
= uik

=
Uik

− Lik

2
.

B. Proof of Simultaneious Confidence Intern-
vals

Proposition 1 (Simultaneous Confidence Intervals)Let
Z be distributed asNp(µ,Σ) with | Σ |> 0. The projection

of this ellipsoid{z : (z − µ)
′

Σ
−1(z − µ) ≤ χ2

p(α)} on

axiszi = (0, · · · , 1, · · · , 0)
′

(only the ith elemenet is 1, all
other elements are 0) has bound:

[µi −
√

χ2
p(α)σii, µi +

√

χ2
p(α)σii]

Proof. The general result concerning the projection of an
ellipsoid onto a line in a p-dimensional space is shown as
follows ([9], page 203).

For a given vector̀ 6= 0, andz belonging to the ellip-
soid{z : z

′

A
−1

z ≤ c2} determined by a positive definite
p×p matrixA, the projection (shadow) of{z′

A
−1

z ≤ c2}
on ` is c

√
`
′
A`

`
′
`

` which extends from0 along` with length

c
√

`
′
A`

`
′
`

. When ` is a unit vector, the shadow extends

c
√

`′

A` units, so| z′

` |≤ c
√

`′

A`.
From the above, we know the projection of an ellipsoid

{z : z
′

A
−1

z ≤ c2} on a given unit vectior̀ has length

len = c
√

`′

A`. We replaceA with

Σ =

















σ11 σ12 . . . σ1p

σ12 σ22 . . . σ2p

. . . . . .
σi1 σi2 σii σip

. . . .
σp1 σp2 . . . σpp

















, replace` as zi = (0, · · · , 1, · · · , 0)
′

, and replacec as
√

χ2
p(α), then we get the length of projection aslen =

√

χ2
p(α)σii. Considering the center of this ellipsoid, we

have the bound as[µi −
√

χ2
p(α)σii, µi +

√

χ2
p(α)σii].


