The Nonhomomorphicity of S-boxes

Yuliang Zheng! and Xian-Mo Zhang?

1 School of Comp & Info Tech, Monash University, McMahons Road, Frankston,
Melbourne, VIC 3199, Australia. E-mail: yuliang@pscit.monash.edu.au
URL: http://www.pscit.monash.edu.au/links/

2 School of Info Tech & Comp Sci, the University of Wollongong, Wollongong
NSW 2522, Australia. E-mail: xianmo@cs.uow.edu.au

Abstract. In this paper, we introduce the concept of kth-order nonho-
momorphicity of mappings or S-boxes as an alternative indicator that
forecasts nonlinearity characteristics of an S-box, where k£ > 4 is even.
Main results of this paper include: (1) we show that nonhomomorphicity,
especially the 4th order nonhomomorphicity, can be precisely expressed
by using other important nonlinear indicators of an S-box. (2) we estab-
lish tight lower and upper bounds on the nonhomomorphicity of S-boxes,
(3) we identify the mean of nonhomomorphicity over all the S-boxes with
the same size and the relative nonhomomorphicity of an S-box, both of
which are useful in estimating, statistically, the nonhomomorphicity of
an S-box.
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1 DMotivation of this Research

The so-called S-boxes, which are functionally identical to mappings or tuples of
Boolean functions, are of critical importance to the strength of a block cipher. In
the past decade, the analysis and design of S-boxes has attracted a tremendous
amount of attention. This paper focuses on new methods or perspectives for the
analysis of S-boxes. More specifically, it deals with a new nonlinearity indicator
called nonhomomorphicity.

To understand the motivation behind the new concept, let us first note that
a mapping F from V,, to V,,, is affine, i.e., F(z) = B ® f where z € V,,, B is
a fixed n x m matrix, if and only if F satisfies such property that for any even
number k with k >4, F(u1) @ -+ - ® F(u) =0 whenever ug @ -+ @ uy, = 0.

Now consider a non-affine function F on V,,. If F(u;)®---® F(uy) = 0 then
F satisfies the affine property at the particular vector (uy,...,ux). On the other
hand, if F(u1) @ --- ® F(ug) # 0 then F behaves in a way that is against the
affine property at (ug,...,ug)-



The above discussions indicate that F(ui) @ -+ ® F(ug) # 0 is a useful
characteristic that differentiates a non-affine function from an affine one. This
leads us to considering the number of vectors in Vj,, (u1,...,ug) with ug ®---®
up = 0 satisfying F'(u1) @ --- @ F(ug) # 0 as a new nonlinearity criterion. We
call this new criterion the kth-order nonhomomorphicity of F'.

Nonhomomorphicity has several interesting properties including (1) it ex-
plores a new non-affine property; (2) it can be precisely calculated by other
indicators; (3) the mean of nonhomomorphicity over all the S-boxes with the
same size can be precisely identified; (4) there exists a fast statistical method to
estimate the nonhomomorphicity of an S-box.

In this paper we restrict our attention to the 4th-order nonhomomorphicity
of S-boxes, due to the fact that 4 is the smallest order and hence it is easy
to handle. Furthermore, the 4th-order nonhomomorphicity of S-boxes is closely
related to many other criteria, a property apparently not shared by a higher
order nonhomomorphicity.

[9] has studied a special case when the mapping F' degenerates to a Boolean
function, i.e., a mapping from V), to V. It turns out that the analysis of the non-
homomorphicity of a general mapping from V,, to V}, is far more complex than
what we thought as first. As the analysis employs a number of new techniques,
the results in this paper represent non-trivial generalization of those in [9].

The rest of this paper is organized as follows: In Section 2, we introduce
the basic definitions and notations used in this paper. In Section 3, we explain
reasons why we study the nonhomomorphicity of S-boxes. In Section 4, we give
three precise characterizations of the nonhomomorphicity of S-boxes by the use
of other indicators. These characterizations indicate close relationships between
nonhomomorphicity and other important criteria. This is followed by Section 5
where we establish tight upper and lower bounds on the nonhomomorphicity of
S-boxes. In Section 6, we establish the mean of nonhomomorphicity of all the
S-boxes with the same size. In Section 7, we show that the mean of nonhomomor-
phicity and the relative nonhomomorphicity are relevant to a statistical method
for estimating the nonhomomorphicity of S-boxes. An example application of
nonhomomorphicity is given in Section 8.

2 Basic Definitions

Definition 1. Denote by V,, the vector space of n tuples of elements from GF(2).
The truth table of a function f from V,, to GF(2) (or simply functions onV,,) is
a (0,1)-sequence defined by (f(ao), f(ar),..., f(aan_1)), and the sequence of f
is a (1, —1)-sequence defined by ((—1)f(@0) (—1)flen)  (—1)f(@2n-1)) where
ap =(0,...,0,0), a1 =(0,...,0,1), ..., agn—1_y = (1,...,1,1). f is said to be
balanced if its truth table contains an equal number of ones and zeros.

Definition 2. A function f on V,, is called an affine function if f(z) = ¢ ®
a121 @ - - B apx, where each a; and c are constant in GF(2). In particular, f
is called a linear function if ¢ = 0. A mapping from V,, to V,,,, F, is an affine
(linear) if all the component functions of F are affine (linear).



Definition 3. The Hamming weight of a (0, 1)-sequence £ is the number of ones
in the sequence. Given two functions f and g on V,, the Hamming distance
d(f,g) between them is defined as the Hamming weight of the truth table of
f(z) ® g(x), where ¢ = (x1,...,2,). The nonlinearity of f, denoted by Ny, is
the minimal Hamming distance between f and all affine functions on V,, i.e.,
Ny =min;_y o on+1 d(f, ;) where g1, Y2, ..., Pant1 are all the affine functions
on V.

Given two sequences a = (ay,...,a,) and b = (b1,...,by,), their component-
wise product is denoted by a*b, while the scalar product (sum of component-wise
products) is denoted by (a, b).

The Sylvester-Hadamard matriz (or Walsh-Hadamard matriz) of order 2™,
anl anl j|
anl _anl
n=12,..., Hy = 1. Each row (column) of H,, is a linear sequence of length
2m,

A function f on V,, is called a bent function [7] if (£,¢;)*> = 2" for every
i=0,1,...,2" — 1, where £ is the sequence of f and ¢; is a row in H,. A bent
function on V), exists only when n is a positive even number, and it achieves the
highest possible nonlinearity 27! — 2371,

The nonlinearity of f on V,, can be expressed by

denoted by H,, is generated by the recursive relation H, = [

Ny = 2" — max{|(€, 6,0 < i < 2" — 1) (1)

where £ is the sequence of f and fy, ..., f2n_1 are the rows of H,, namely, the
sequences of linear functions on V;,. The proof can be found in, for instance, [4].

Definition 4. Let f be a function on V,,. For a vector a € V,,, denote by ()
the sequence of f(xz @ «). Thus £(0) is the sequence of f itself and £(0) x ()
is the sequence of f(z) ® f(z ® a). Let A(a) be the scalar product of £(0) and
&(a). Namely A(a) = (£(0),&(a)) A(a) is called the auto-correlation of f with
a shift a.

The following formula is well known to the researchers. A simple proof to-
gether with applications can be found, for instance, in [8]

(A(QO)) A(al)a reey A(a2"71))Hn = ((E: €0>2) <£7 €1>27 teey (f,£2n,1>2) where
«; is the binary representation of an integer i and ¢; is the ith row of H,,
i=0,1,...,2" — 1. Hence it is easy to verify

23 Ay = Y (6.0 @
i=0 =0

Definition 5. Ann xm S-box or substitution box is a mapping from V,, to Vi,
i.e., F = (f1,-..,fm), where n and m are integers with n > m > 1 and each
component function f; is a function on V,,. In this paper, we use the terms of
mapping and S-box interchangeably. F is an affine mapping if it can be written
as F(z) = zB @ 3, where x = (x1,...,x,), B is an n X m matriz on GF(2),
and B a vector in V,,. When 3 is the zero vector, F is said to be linear.



The concept of nonlinearity can be extended to the case of an S-box [6].

Definition 6. The nonlinearity of F' = (f1,..., fm) is defined as

m

Ng =ming{Nylg = @ c;jfj, cj € GF(2),(c1,...,cm) # (0,...,0)}.

j=1

3 Nonhomomorphicity of S-boxes

The following lemma is important in this paper, as it explores a characteristic
property of affine mappings which will be useful in studying nonhomomorphicity.

Lemma 1. Let F be an n X m mapping.

(i) If F is an affine mapping then F satisfies such property that for any even
number k with k > 4, F(u1) ® --- ® F(ug) = 0 whenever u; & --- ®uy =0,

(#1) if there exists an even number k with k > 4 such that F(u1)®---®F(ug) =0
whenever u; ® - -- ® ug, = 0, then F is an affine mapping.

Proof. We first prove Part (ii) of the lemma. Assume that there exists an even
number k with & > 4 such that F'(u1)®- - -®F(ux) = 0 whenever u; ®- - -@uy, = 0.
We now prove that F'is affine. Let u; and us be any two vectors in V,,. Obviously,
the k vectors uq, us, u1 us, 0,...,0 satisfy u1 Dus® (u1 Duz) ®0&---d0 = 0.
From the assumption,

F(u1) ® F(uz) ® F(ug ®uz) @ F(0)®---® F(0)=0 (3)

There are two cases to be examined: F'(0) = 0 and F(0) # 0.
Case 1: F(0) = 0. In this case F(ca) = ¢F(«) holds for any vector a € V,
and any value ¢ € GF(2). Hence (3) can be rewritten as

F(Ul @’Uq) :F(Ul) @F('UQ) (4)

where u; and us are arbitrary.

Let e; denote the vector in V,,, whose the jth component is one and others
are zero. For any fixed value z; in GF(2), j = 1,...,n, from (4), F(zie1 &
s D xpen) = F(rie1) ® F(rses ® -+ - ® xnen). Applying (4) repeatedly, we have
F(z1e1® - ®apen) = F(zire1) ® F(z2e2) &+ - ® F(zpey,). Note that F(0) =0
implies F'(ca) = cF(a) where ¢ is any value in GF(2) and « is any vector in V.
Hence

F(zie1® - B apen) =x1F(e1) D - D wpFley) (5)

From the definition of e;, z1e1 & --- ® 2n,€, = (21,...,2Z5). On the other hand,
if we write F'(e;) = f; where 8; € Vi, j = 1,...,n. Then (5) can be rewritten
as F(z1,...,xn) = 2161 ® - ® xpfn or F(x1,...,2,) = (x1,...,2,)B where



A
B2

B = | . | where Bis an n x m matrix over GF'(2) and each f3; regarded as a
Bn
row vector of B.

Case 2: F(0) = 8 with 8 # 0. Set G(x) = 8 @® F(z). Then G is linear. By
using the result in Case 1, G(x1,...,z,) = (x1,...,2,)B where B is an n X m
matrix over GF(2). Hence F(z1,...,z,) = (21,...,2,)B @ B. This proves that
F is affine.

We now prove Part (i) of the lemma. Assume that F is affine. From Definition
5, it is easy to check that for any even number &k with & > 4, F(u1)®---®F (uy) =
0 whenever u; & --- ®u = 0. a

From the characteristic property shown in Lemma 1, if a mapping F on V,
satisfies F'(u1) ® -+ - ® F(ug) = 0 for a large number of k-tuples (u1,...,ux) of
vectors in V), with w1 & --- ® ug = 0, then the mapping behaves more like an
affine function. This leads us to introduce a new nonlinearity criterion.

Notation 1. Let F' be a mapping from V,, to V,,, and k an even number with
4 < k < 2™ Denote by ’ch)ﬁ the collection of ordered k-tuples (u1,uz,...,ug) of
vectors in 'V, such that

Ml = {(ur, uz, .., up) 1y € Vi, uy S up & - @y, = 0,
Fui) ® F(u2) ® - & F(ux) = 8}

where 3 € V,,. Let qﬂ% denote the number of elements in Hg%, i.e., (jg% =

k
HHWL.
Definition 7. Let F' be a mapping from V, to V, and k an even number with
4 <k <2". Write
E;]‘c) = (ul,...,uk)|uj EVy U Dus ®---Bug =0,
F(u1) ® F(uz) ® --- @& F(ug) # 0} (6)

Let (jgc) be the number of elements in ng), i.e., (jgc) = #ng). We call (j%k)
the kth-order nonhomomorphicity of F'.

Note that there exist 2(* =™ k-tuples of vectors in Vi, (u1, . .., uy), satisfying
up P --- dup =0. Hence

Lemma 2. Let F' be an n X m mapping. Then Eﬁevn (jﬁ% = 2k=1)n 4. (jgc) +
~(k) _ 9(k—1)n
dro = :

Lemma 1 indicates that when discussing the nonhomomorphic characteristics
of a mapping, we may focus on a single even number k, rather than on all even
number k. Therefore we will focus on (jgf). An obvious advantage of restricting



to a small k£ = 4 is that it would make the task of computing or estimating qﬁ;*)

easier. Another reason why we prefer (jgl) to a general (j%k) is that we have found

interesting relationships between (jgl) and many other criteria. Furthermore, this

case has the following interesting property.

Notation 2. Let 0%4) denote the collection of ordered 4-tuples

(u1,us2,us,us) of vectors in Vy, satisfying uj, = uj, and uj, = uj,, where the
4-tuple (uj,,uj,, Ujs, uj,) is a rearrangement of (u1,us,us,us). Denote by D%B)
the collection of 3-tuples (u1,uz2,us3) of vectors in Vy, with distinct u1, us and us.

Obviously if u; ® us D uz ® ug = 0 then either (up,us,us,uq) € 024) or
(u1,us,us3) € D§L3) with uy @ us ® uz = uy. It is easy to verify

#OW =322 —9ntl upl —9n(2n — 1)(2" — 2) = 23" — 3. 2% 4 2" HY(T)

In addition, if (u1,us,us,us) € 0%4), then (u1,us,us,us) € 7—[%2). In other

words, (u1,us,uz,uy) € Hg‘.‘,)ﬁ with 8 # 0 implies (u1,us,us) € D and uy @

us @ ug = uq. These properties will be useful later when we count (jgl).

We note that Lemma 1 cannot be extended to the case of odd k. This is the
reason why we have not defined nonhomomorphicity for an odd order.

4 Calculating 4th-order Nonhomomorphicity of S-boxes
using Other Indicators

To calculate or express a criterion, we must need other information or condi-
tions. This section has two aims: (1) to give three precise expressions of nonho-
momorphicity by using other indicators, (2) to explore the relationships between
nonhomomorphicity and other criteria.

4.1 Expressing Nonhomomorphicity by Difference Distribution

Definition 8. Let F' = (fi,..., fm) be an n x m mapping, o € V,, and §; be
the wvector in Vy, that corresponds to the binary representation of an integer j.
Define kg(a) as the number of times F(x)® F(x ®a) runs through B € Vi, while
x runs through all the vectors in V, once, The difference distribution table of F’
is a matriz specified as follows:

kg, (o) kg, (@) - kBom (@)
kﬁo (041) kﬁl (041) R kﬁzM—l (011)

K=
kg, (can —1) kg, (an—1) - - Kgym _, (an 1)

where o is the vector in V,, that corresponds to the binary representation of j.



Two properties of the difference distribution table K are (i) E?Zo_ ! kg, () =
2m i =0,1,...,2" — 1, (i) kgy(ao) = 2" and kg, () =0, j =1,...,2™ — 1,

Consider an even number s with s > 4 and an ordered s-tuple (u1,us, ..., us)
of vectors in V,, satisfying @;:1 u; = 0. Note that

s s—1 s—1
P Fu;) =P F(uy) © F(EPu))
i=1 j= i=1
s—2 s—2
= P F(u) & Fluy1) & Flugr & P uy). (8)
j=1 j=1
Fix w1,...,us—> € V, while letting us—; run through vectors in V,,. Then

@®j—, F(u;) runs through a vector 3 € Vy, if and only if F(us—1) ® F(us—1 @
@j;f u;) runs through 69‘;;% F(uj) while us_; runs through all the vectors in
V,, once. Hence, for fixed uq,...,us_o € V,, the number of times for @;:1 F(uy)
to run through 3 € V,, is determined by the quantity of kggr(u,)@..-@F(us_s) (U1 D
P Us—2)-

Now we remove the restriction that wuy,...,us_s € V,, are fixed. Then the
number of times for @j_, F(u;) to run through g € V, while (ui,...,us)
satisfying @;:1 u; = 0 runs through all the vectors in V,, once, is determined
bY 3 tsne Ve KBOF(u1) @@ F (uss) (U1 & - © us_2). Hence we have

Lemma 3. Let F' be an n X m mapping and k be an even number with k > 4.
Then

@%S,)g = > EsoF(u)@ - oF(ues) (U1 © - S us)

UL yeeeyUs—2E VR
where q](f; is defined in Notation 1 and kg(a) is defined in Definition 8.

In particular, when s = 4 and 8 = 0, Lemma 3 is specialized as

Corollary 1. Let F be an n x m mapping. Then

Gib = D kr(uer(m (1 ® us)

u1,u2 €EVy

)

where q]gf()) is defined in Notation 1 and kg(a) is defined in Definition 8.

Corollary 2. Let F' be an n x m mapping. Then

b= > 2 k3@

a€V, BEVn

where (jgf()) is defined in Notation 1 and kg(c) is defined in Definition 8.



Proof. Write u; ® us = a. Hence Corollary 1 can be rewritten as

#,)o = Z Z kF(m)GBF(meaa)(a) (9)

aEVy u1 €V,
By the definition of kg(a), if F(u1) & F(u1 & o) = 3, then we have
kF(ul)GBF(ul Da) (Cl) =kp (a)

Again, recall that kg(a) denotes the number of times F'(u1) ® F(u; & «) runs
through 8 € V,,, while u; runs through all the vectors in V,, once. From (9), we

have
(4
a€V, u1 €V, a€V, BEV,
This concludes the proof. O

The above corollary, together with Lemma 2, gives rise to the following result:

Theorem 1. Let F be an n X m mapping. Then the 4th-order nonhomomor-
phicity, (jgl), satisfies

i =2 =3 Y ki)

a€V, BEV,

where kz(a) is defined in Definition 8.

4.2 Expressing Nonhomomorphicity by Fourier Spectrum

Definition 9. Let F = (fi,...,fm) be an n X m mapping, o € V,, j =
0,1,...,2"™ =1 and B; = (b1,...,bm) be the vector in Vy, that corresponds to the
binary representation of an integer j. In addition, set g; = .-, bufu be the
jth linear combination of the component functions of F. Denote the sequence of
g; by n;. Set

(mo,€0)>  (m,Lo)> - (mam_1,40)?

P (no, 01)? (m,0)* - (pam_1,01)?

(770,£2n—1>2 (771,£2n—1>2 (772"1—1,52"—1)2

where {; is the ith row of H,, i = 0,1,...,2™ — 1. The matriz P is called the
correlation immunity distribution table of the mapping F'.

Since both ny and ¢, are the all-one sequence of length 2™ and ¢; is (1,—1)
balanced for j > 0, we have (no, %) = 2", (n0,¢;) =0, j =1,...,2" — 1. The
following lemma can be found in [10].



Lemma 4. Let F = (f1,...,fm) be a mapping from V,, to Vy,, where n and
m are integers with n > m > 1 and each f;j(x) is a function on V,. Set g; =
@D, cufu where (c1,...,cn) is the binary representation of an integer j, j =
0,1,...,2™ —1. Then P = H,KH,, where K and P are defined in Definitions
8 and 9 respectively.

The following corollary can be deduced from Lemma 4 and Corollary 2.
Corollary 3. Let F' be an n x m mapping. Then

2m—12" -1

o =22+ 3T S (001
j=1 =0

where (nj,¢;) is defined in Definition 9.

By noting Lemma 2, we can further prove
Theorem 2. Let F be an n X m mapping. Then the 4th-order nonhomomor-
phicity of F, (jgl), satisfies

2Mm—12"—1

q‘g‘l) —93n _ 27m7n[24n + Z Z (nj’giyl]
j=1 =0
where (nj,¢;) is defined in Definition 9.

4.3 Expressing Nonhomomorphicity by Auto-Correlation
Distribution

Definition 10. Let F = (f1,..., fm) be annxm S-box,« € V,,,j =0,1,...,2m—
1 and B; = (b1,-..,bm) be the vector in Vi, that corresponds to the binary rep-
resentation of j. In addition, set g; = @Z;l by fu be the jth linear combination
of the component functions of F. Denote the auto-correlation of g; with shift o

by Aj(a).

Set
Ao(ao) Al(ao) “e AQm_l(ao)
Ao(al) Al(al) “e AQm_l(al)

A()(Oégn_l) Al (OéQn_l) Ce AQm_l(OéQn_l)
Matriz D is called auto-correlation distribution table of F'.
By using Theorem 2 and (2), we have the following result:

Theorem 3. Let F' be an n X m mapping. Then the 4th-order nonhomomor-
phicity of F, (jgl), satisfies

2m—12" -1

@) =2 -2 2 4 Y Y A
j=1 i=0



5 Lower and Upper Bounds on Nonhomomorphicity

We first introduce Holder’s Inequality which can be found in [2].

Lemma 5. Let c; > 0 and d; > 0 be real numbers, where j =1,...,s, and let p
and q satisfy 3 +5 =1 and p > 1. Then (35_, §)/P(35_, d)V/1 > Y05, ¢jd;
where the equality holds if and only if c; = vd;, j =1,...,s for a constant v > 0.

When c¢;j, d;, p and ¢ satisfy the condition that ¢; > 0, d; = {ég 27 i (1) ,
;=
and p=q= %, Holder’s Inequality will be specialized as

S

Yz (e (10)

j=1
where the quality holds if and only if ¢, ..., ¢s are all identical. By using the

specialized Holder’s Inequality, we can prove

Theorem 4. Let F' be an n X m mapping. Then the 4th-order nonhomomor-

phicity of F, (jgl), satisfies

0< gl <22men —1)(2m - 1)

where the first equality holds if and only if F' is affine, and the second equality
holds if and only if every nonzero linear combination of the component functions
of F' is bent.

Proof. By the definition of the 4th-order nonhomomorphicity of F', the first
inequality is true, and the equality holds if and only if F' is affine.
Now we consider the second inequality. From Theorem 2,

2Mm—12"—1

qg‘l) — 23n _ 2—m—n[24n + Z Z (771',504]
j=1 i=0
By using (10), we have
2™ 1271
ap =2 -2 TN ()]

j=1 i=0

1 2m_19m_1

< 2% —27mTrtn 4 m( Z Z (nj, €)*)?]
j=1 i=0

According to Parseval’s equation (Page 416 of [3]), we have > 7 o' (n;, £;)2 = 227
for each j, 1 < j < 2™ — 1. Hence

1

qg‘l) S 23n _ 2—m—n[24n 4 (2m — 1)2n

(@™ =12y (11)



This proves the second inequality. Again by using (10), the equality in (11)
holds if and only if (n;,¢;)? are identical for all j = 1,...,2™ — 1 and i =
0,1,...,2" — 1. Parseval’s equation implies that, in this case, (n;, ;)* = 2" for
all j =1,...,2" —1and i = 0,1,...,2" — 1. Recall the definition of a bent
function, we have proved that the equality in (11) holds if and only if each g;
(see Definition 9) is bent, where 1 < j < 2™ — 1. a

If an n x m mapping, F', has the property that every nonzero linear combina-
tion of the component functions of F' is bent, then F'is called a perfect nonlinear
[5]. From a corollary of [5], perfect nonlinear n x m mappings exist only when
m < in.

>3

6 Mean of Nonhomomorphicity

To measure the nonhomomorphic characteristics of a mapping, it is reasonable
to compare it with the mean of the 4th-order nonhomomorphicity over all the
mappings from V, to V,,. Hence we want to find out an explicit expression for

272y, ‘jgl)-
Recall that if (ug,us,us,ug) € Oﬁ:l), then (uy,us,us,uy) € ”Hg‘%. Hence we
have the following;:

Proposition 1. Let F be a mapping from V,, to V,,. Then for every nonzero
vector B € Vy,

~E;l,)ﬁ = #{(U17U27U3)|(’U,1,u2’u3) c DSLS)’

F(u1) ® F(uz) ® F(us) ® F(u1 ® us ® ug) = 5}

There are two cases with (u1,us,us,us) € ’H;fl%). Case 1: (u1,us,us,uy) €
024). Case 2: (u1,us,us) € Dgf) and (u1,us,us, us) € ’H%’%, where uy = u1 @
ua ® us. This shows that the following is true.

Proposition 2. Let F' be a mapping from V,, to V. Then

Niff% =3-27" — 2" 4 #{(uy, ug, ug)|(u1, up, uz) € DY,
F(u1) @ F(uz) @ F(us) ® F(uy @ uz ® ug) = 0}

Theorem 5. Let F' be a mapping from V,, to V,,. For a fized nonzero B € V,,,
the mean of the (jg)ﬁ over all the mappings from Vy, to Vi, i.e., 272" F (jﬁ%,

satisfies

) n

2—m.2n Z(ﬁ?% — 2—m#D(3) — 93n—m _ 3, 92n—m + gn—m+1
F

Proof. We first note that there exist exactly 22" mappings from V,, to Vj,.
For each fixed (u1,us2,u3) € D%B), a random mapping F', from V;, to Vi, F(uy),



F(uz), F(u3), and F(u; & us & uz) are independent. Hence F(u1) ® F(uz2) ®
F(u3) ® F(u1 ® us ® us) takes every vector in V,,, with an equal probability of
27™. Therefore we have

27 Sty = Sp 2 Y #{(un, un, us) (1, uz, uz) € DY,
F(Ul) sy F(U2) P F(u3) D F(’U,l D us O U3) = ﬁ}

—m —-m 3
= Z(ul,uz,ug)eD(ns) 2 =2 #D’EL)

a

Theorem 6. Let F' be a mapping from V,, to V,,. Then the mean of qNI([fz) over
all the mappings from Vi, to Vi, i.e., 272" Yor (jl(;fz), satisfies

9—m-2" Z (j(;}}) —3.92n _gntl 4 93n—m _ 3 92n—m 4 gn—m+l
F

Proof. Consider two cases for (ui,us, us,us) € ’H%E):

Case 1 — (u1,us,u3,uy) € 0%, Recall (7), #0OM) = 3. 920 _ ont1,

Case 2 — (uq,u2,u3) € DS) and (uy,us,us, ug) € ’H%f()), where uy = u; ®
Uz D usz.

From the proof of Theorem 5, for each fixed (u1,us,us) € D%B), a random
mapping F F(u1) ® F(uz) @ F(u3) ® F(u1 ® uz ® uz) takes every vector, in
particular the zero vector, in V,,, with an equal possibility of 27™. Now the
theorem follows immediately from Proposition 2 and the proof of Theorem 5.

O

Taking (6) into account, from Theorem 6 we obtain the following result which
is of major interest:

Theorem 7. Let F' be a mapping from V,, to V,,. Then the mean of qNEf) over
all the mappings from Vi, to Vi, i.e., 272" Yor (jgf), satisfies
27m-2" qu;}) _ (2m _ 1)(23n—m _3.92n-m + 2n7m+1)
F

7 Relative Nonhomomorphicity

We now introduce the concept of “relative nonhomomorphicity”. It will be useful
for a statistical tool.
Recall that if (w1, us,us,uq) € Oﬁ:l), then (u1,us,us,us) € ”Hg‘%. Hence to

count Qgc), we do not need to consider any 4-tuples (u1,us,us,us) in 05{”.
~(4)

Definition 11. Let F' be a mapping from V,, to V,,. Then ﬁ, denoted by

p%), is called the (4th-order) relative nonhomomorphicity of F', where qNI(;l) 18

the 4th-order nonhomomorphicity of F', while DS) is the collection of 3-tuples

(u1,us2,us) of vectors in Vy, with distinct ui, us and us.



Corollary 4. The mean of p%) over all the nxm S-bozes, i.e., 272" or p%),

satisfies
27m-2" Zpg) =1-—92™ ™
F

(4 n
q%) —m-2

— ~(4)
#D® — Zp® > pdrp - Hence

o on 4 om _1)(93n—m _g3.92n—m  gn—m+1
from Theorem 7, we have 2-m2" 37 plt) = ! X T ) =

1—-2=—m a

Proof. Note that 272" 3 . p;:i) —9m? g

From Corollary 4, the following observation can be made:

(12)

(4) | > 1—=27" then F' is more nonhomomorphic than the average
PF Y < 1—2"™ then F is less nonhomomorphic than the average

Here the average nonhomomorphicity indicates one that has a relative nonho-
momorphicity of 1 —27™. Clearly, if p%) is much smaller than 1 — 2™ then F
should be considered to be cryptographically weak.

8 An Application of Nonhomomorphicity
We have noticed that the relative nonhomomorphicity, pg) is precisely identified
with “population mean” or “true mean”, a terminology in statistics. This fact
enables us to design a statistical method with a high reliability for estimating
the nonhomomorphicity of an S-box, thank to the law of large numbers [1].
From the nonhomomorphicity, by using Theorems 1, 2 and 3, we obtain
information about other criteria, for example, the nonlinearity, the maximum
kg(a) with a € V,,, @ # 0 and 8 € Vj,, and the maximum A;(q;), 1 < j <2m -1
and 1 <¢<2™"—1.

Ezxample 1. The Data Encryption Algorithm or DES employs eight 6 x 4 map-
pings or S-boxes. Consider the first mapping F'. From Definition 7, we directly
calculate qNEf) = 231264. (Also we can use a statistical method to find an approx-
imate value of (jgf)).

By using Theorem 1

231264 =2 — > )" k3(a)
a€Vs BEV,
Recall the property of the difference distribution table K, ko(0) = 2" and
kg(0) =0, B #0.

> ki) =2'" — 27 — 231264

aEVs,a#0 BEV,



Write max{kg(a)|a € Vs.ae # 0,8 € Vi } = kar Hence we have
kv Y Y ks(e) > >0 > k(e) =2'% -2 — 231264
a€Vs,a#0B€Vy a€Vs BEV,
Again, recall the property of K, > 5., kg(a) = 2", for any a € V;,. Hence
kar(2° —1)26 > 2'% — 212 — 231264

This implies kps > 6.6. Since kjy is even, kps > 8. This is larger than the trivial
lower bound kj; > 2"~ ™ = 4.
Write max{|(n;, £:)||1 <j <2*—1,0<i <251} = py. By using Theorem

2,
2% 1201 2% 1201
(4
(2% —gi)20tt =22 = N SN (et <pdy S0 S (g, 60)?
=1 i=0 g
By using Parseval’s equation, Page 416, [3 ] g (nj, 6:;)*> = 2% for each

fixed j, j = 1,...,2" — 1. Hence p}, > 2'? — 281264 5 247 Since p3, is square
and multiple by 4, we have p%, > 256. By using (1), we conclude that Np <
26-1 — 1py < 24. Recall the maximum nonlinearity of functions on Vg is 267! —
23-1 = 28 that only bent functions achieve.

Write max{|A;(a;)|1 <j <2*—1,1<i<2°—1} = Ay By using Theorem
37

241261

(20— g2t -2 = 3 3 A2(a)

j=1 i=0

Noticing A;(ap) =25, 7 =0,1,...,2* — 1, hence

241261
23.6+4_24qg1)_23 — 926+4 | Z ZAz (i) < (2 1)( —1)A2
j=1 i=1

This proves
922 _ 918 _ 916 _ 24(1(4)
A3 > £ o>1
2T @wone-ny 0
Since A%, is square and multiple by 4, Hence A%, > 196 and hence Ay > 14.

(4)

We note that in Example 1, the value of G’ also can be estimated by a
fast statistical method with a high reliability. Such a statistical method is more
useful in a situation where fast analysis of S-boxes is required.

9 Concluding Remarks

The advantages of nonhomomorphicity, as a new linearity criterion, include: (1)
it can be estimated by a statistical method with a high reliability due to the law
of large numbers; (2) it is closely related to other criteria. More details about
the statistical method, together with further applications of nonhomomorphicity,
will be shown in a separate paper.
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