Optimal Construction of Unconditionally Secure ID-Based Key
Sharing Scheme for Large-Scale Networks

Goichiro HANAOKA', Tsuyoshi NISHIOKA',
Yuliang ZHENG? and Hideki IMAT!

!The 3rd Department, Institute of Industrial Science, the University of Tokyo
7-22-1 Roppongi, Minato-ku, Tokyo 106-8558, JAPAN
Phone & Fax: +81-3-3402-7365
E-Mail: {hanaoka,nishioka}@imailab.iis.u-tokyo.ac.jp
imai@iis.u-tokyo.ac.jp
2 School of Comp. & Info. Tech., Monash University,
McMahons Road, Frankston, VIC 3199, AUSTRALIA
E-Mail: yzheng@Qfcit.monash.edu.au



Optimal Construction of Unconditionally Secure ID-Based Key Sharing
Scheme for Large-Scale Networks

Abstract

Efficient ID-based key sharing schemes are desired world-widely for secure communica-
tions on Internet and other networks. The Key Predistiribution Systems (KPS) are a large
class of such key sharing schemes. The remarkable property of KPS is that in order to share
the key, a participant should only input its partner’s identifier to its secret KPS-algorithm.
Although it has a lot of advantages in terms of efficiency, to achieve unconditional security
a large amount of memory is required. While conventional KPS establishes communication
links between any pair of entities in a communication system, in many practical commu-
nication systems such as broadcasting, not all links are required. In this article, we show
the optimal method to remove these unnecessary communication links. In our scheme, the
required memory for each entity is just proportional to the number of its partners, while that
in conventional KPS is proportional to the number of entities in the whole system. As ex-
ample, if an entity communicates only with 1/r of others, the required memory is reduced to
be 1/r of that of conventional KPS. Furthermore, this memory size is proven to be optimal.
Our scheme provides a more efficient way for secure communication especially in large-scale
networks.
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1 Introduction

For information security, ID-based key distribution technologies are quite important. The con-
cept of ID-based key cryptosystems was originally proposed by Shamir[3, 4]. Maurer and Yacobi
presented an ID-based key distribution scheme following Shamir’s concept [5, 6]. However, their
scheme requires a huge computational power. Okamoto and Tanaka[7] also proposed a key-
distribution scheme based on a user’s identifier, but it requires prior communications between
a sender and a receiver to share their employed key. Although Tsujii and others proposed sev-
eral ID-based key-distribution schemes|8, 9], almost all of them have been broken[10]. Thus,
the performance of these schemes is unsatisfactory. However, Blom’s ID-based key-distribution
scheme|[2], which is generalized by Matsumoto and Imai[1], has quite good properties in terms of
computational complexity and non-interactivity. Many useful schemes based on Blom’s scheme
have been proposed[1, 11, 12, 13, 14, 15, 16, 17, 18, 19], and these are called Key Predistribution
Systems (KPS).

In a KPS, no previous communication is required and its key-distribution procedure consists
of simple calculations. Furthermore in order to share the key, a participant should only input its
partner’s identifier to its secret KPS-algorithm. Blundo et al.[14, 15, 16] showed a lower bound
of memory size of users’ secret algorithms and developed KPS for a conference-key distribution.
Moreover Fiat and Naor[17], Kurosawa et al.[19] applied a KPS for a broadcasting encryption
system.

Although KPS has many desired properties, it has also a problem: When a number of users,
which exceeds a certain threshold, cooperate they can calculate the central authority’s secret
information. Thus, to achieve perfect security the collusion threshold is determined to be larger
than the number of entities in the network. Setting up such a high collusion threshold in this
scheme requires large amounts of memory in the center as well as for the users according to
the collusion threshold. Solving this problem will make KPS much more attractive for ID-based
key-distribution.



Although KPS provides common keys for all possible communication links among entities, in
practical communication systems most of them are not necessary. By removing such unnecessary
communication links, we can reduce the required memory significantly. In our scheme, the
required memory for each entity is proportional to the number of its partners, while that in
conventional KPS is proportional to the number of entities in the whole system. As example,
if a entity communicates only with 1/r of others, the required memory is reduced to be 1/r of
that of conventional KPS. Furthermore, this memory size is proven to be optimal. In this work,
we also propose an optimal asymmetric t-conference key distribution scheme. Since this scheme
has a good property, it is considered to be utilized effectively in other applications.

Section 2 gives a brief review of the KPS. Then in section 3, straight-forward implementation
of our scheme and its problem are described. Section 4 explains asymmetric ¢-conference key
scheme as the solution of the problem of the straight-forward implementation. This is followed
by the evaluation and discussion of the security of our scheme in section 5. Section 6 closes the
paper with some concluding remarks.

2 A Brief review of KPS

A KPS consists of two kinds of entities: One entity is the KPS center, the others are the users
who want to share a common key. The KPS center possesses the KPS-center algorithm by
which it can generate an individual secret algorithm for each user. These individual algorithms
are (pre-) distributed by the center to their users and allow each user to calculate a common
key from the ID of his communication partner. This section explains how the users’ secret
KPS-algorithms are generated and how users share a common key.

Let a symmetric function G(z,y) be the KPS-center algorithm. Then, each entity u; (i =
1,2,---,N) is given the secret algorithm U,,(z)(= G(z,u;)) (i = 1,2,---,N), respectively. In
order to share the communication key between w; and u;, they should simply input u; and w;
to their secret algorithms, respectively. Since G(z,y) is a symmetric function, both they obtain
kuu; = Uy, (uj) = Uy, (ui) = G(us,uy ).

KPS, has three noteworthy properties. First, there is no need to send messages for the key
distribution between entities who want to establish a cryptographic communication channel.
Second, its key-distribution procedure consists of simple calculations so that its computational
costs are quite small. Finally, in order to share the key, a participant has only to input its
partner’s identifier to its secret algorithm. Thus, KPS is well applicable to one-pass or quick-
response transactions, e.g. mail systems, broadcasting systems, electronic toll collection systems,
and so on.

However, KPS has a certain collusion threshold; when more users cooperate they can calcu-
late the KPS-center algorithm G(z,y). Thus, to achieve perfect security the collusion threshold
is determined to be larger than the number of entities in the network. Then, the required
memory for users’ secret algorithms are increased according to the collusion threshold. In the
following subsection, the relationship between the memory size and the collusion threshold is
discussed in more detail.

2.1 A lower bound of |U,,(z)|
For a random variable X, H(X) denotes the entropy of X. Generally,

0 < H(X) <logy|X|, whereX = {z | Pr(X = z) > 0}. (1)

In particular, H(X) = log, | X| iff X is uniformly distributed.



Blundo et al.[14] showed the lower bound of required memory size for users. Suppose that
for each P C {uy,ug,---,un} such that |P| = ¢, there is a key kp associated with P. And,
each user u; € P can compute kp, and if ' C {uj,u2, -, un},|F| <w and |[FNP| =0, F
cannot obtain any information about kp. Then, the lower bound of the amount of users’ secret
algorithm U, is estimated as follows:

t+w-—1

where kp € K for any P. In order to achieve perfect security, w + ¢ should be equivalent to the
number of entities in the whole network. For ¢t = 2, Eq. 2 becomes logy |Uy,| > (w + 1)H(K).

2.2 Optimal schemes

Blundo et al.[14] presented a KPS which achieves the optimal memory size. In this scheme, the
center chooses a random symmetric polynomial in ¢ variables over GF(q) in which the degree of
any variable is at most w, that is, a polynomial

f(xla"'7$t) = Z Za’il"'itxlil"'xtita (3)

11=0 1¢=0

where a;,..;, = a,(;,..;,) for any permutation o on (i1,---,i). The center computes U,, =
f(uj, z2,- -+, z;) and gives Uy, (1 = 1,---,N) to u; (i = 1,---,N), respectively. Then, they
can share their communication keys by inputting ¢ — 1 partners’ identifiers. For ¢ = 2, Blom’s
scheme[2], Matsumoto-Imai scheme[l] and some others are also known as optimal schemes.
Although these schemes achieve the optimal memory size: log, |Uy,| = (w+1)H (K), the amount
of memory is still large (For perfect security, w must be equivalent to (the number of entities)—1).
Especially, in large-scale networks required memory size is enlarged according to their high
collusion threshold. Furthermore, on a smart card since its size of storage is strictly limited,
the collusion threshold cannot be set up high enough to avoid strong collusion attacks by huge
number of entities. “KPSL1 card”[20, 21], where the key length is 64bits. The secret-algorithm
itself then consumes 64-KBytes of memory size in each IC card. Therefore KPS was considered
to be somewhat expensive for real IC card systems at that time. By introducing 128~256bits
symmetric key cryptosystems (namely, H(K) = 128 ~ 256bits), this problem will be more
serious.

3 Straight-forward method for removing unnecessary functions

As already mentioned, some KPSs are proven to be optimal, and it is impossible to reduce the
required memory size providing all the communication links. However, the required memory size
by these schemes are still high. Although to reduce the collusion threshold or the key length is
one possible solution to reduce the memory size, the security is also reduced considerably. Then,
we pay attention to the unnecessary communication links in networks. By removing them, it is
considered to be possible to reduce the memory size maintaining the same security level. In this
section, we show a basic concept to attain the object and its requirements.

3.1 Unnecessary communication links

In a large-scale network, there are a lot of pairs of entities that do not communicate with each
other at all. We consider mainly 2 reasons. Firstly, since to avoid illeagal use access controls



are taken, some users are not allowed to access specific resources. Secondly, there exist many
resources which perform only to some specific client computers. Also, pairs of entities, which is
not related with each other, do not need to communicate with each other.

Although there are many unnecessary communication links, conventional KPSs cannot deal
with them efficiently. Namely, in conventional KPSs it seems to be impossible to remove only
unnecessary communication links.

3.2 Straight-forward implementation and its problem

A possible solution to reduce memory size by removing unnecessary communication links is to
construct a whole large network by using small KPSs. Namely, if small KPSs are provided
only for necessary communication links, only the unnecessary ones can be removed. However,
straight-forward implementation of this approach has a serious problem. By this problem, the
required memory can be even more than that of the conventional KPS. We explain this problem
in more detail in followings.

To construct a large network by using small KPSs, we first divide the set of entities T to Ny
subsets {Y1,Yo,---, Tny} (|T;NTY;] =0). Bach T; (i = 1,---, Ny) fullfills following condition:
Vu; € T; communicates with Vo; € T;, where T; = {Y; | j € B}, P, C {1,2,---, Ny}, and for
i1,iy € {1,2,---, Ny}, if iy € P;,, then iy € P;,. For convenience, if iy € P, (iy € P;,), we say
< 11,19 >= 1, otherwise, < 1,19 >= 0.

Then, if a whole network is constructed by small KPSs straight-forwardly, critical problems
are found in following 2 situations:

Casel: < iy,i9 >=1, <i1,i11 >=0 ('Ll 75 22)
For the communication < 41,72 >= 1, a small KPS is provided. The collusion threshold
of this KPS is determined to be equivalent to |Y;,| + |Y;,| — 2. From Eq.2, the required
memory size for this communication is also proportional to |Y;, |+|Y;,| —2. However, since
<i1,11 >=0, even v;, € T;, communicates only with |Y;,| entities using such amount of
memory.

Case2: < iy,i9 >=1, <iy,i3 >=1, <ig,i3 >=0 ('Ll 7’5 19,11 75 13,12 75 'Lg)

For these communications, we consider 2 kinds of construction of small KPSs: a KPS for
{Ti,,Ti,} and a KPS for {Y;,Y;,} are set up, or a KPS for {T;,,Y;,, YT, } is set up.
For the first construction, the collusion threshold of 2 KPSs are |Y; | + |Y;,| — 2 and
|Ti, | + |Yis| — 2, respectively. Thus, the required memory size of v;, € T, for these com-
munications is proportional to 2|T;, |+ |Y;,| + |Yi,| —4. On the other hand, for the second
construction the collusion threshold of the KPS is | Y, |+|Y;,|+|Y;;|—2. Hence, the amount
of memory of v;, € T;, is proportional to |T;, | + |Yi,| + |Ti;| — 2. Further, the required
memory size for v;, € T;, and v;; € T, are also proportional to |Y; | + |Ti,| + |Tis| — 2.
Anyway, in both constructions since v;, € T;, communicate only with |Y;, |+ |Y;,| entities
by these KPS(s), the required memory size for v;, is large comparing with the amount of
memory. Moreover, in the second construction v;, € T;, and v;; € T;, communicate only
with |Y;, | entities. Hence, their required memory size is also large.

In the worst case, the required memory size for a entity is almost 2 times of that in conventional
KPS. Namely, if <41,i >=1(i=1,---,Ny, i #41) and < j,k >=0 (j,k=1,---, Ny, j,k #
i1), then, the required memory size is (Zie{l,z---,Nr},i;éil (1) + | Liy | — 2)) H(K). On the

other hand, in conventional KPS the required memory size is (Zie{l,z,---,NT},i;éil |T;] — 2) H(K).



Hence, straight-forward implementation of constructing a whole network by small KPSs is inef-
ficient. Note that the Casel and Case2 are not rare. These cases cannot be found iff T can
be divided to hold the following condition:

.. )0 (1t #7) s
<1, >= { 1 (i = j) Vi,Vj € {1,2,---,Ny}.

4 Optimal primitive

In order to construct a large-scale network by small KPSs efficiently, better primitives for Casel
and Case2 are required than the normal KPSs. In this section, the required property for the
security primitive for Casel and Case2 is discussed. Afterwards, we show an example which
fulfills the requirements for Casel and Case2.

4.1 Generalization of Casel and Case2

As already mentioned, Casel and Case2 increase the memory size for entities. This problem
is generalized by next Lemma(x).

Lemma(x): The required memory size for entities can be optimal if a whole network is con-
structed by normal KPSs and other primitives whose memory size for < iy,i9 >=1,< 11,11 >=
0, < 49,19 >= 0 is optimal.

Proof: When < ij,i9 >= 1 (i1 # i9) is realized by a KPS, < i1,47 >= 1 and < ig,i9 >=1
are always realized simultaneously evenif they are not desired. In both Casel and Case2,
such undesired functions bring the inefficiency. Thus, if an optimal primitive for < 41,40 >=
1,< 41,11 >= 0,< 49,73 >= 0 is provided, Casel and Case2 are dealt with optimally. If a
function for communication < 41,4; >= 1(or< 49,49 >= 1) is required, a normal KPS is added
as the optimal primitive for it. Hence, currently use of normal KPSs and optimal primitives
for < i1,i9 >=1,< 41,41 >= 0,< i9,i9 >= 0 realizes optimal memory size for constructing
large-scale networks by small key-sharing systems. O

4.2 Asymmetric t-conference key distribution

In this subsection, a lower bound of the memory size of a security primitive for < iy,i0 >=
1,< 41,01 >=0,<ig,i9 >= 0 (i1 # i2) is shown. For other applications, we further generalize
the primitive and call it asymmetric t-conference key distribution. Asymmetric t-conference key
distribution is defined as follows:

Definition: Let U be a set of entities and U is divided to t subsets U = {Uy,Ua,- -+, U}. A
key-sharing scheme for U is called asymmetric t-conference key distribution if

1. Yuy € Uy, Yug € Us, -+, Yuy € Up can compute their common key among them non-
interactively (note that common keys among a same subset is not required).

2. Collusion thresholds 11,1, -+, are independently set up for each of Uy, Us, -+ Uy. And
unless a group of colluders F; € U; holds |F;| > i, any information of a common key is
not exposed to entities who should not have it.



Note that a security primitive for < i1,y >= 1,< 41,43 >= 0,< ig,i9 >= 0 (i1 # i2) is an
asymmetric 2-conference key distribution.

Then, for u; € U; the amount of memory of his secret algorithm U; holds following lower
bound:

log, |Ui| > ( II (¢j+1)> H(K). (4)

Proof: The mutual information between random valuables X and Y fulfills following 2 equa-
tions:

I(X;Y) = H(X) - H(X|V), (5)
I(X;Y)=1(Y; X). (6)

iFrom Eq.5 and Eq.6, following equation is obtained:
H(X)=H(Y)-H(Y|X)+ H(X|Y). (7)

Here, let Ky, be a set of all common keys which are shared with Vu," € Uy C Uy, Yuy' € Us' C Uy,
-+, Yuy €U CU; by asymmetric t-conference key distribution, where each U’ (i = 1,---,t)
holds |U;'| = ;.

JFrom Eq.7, the entropy of U; is described as follows:

H(U;) = H(Ky,) — H(Ky; |Us) + H(Ui|Ku,)- (8)

Since in an asymmetric ¢-conference key distribution scheme, all of K, can be computed by
using U;,
H(K,,|U;) = o. (9)

Then, from Eq.8 and Eq.9 following inequality is obtained:
H(Uy;) = H(Ky;) + H(Ui|Ky;) 2 H(Ky,)- (10)

In a secure asymmetric ¢-conference key distribution system, mutual information between any
pair of keys which belong to IC,, must be 0. Thus, H(K,,) holds

H(Ku)= ) H(K)Z( II (1/Jj+1))H(K)- (11)

KG’CuZ je{la"'rt}rj#i

i From Eq.10 and Eq.11, we obtain

H(Ui)z( 11 (¢j+1)) H(K). (12)

]e{lvvt}n?#l

Hence, from Eq.1 Eq.12 becomes Eq.4. O
For unconditional security, each v; (i = 1,---,%¢) should be equivalent to |[U;| — 1. By
introducing this collusion threshold, Eq.4 becomes

log, |Ui| > ( II IUj|> H(K). (13)



4.3 An example of optimal asymmetric t-conference key distribution scheme

In this subsection an optimal asymmetric t-conference key distribution scheme is shown. In this
scheme, the symmetric polynomial which is the KPS-center algorithm in Blundo et al.’s scheme
is replaced with an asymmetric polynomial in ¢ variables z1,xs, - -, z; over GF(q) in which the
degree of each variable is 11,1, - - -, 9, respectively, that is, a polynomial

1 Yt
flz1,--,x¢) = Z Z Qjyoiy L1 - g (14)

i1=0 =0
Note that a;, ...;, is not necessary to be equivalent to a4, ...;,) for any permutation o on (1, i)
The center computes U; = f(x1, T2, -, %t)|s;—u, and gives each U; to u;, respectively. When
u; communicates with u; € Uy, us € Us, -+, u; € U (excluding u; € U;), u; computes their

communication keys by U;|,, —u; zp—us, -z =u; (excluding z;=u;)- BY this procedure, an asymmetric
t-conference key distribution is exactly realized.
In this scheme, the required memory size for U; is estimated as follows:

logleilz( 11 (¢j+1)> H(K). (15)

Thus, this scheme is optimum since we have already shown the lower bound on |U;| by Eq.4. For
t = 2, we then obtain an optimal security primitive for < 41,40 >=1,< 41,01 >=0,< 19,13 >=
0 (i1 # i2). When we apply this, the required memory for v; € Yy is |YTo|H(K), which is much
less than that by normal KPSs as shown in 3.2.

5 Optimal construction by normal KPSs and asymmetric 2-
conference key distribution schemes

As already mentioned in 4.1, if normal KPSs and asymmetric 2-conference key distribution
schemes are applied, the required memory size can be optimal. In this section, we show an
optimal construction of a large-scale network by removing unnecessary communication links.

Procedure of the center: The center first provides center algorithms of normal KPSs and
asymmetric ¢-conference key distribution systems. For each < 4,4 >=1 (i = 1,2,---,Ny), a
normal KPS is applied. And for each < 4,5 >=1 (i # j), an optimal asymmetric 2-conference
key distribution scheme is applied. G*(z,y) and G¥(z,y) (i,5 € {1,2,---, Ny}, i # j) denotes
the center algorithms for normal KPSs and asymmetric ¢-conference key distribution systems,
respectively (G*(x,y) and G¥(z,y) holds G*(z,y) = G'(y,z) and G¥(z,y) = G'*(y,z), respec-
tively). Then, the center gives the following secret algorithm U,, to v; € T;:

Uy, = {U] [For <i,j >=1, UJ(y) = G*(vi,y) (i = j), U (y) = GY(vi,y) (i #4)}  (16)

Since applied KPSs and asymmetric 2-conference key distribution schemes are optimal, required
memory size for each small key sharing system is estimated as follows:

log, |U (y)| = || H (K). (17)

As an optimal KPS, Blundo et al.’s scheme, Matsumoto-Imai scheme and Blom’s scheme are
available. On the other hand, as an optimal asymmetric 2-conference key distribution scheme,
our scheme shown in 4.3 is available.



Procedure of entities: v; computes the common key with v; € T; as follows:

Vg : kvi,vj = U’zzjz(vj)a B
vj - kvia’Uj =Uy (vj) = Ug; (vi).

6 FEvaluation

6.1 Memory size for entities

By our construction, the required memory size for v; € T; is estimated as follows:

log [Uy; | = ( Y. <ij> ITjI) H(K). (19)

je{lf",NT}

Here let log, |U’'| be the required memory size for an entity when the a whole network is con-
structed only by one normal KPS. Then, we obtain following equation:

Y ieft, Ny} (<80 > [ T50)

Since - ey, Ny} (< 4,5 > |T]) is equivalent to the number of partners of v;, and 37y ... vy | T
is equivalent to the number of entities in the whole system, Eq.20 becomes

logs |Uy,| = logy |U|. (20)

the number of partners

log, |UUi| = logs |U,|- (21)

the number of entities — 1

Namely, by using our scheme the memory size for an entity is reduced to be almost same as (#
of partners)/(# of entities). Moreover, our scheme is optimal due to the discussion in Section 4.

6.2 Security

Our scheme is perfectly secure since any subset of entities have no information on a key they
should not know. When we reduce the collusion threshold for reduction of memory size, the
security becomes non-perfect. Namely, if the collusion threshold is less than the number of
entities, by a collusion attack colluders can compute common keys of a victim. However, to
success this attack a huge number of colluders is required and it seems still impossible in real
world.

7 Conclusion

In this paper, an optimal construction of ID-based key sharing scheme for large-scale networks
is proposed. It has been pointed out that to achieve perfect security huge amount of memory is
required in conventional KPS, and it has been shown how KPS can be improved for practical
communication systems. To be specific, by removing communication links that are not required
in a practical communication system, the amount of memory is reduced significantly. IN our
scheme, the required memory for each entity is (the number of partners) x (the length of a
common key), while that in conventional KPS is (the number of entities) x (the length of a
common key). As an example, if an entity communicate only with 1/r of others, the required
memory is reduced to be almost 1/r of that of conventional KPS. Furthermore, our scheme is



proven to be optimal. This makes our scheme attractive for various applications like broad-
casting or E-commerce in the Internet. In this work, we also propose an optimal asymmetric
t-conference key distribution scheme. Since this scheme has a good property, it is considered to
be utilized effectively in other applications. Additionally, since public-key cryptosystems do not
have advantages of KPS in terms of computational cost, ID-basedness, and so on, the efficient
combination of a public-key cryptosystem and our scheme will realize a more efficient and secure
communication system than one single use of a public-key cryptosystem.
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