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Abstract. Recent advances in interpolation and high order differential
cryptanalysis have highlighted the cryptographic significance of Boolean
functions with a high algebraic degree. However, compared with other
nonlinearity criteria such propagation, resiliency, differential and linear
characteristics, apparently little progress has been made in relation to
algebraic degree in the context of cryptography. The aim of this work is
to research into relationships between algebraic degree and other nonlin-
earity criteria. Making use of duality properties of Boolean functions, we
have obtained several results that are related to lower bounds on nonlin-
earity, as well as on the number of terms, of Boolean functions. We hope
that these results would stimulate the research community’s interest in
further exploring this important area.

1 Introduction

The algebraic degree has long been believed by many designers of block ciphers
and one-way hash functions to be an important nonlinearity indicator for the
cryptographic strength of Boolean functions. Recent progress in interpolation
cryptanalysis [1] and high order differential cryptanalysis [5] can be viewed as a
proof for the correctness of the belief. Of particular interest is the work of [5]
in which the authors showed how to break in less than 20 milli-seconds a block
cipher that employs low algebraic degree (quadratic) Boolean functions as its
S-boxes and is provably secure against linear and (the first order) differential
attacks.

Investigation into the algebraic degree of Boolean functions has been a dif-
ficult topic. This is supported by the fact that, while the past few years have
seen much progress in relation to other nonlinearity criteria such as propaga-
tion, differential profile, nonlinear profile, resiliency, correlation-immunity, local
and global avalanche characteristics, little progress has been made in design-
ing Boolean functions that have a high algebraic degree and also satisfy other
important nonlinearity criteria.

In this paper we tackle algebraic degree, together with nonlinearity, propaga-
tion characteristics, correlation immunity and the number of terms in a Boolean



function by exploring the duality property of a Boolean function. Main contribu-
tions of this work are to show (1) two lower bounds, one on the nonlinearity and
the other on the number of terms of a Boolean functions, and (2) a connection
between the algebraic degree of a Boolean function and its Walsh-Hadamard
transform.

2 Basic Definitions

We consider functions from V,, to GF(2) (or simply functions on V,,), V,, is the
vector space of n tuples of elements from GF(2). The truth table of a function f
ou V, is a (0, 1)-sequence defined by (f(wp), fla1),...,f(aan_1)), and the se-
quence of fisa (1, —1)-sequence defined by ((—1)7(@0), (=1)fe) (—1)f(ean—1)),
where ag = (0,...,0,0), an = (0,...,0,1), ..., agn-1_1 = (1,...,1,1). The ma-
triz of fis a (1, —1)-matrix of order 2" defined by M = ((—1)7(*:®%i)) where @
denotes the addition in GF(2). f is said to be balanced if its truth table contains
an equal number of ones and zeros.

Given two sequences @ = (a1, - - - ,(1,,,,,,) and b = (b1, b,,,_), their component-
wise product is defined by @b = (aiby,---. @pbpm). In particular, if m = 2 and
a, b are the sequences of functions on V), respectively, then a * b is the sequence
of fe@y.

Let @ = (a1, -, @) and b = (b1,---.by) be two vectors (or sequences),
the scalar product of @ and b, denoted by (&,i)), is defined as the sum of the
component-wise multiplications. In particular, when a and b are from Vin, (@, i?) =
a1by @ - - @ ay by, where the addition and multiplication are over GF(2), and
when @ and b are (1, —1)-sequences, (a, I~J> = Yo", a;b;, where the addition and
multiplication are over the reals.

An affine function f on V,, is a function that takes the form of f(z1,...,z,) =
a1z1 @ - D ann @ ¢, where aj,¢c € GF(2), j = 1.2,...,n. Furthermore f is
called a lznear function if ¢ = 0.

Definition 1. The Hamming weight of a (0, 1)-sequence ¢ is the number of ones
in the sequence. Given two functions f and g on V,,, the Hamming distance
d(f,g) between them is defined as the Hamming weight of the truth table of
f(z) ® g(x), where © = (z1,...,2,). The nonlinearity of f, denoted by Ny, is
the minimal Hamming distance between f and all affine functions on V,,, i.e.,
Ny =ming_q 5 sn+1 d(f,@;) Where o1, g, ..., @ans1 are all the affine functions

on V,.

A (1, =1)-matrix H of order m is called a Hadamard matrix if HH! =ml,,,
where H' is the transpose of H and I,, is the identity matrix of order m. A
Sylvester-Hadamard matrix of order 2", denoted by H,, is generated by the
following recursive relation

anl anl

H(] - 17 Hn - |:Hn1 _anl

],n:l, 2,....



Let ¢;, 0 <7 < 2™—1, be the ¢ row of H,,. By Lemma 2 of [4], ¢; is the sequence
of a linear function ¢;(z) defined by the scalar product ¢;(z) = {«;, ), where
«; 18 the 4th vector in V,, according to the ascending alphabetical order.

Definition 2. Let f be a function on V,,. For a vector o € V,,, denote by &(«)
the sequence of f(z @ «). Thus £(0) is the sequence of [ itself and £(0) *&(a) is
the sequence of f(x) ® f(z ® a). Set

A(r) = (£(0), &),

the scalar product of £(0) and &(a). A(wx) is also called the auto-correlation of f
with a shift o.

Obviously, A(a) = 0 if and only if f(z)® f(r @ «) is balanced, i.e., f satisfies
the propagation criterion with respect to a. On the other hand, if |A(a)| = 27,
then f(z) ® f(z @ «) is a constant and hence « is a linear structure of f.

A function f on GF(2) can be uniquely represented by a polynomial on
GF(2) whose degree is at most n. Namely,

. ye —_ ,;a r¢(1'
f(@1,. o @) = @ glat, ..., an)zy" - xin (1)
acV,,
where a = (aq,...,a,), and g is also a function on V;,. Each #7" --- 2%~ is called

a term (in the polynomial representation) of f.
The algebraic degree, or simply degree, of f, denoted by deg(f), is defined
as the number of variables in the longest term of f, i.e.,

deg(f) = max{W(ay,...,a,) | g(as,...,a,) =1}

Definition 3. Let f be a function on V,, and U be s-dimensional subspace of
V... The restriction of f to U, denoted by fy, is a function on U, defined by the
following rule

fo(a) = f(a) for every a € U.

Notation 1 Let W be a subspace of V,,. Denote the dimension of W by dim(W).

Notation 2 (by,...,b,) = (a1,...,a,) means that (by,...,b,) is covered by
(a1,...,a,), namely if b; = 1 then a; = 1. In addition, (b1,...,b,) < (a1,...,a,)
means that (by,...,b,) is properly covered by (ay,...,a,), namely (by,...,b,) =<
(@1,...,an) and (by,...,by) # (a1,...,ay).

3 Duality of Boolean Functions

The dual of a Boolean function f is a function ¢ that is uniquely determined
by the coefficients of the terms of f. The main purpose of this section is to
provide the minimum amount of knowledge on duality that is required in the
rest part of this paper. A proof for the following result is provided, as we feel
that understanding the proof would be helpful in studying other issues that are
more directly related to cryptography.



Theorem4. Let f be a function on V,,. Let o, € V,, @ = (1,...,1,0,...,0)
where only the first s components are one, and # = (0,...,0,1,...,1,0,...,0)
where only the (s+1)th, ..., the (s+t)th components are one. Then the number of
the terms among 1+ Ty, Ty  TgTgq1, --. , L1 " TgTgy1 " Tgyy that appear
in the polynomial representation of f, is even if @v<a f(y® B) =0, and this
number is odd if @. o, f(y®p)=1. a

Proof. Consider a term
X(‘L) =gy Xyt Ty (2)

in f, where z = (z1,...,2,), 1 < j1 <+ <jg <sand s+1 <4 < - <
tgpp < s+t For s’ < s, there are an even number of vectors  in V,, such that
v < «and x(7& 3) = 1. Hence

P xrep =o. (3)
7=

For s’ = s, there is ouly one vector in V,,, v = «, such that x(v @ 3) = 1. Hence
Pxres =1 (4)
7=

Now consider a term

w(z) =xj - aj, (5)

in f, where z = (#1,...,%,), 1 <j1 <+ < jg, and jg > s+ ¢ From (5) with
Jjr > s+ t, and the structures of o and /3,

wiy®p) =0 (6)

for each v % a. Denote the set of terms given in (2) by I1 if s’ < s, and by I3 if
s" = s. And denote the set of terms given in (5) by £2. Then we can write f as

f=BxoPxoDew
xel xEl> weR
From (3), (4) and (6),

PDrrvesn = P xtrep). (7)

pintet YR xE€I

®7<a f(y & B) = 0 implies that |I3] is even, while ®W<a f(y® p) =1 implies
that |I3] is odd. This completes the proof. - a

Set 3 = 0 in Theorem 4 and reorder the variables, we obtain a result well
known to coding theorists (see p.372 of [3]):

Corollary 5. Let f be a function on V,, and o = (ay,...,ay), a vector in V,,.
Then the term zi* - -~ zgn appears in f if and only if . <, f(v) = 1.



With the above two results, it is not hard to verify the correctness of the
following theorem:

Theorem 6. Let f and g be function on V,,. Then the following four statements
are equivalent

(i) fla)= @[Ha g(B) for every vector a € V,,.

(i) g(a) @ﬂ-m (8) for every vector a € V.
(ii1) f(.Ll, . ) = Docv, 9(ar,. .. a,)a]" - aie where a = (a1,...,an).
T T1,...,Tp) = A1yenny @)zt -z where o = (a1,...,0,).
)9 )" acV, ? ’ 1 n )

4 Polynomial Representation and Nonlinearity

4.1 Restriction to Cosets

Let f be a function on V,, and U be an s-dimensional subspace of V,,. Then V,,
is the union of 2" ~* disjoint 2°-subsets

Vo=HyUI{U---UIlyn—s_4 (8)
where

(1) Hq] = U,
i) for any a,8 € V,, o, belong to the same class, say II;, if and only if
y ;O f g » say Iy, y
a®f € I, =U. From (i) and (ii), it follows that
(i) II; N II; = ¢ for j # ¢, where ¢ denotes the empty set.

As each II; can be expressed as II; = 3; ® U for a 3; € V,,, where 3; @ U =
{B; ® a|ae € U}, the definition of restriction (Definition 3) can be extended to
each coset II;.

Definition 7. Let f be a function on V,, and U be an s-dimensional subspace of
Vi The restriction of f to a coset II; = 8;0U, j =0,1,...,2"7 =1, denoted by
fm;. is a function on U, and it is deﬁnfd by fm;(a) = f(Bj®a) for every a € U.

4.2 Maximal Odd Weighting Subspaces

Definition 8. Let [ be a function on V,. A subspace U of V,, is called a max-
imal odd weighting subspace of f if the Hamming weight of fu is odd and the
Hamming weight of fu:, where U' is any subspace with U D U (i.e. U is a
proper subset of U'), is even.

A maximal odd weighting subspace of a function is not necessarily a subspace
with the maximum dimension, even if the Hamming weight of the restrictions of
f to the subspace is odd. This is best explained with the following example.



Exzample 1. let f(zq, %2, T3,%4) = 112273 O 117274 O 1374 D 73 be a function
on V4, whose truth table is 001000100010000. The eight vectors (0000), (0001),
(0100), (0101}, (1000), (1001), (1100) and (1101) form a 3-dimeunsional subspace,
say W, such that the Hamming weight of fy is one (odd). By a direct verifi-
cation, 3 is the maximum dimension of the subspaces, the Hamming weight of
the restrictions of f to these subspaces is odd. However, the four vectors (0000),
(0001), (0010) and (0011) form a 2-dimensional subspace, say U, such that the
Hamming weight of fy is one (odd). There are four 3-dimeunsional subspaces
containing U:

U’ = {(0000), (0001), (0010), (0011), (0100), (0101), (0110), (0111)}
U" = {(0000), (0001), (0010), (0011), (1000), (1001), (1010), (1011)}
U"" = {(0000), (0001), (0010), (0011), (1000), (1001), (1010), (1011)}

We note that the Hamming weights of fy/, fyr and fy» are all two (even).
We also note that the 4-dimensional subspace containing U is V; itself and the
Hamming weight of f is four (even). Hence both W and U are a maximal odd
weighting subspace of f.

As will be shown in the forthcoming sections, the concept of maximal odd
weighting subspace of a function plays an important role, primarily due to the
fact that the dimension of a subspace is relevant to the structure of the function.
In particular, we will show in the next section a connection between the dimen-
sion of a maximal odd weighting subspace of a function and the lower bound on
nonlinearity of a function.

4.3 A Lower Bound on Nomnlinearity

Definition 9. Let f be a function on Vy,, x;, ---z;, and x;, -+ x;, be two terms
in the polynomial representation of function f. x; ---x;, is said to be covered
by @iy - xi if {41, ..., Je} is a subset of {iy,.. .45}, and xj, -+ x;, is said to be
properly covered by z;, -+ @i, if {j1,...,Jt} @8 @ proper subset of {i1,...15}.

Theorem 10. Let f be a function on V, and U be a maximal odd weighting
subspace of f. If dim(U) = s then the Hamming weight of f is at least 2%,

Proof. Let U be a subspace defined in (8). And let N; = {a|a € II;, f(a) =1},
where II; is defined in (8), j = 0, 1,...,2% 1 Since Il = U, N, is odd. Note
that IIo U II; is a (s + 1)-dimensional subspace of V,,, j =1,...,2"7° — L.
Since IIy = U is a maximal odd weighting subspace of f, Hamming weight of
the restriction of f to II,UIl; is even. In other words, Ny+N; is even. This proves
that each N;isodd, 7 =1,...,2" ° —1. Hence Ng+ N1+ -+ Non-s_y > 2777,
namely, the Hamming weight of f is at least 2775, O

Theorem11. Let f be a function on V,, and U be a mazximal odd weighting
subspace of f. Let dim(U) = s (s > 2) then the nonlinearity of f, Ny, satisfies
Nf > 2775,



Proof. Let ¢ be an affine function on V,,. Since s > 2 the Hamming weight
of oy must be even. Hence the Hamming weight of ¢y must be even. Hence
the Hamming weight of (f & @)y must be odd. According to Lemma 10, the
Hamming weight of f @& ¢ is at least 2" 7°. As the Hamming weight of f & ¢
determines d(f, ), the theorem is proved. O

Theorem12. Lett > 2. If z;, ---x;, is a term in a function f on V, and it is
not properly covered (see Definition 9) by any other terms in the same function,
then the nonlinearity of f, Ny, satisfies Ny > 2"

Proof. Write a = (a1,...,a,) where a; = 1 for j € {j1,...,j:} and a; = 0 for

7€ 4{J1s---07e} Set
U={7lv=a}l

Obviously U is a t-dimensional subspace of V,,. Since z;, ---z;, is a term in f on
Vi, by using Corollary 5, @<, f(7) =1 or D,y f(7) = 1 ie. the Hamming
weight of fy is odd.

We now prove that U is a maximal odd weighting subspace of f. Suppose U
1s not a maximal odd weighting subspace of f. Hence there is a s-dimensional
subspace of V,,, say W, such that U is a proper subset of W i.e, s > t and the
Hamming weight of fw is odd i.e. @,y f(7) = 1. Since U is a proper subspace
of W, by using linear algebra, W can be expressed as a union of 2°? disjoint
2t-subsets

W=UU(H@U)U---U(fosc 1 0U) (9)

where each 3 < @, where @ @ a = (1,...,1). Since both the Hamming weights
of fy and fw are odd, there is a coset, say B, ® U, 1 < k <257t — 1, such that
the Hamming weight of fg, gu is even or GBWEU f(Br®v)=01ie.

P ey =o. (10)

¥R

Applying Theorem 4 to (10), there are even number of terms covering z;, - - x;,.
Since the term x;, ---x;, itself appears in f, there is another term properly
covering x;, - - - ;,. This contradicts the condition in the theorems, that the term
xj, -+ xj, is not properly covered by any other terms in f. The contradiction
proves that U is a maximal odd weighting subspace of f. By using Theorem 11,
the proof is completed. O

FEzample 2. Let

f(z1, ..., T10) = 1222304 L5627 @ T3T4TpTelrTeTo D TrlgToT1g B

T4TeTgT10 D T12529 D T2Ty D Tg

be a function on Vyy. term z125x9 is not properly covered by any other terms in
/. By using Corollary 12, the nonlinearity of f, Ny, satisfies Ny > 21073 = 27,



Erample 3. Let

f(@1, ..., 210) = 1220304 T5TeT7 B T3T4T5TeTrTgTo @ TrTgToL1p B

T4TeTgT10 D T1T3%5 D T2xs D 1 D T2

be a function on Vig. The term z,zg is not properly covered by any other terms
in f. By using Corollary 12, the nonlinearity of f, Ny, satisfies Ny > 21072 = 28,

We note that the lower bound in Theorem 11 is tight:

Corollary 13. For any n and any s, 2 < s < n, there are a function on V,,, say
f, and a s-dimensional subspace, say U, U be a mazximal odd weighting subspace
of f and the nonlinearity of f, Ny, satisfies Np = 2777,

Proof. We prove the corollary by an example. Let ¢ be a function on V;, defined
as g(#) = 1 if and only if B = 0. Set f(z,y) = g(y), a function on V,,, where
z € V—s and y € V5. Since the Hamming weight of f is 2"7° (s > 2), d(f,h) >
2"7% where h is any affine function on V,, and the equality holds if h is the zero
function on V,,. Hence the nonlinearity of f, N¢, satisfies Ny = 277°. On the
other hand, set

U={(0,....0,bs,....b)|b; € GF(2)}

where the number of zeros is n—s. It is easy to verify that s-dimensional subspace
U is a maximal odd weighting subspace of f. O

Finally we note that for s = 2, the value of 2”7% in Theorem 11 is very close
to 2771 — 2%”’1, the upper bound on the nonlinearity of functions on V,, [4].
However Theorem 11 cannot be further improved by extending s to s = 1, as the
condition of s > 2 in the proof of the theorem cannot be removed. For example,
let f be a function on V,,, whose truth table is given as follows

0110011010011001.

It is easy to verify that (0000), (0001) form a maximal 1-dimeunsional subspace,
denoted by U. Theorem 11 is not applicable due to the fact that dim(U) = 1.
In fact, f is a linear function, hence its nonlinearity is 0.

Nevertheless, Theorem 10 can be applied, which gives us > 2*7! = 8 as the
Hamming weight of f.

4.4 A Lower Bound on the Number of Terms

Theorem 14. Let f be a function on V,, such that f(a) =1 for a vector a € V,,,
and f(B) = 0 for every vector 3 with o < 8 where < is defined as in Notation
2. Then f has at least 27~ terms where t denotes the Hamming weight of c.



Proof. We first give Theorem 10 an equivalent statement, that we call Theorem
10°, as follows

Theorem 10’ Let f be a function on V,, and g be defined in (1). Let g(a) =1
for a vector & € V,,, and ¢(f) = 0 for every vector § with @ < g where < is
defined as in Notation 2. Then the Hamming weight of f is at least 277,

The equivalence between (iii) and (iv) in Theorem 6 allows us to interchange
f and g in Theorem 10’. Thus we have

Theorem 10” Let f be a function on V,, and ¢ be defined in (1). Let f(a) =
1 for a vector a € V,,, and f(B) = 0 for every vector 8 with o < 3 where < is
defined as in Notation 2. Then the Hamming weight of g is at least 2"~

This completes the proof. a

Corollary 15. Let f be a function on V,, such that f(a) = 0 for a vector a € V,,,
and f(B) =1 for every vector B with o < B where < is defined as in Notation
2. then f has at least

(i) 2"=% — 1 terms if £(0) =0,
(i) 27 ° + 1 terms if f(0) = 1,

where s denotes the Hamming weight of .

Proof. Set f' = 1@ f. Hence f'(a) = 1 and f'(f) = 0 for every 8 € V,,. By using
Theorem 14, f' has at least 277% terms and hence f has at least 27~% — 1 terms.
This proves (i) of the corollary.

In the above the proof, we have already proved that f’ has at least 2"~*
terms. Suppose f(0) = 1. Note that f'(0) = 0. Hence f has at least 275 +1
terms. O

Ezample 4. Let f be a function on Vg, whose truth table is given as follows
1000110111110010001101001100100001111100011001101001011010001010

Note that the value of £(001011) is one, while the values of f(001111), f(011011),
£(011111), f(101011), £(101111), £(111011) and f(111111) are all zero. Apply-
ing Theorem 14 to the vector (001011), we conclude that f has at least 2673 =8
terms.

FEzxample 5. Let f be a function on Vg, whose truth table is given as follows
1000110111110011001101011101100101111101011101111001011110011010

Note that f(000011) assumes the value zero, while f(000111), £(001011), f(001111),
£(010011), £(010111), £(011011), £(011111), £(100011), £(100111), £(101011),
f£(101111), £(110011), f(110111), f(111011) and f(111111) all assume the value
one. Applying (ii) of Corollary 15 to the vector (000011), one can see that f has
at least 2672 41 = 17 terms.

The lower bounds on the number of terms given by Theorem 14 and Corollary
15 are tight, due to Corollary 13 and Theorem 6.



5 Relating Algebraic Degree to Other Criteria

Note that the algebraic degree of any function, say f, on V,, is invariant under a
nou-singular linear transformation on the variables, and for any vector a € V,,,
the subset W = {g|8 < a} is a s-dimensional subspace, where s denotes the
Hamming weight of «. Using Theorem 6 it is not difficult to prove

Theorem 16. Let f be a function on V,, (n > 2). Then
deg(f) = max{dim(U) | U is a subspaces and Hamming weight of fy is odd}.

The following lemma is called “Poisson Summation” whose proof can be
found in [2].

Lemmal7. Let real valued sequences ag,...,asn_1 and by, ...,ban_1 satisfy

((lo, ‘e ../(l2n_1)Hn = (bg, e ab2”—1)-

Then for any p-dimensional subspace 1 <p<n-—1, say W,

Z a, = 207" Z Doy

acW aEWL
where WL = {B|B € V,,, (B,a) =0, for each o« € W}.

The next theorem shows a relationship between algebraic degree and Wlash-
Hadamard transforms of a function.

Theorem 18. Let f be a function on'V,, (n > 2), & be the sequence of f, and p
is an integer, 2 < p < n. If (£,4;) =0 (mod 2"7P*2) where {; is the jth row
(column) of H,,, j =0,1,...,2" — 1, then deg(f) <p—1.

Proof. Let & = (ag,ay,...,azn_1). Note that

((1,()7 Ay, ... ,(LG_l)H,,, = (<£,£1)>, <§,£1>, ey <§,l2n_1>).

Then from Lemma 17

D o =21 N (€ k) (11)

aceW aEW L

holds for each p-dimensional subspace W of V;,, where W+ = {ala € V,, {(a,p) =
0, for each # € W} and a, = a; if « is the binary representation of integer j.
From (11) and the condition that (¢, £;) =0 (mod 2"77%), j =0,1,...,2"—1,
we have 37 .y o =0 (mod 4). Note that & = (ag,ay,...,a2. 1) is the se-
quence of f. It is easy to verify that )3 .y ao =0 (mod 4) if and only if the
Hamming weight of fy is even.

Since W is an arbitrary p-dimensional subspace, using Theorem 16, the
Hamming weight of the restriction of f to any g-dimensional subspace is even,
g=p,p+1, ..., n. So from Theorem 16, we have deg(f) <p— 1. O



Corollary 19. Let f be a function on V,, (n > 2) and & be the sequence of f,
and p is an integer, 2 < p < m. If A(e) =0 (mod 2?), for each a € V,,, then
deg(f) <mn+1—3p for p even, and deg(f) <n+1—1(p+1) for p odd.

Proof. From [6]
(A(CVO)* A(al), B A((’“?"'—l))Hﬂ = ((’57 €0>27 <§= £1>27 ) <£7£2"—1>2)

where £; is the jth row (column) of H,. Since A(a) = 0 (mod 27) for each

@ €V, we have (£, £;)2 =0 (mod 2?P) for j =0,1,...,2" — 1. Hence (£, £;) =0
(mod Z%T’) it p is even, and (€,£4;) = 0 (mod 2%(1’*1)) if p is odd. Now the
corollary follows from Theorem 18. ]

We note that in Theorem 18, (£, £;) is closely related to nonlinearity [4], and
in Corollary 19, A(«) is related to propagation characteristics [6].
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