
Simple and Efficient Threshold Cryptosystem
from the Gap Diffie-Hellman Group

Joonsang Baek
Monash University

Frankston, VIC 3199, Australia
Email: joonsang.baek@infotech.monash.edu.au

Yuliang Zheng
UNC Charlotte

Charlotte, NC 28223, USA
Email: yzheng@uncc.edu

Abstract— In this paper, we construct a new thresh-
old cryptosystem from the Gap Diffie-Hellman (GDH)
group. The proposed scheme enjoys all the most im-
portant properties that a robust and practical thresh-
old cryptosystem should possess, that is, it is non-
interactive, computationally efficient and provably se-
cure against adaptive chosen ciphertext attacks. In
addition, thanks to the elegant structure of the GDH
group, the proposed threshold cryptosystem has shorter
decryption shares as well as ciphertexts when compared
with other schemes proposed in the literature.

I. INTRODUCTION

A. Threshold Cryptosystems

Although there have been several proposals on
threshold cryptosystems1, most of these proposed
solutions are complex and inefficient in terms of
computation and communication overheads. As a
result, it remains a challenge to design a simple
yet efficient threshold cryptosystem that is provably
secure against adaptive chosen ciphertext attacks
(CCA).

In this paper, we take up the challenge with the aim
of further advancing this line of research. We achieve
our goal, namely to design a simple, secure and
efficient threshold cryptosystem, by taking advantage
of an emerging technique for using a group of
points on certain elliptic curves which have a special
property.

B. Related work

In the research into secure threshold cryptosystem,
perhaps the most significant progress was made by
Shoup and Gennaro [14] who came up with a formal
security notion for threshold cryptosystems, proposed
two practical schemes and proved the security of
their schemes against CCA in the random oracle
model [4]. Although the schemes by Shoup and
Gennaro were very efficient when compared to those

1One might use the term “threshold decryption”, instead.

proposed so far, the use of non-interactive zero-
knowledge (NIZK) proofs of membership in their
schemes contributed in a negative way to the compu-
tational costs of encryption as well as the expansion
of ciphertexts. While our present work can be viewed
as a novel application of Shoup and Gennaro’s
techniques, we set apart from Shoup and Gennaro’s
work by constructing an efficient and provably secure
threshold scheme without invoking NIZK proofs of
membership.

Recently, in [6], Boneh and Franklin mentioned
that the Private Key Generator (PKG) in their
identity-based encryption scheme can be distributed
using the techniques of threshold cryptography,
which only holds in the identity-based setting and
hence is different from our scheme which is for
the normal public key setting. Another difference
is that our scheme is publicly checkable whereas
the schemes in [6] are not. This will be discussed
more in the next section. Nevertheless, we remark
that they did mention about exploiting the easiness of
solving the DDH problem in the group on which their
identity-based encryption scheme is based, which
plays a central role in our threshold cryptosystem.

Other related works include Boneh et al.’s short
signature scheme [7], Lysyanskaya’s unique signa-
ture scheme [11] and more recently, Bolyreva’s con-
struction of various signature schemes based on the
Boneh et al.’s short signature scheme, all of which are
based on the property of the GDH group. However,
until the present work, a threshold cryptosystem on
the GDH group has not yet emerged.

II. PUBLICLY CHECKABLE CRYPTOSYSTEM

FROM THE GDH GROUP

A. The GDH Group

The Decisional Diffie-Hellman (DDH) problem is
defined as a problem where, given (P, aP, bP, cP) ∈
G where G = 〈P 〉 is a group of prime order q
and a, b, c are uniformly chosen at random from ZZ∗

q ,

GLOBECOM 2003 - 1491 - 0-7803-7974-8/03/$17.00 © 2003 IEEE

one is asked to decide whether c = ab. Note that
throughout this paper, an operation in G is denoted by
“addition (+)”. A closely related problem is the Com-
putational Diffie-Hellman (CDH) problem where one
is asked to compute abP , given (P, aP, bP).

The group G is called a Gap Diffie-Hellman group
if there exists an efficient (polynomial-time in |q|)
algorithm for solving the DDH problem, but not for
solving the CDH problem. The GDH group can be
constructed using a bilinear map on supersingular
elliptic curves as follows [9].

Let p be a prime. Let E be an elliptic curve over
Fpn for some positive integer n. Let E[q] be the q-
torsion subgroup of E, that is, E[q] = {P ∈ E|qP =
O} where q is a prime. The Weil (or Tate) paring is
a map e : E[q] × E[q] → F

∗
pnα for the least positive

integer α called a “multiplier” such that q|pnα − 1
with the following properties.

• Identity: For all R ∈ E[q], e(R,R) = 1.
• Bilinear: For all R1, R2 ∈ E[q] and a, b ∈ ZZ,

e(aR1, bR2) = e(R1, R2)ab.
• Non-degenerate: If for R ∈ E[q], e(R,R′) = 1

for R′ ∈ E[q] then R = O.
• Computable: For all R1, R2 ∈ E[q], the pairing

e(R1, R2) is efficiently computable.

Suppose that q divides E(Fpn) with a small co-
factor. Suppose also that we have a non-Fpn -rational

map φ : E → E. Then G def= E(Fpn)[q] is a group
where a non-degenerate and efficiently computable
bilinear map ê : G×G → F

∗
pnα exists, which is called

the “admissible” bilinear map [6]. Note that the
bilinear map ê is defined by ê(P,Q) = e(P, φ(Q)).

The group G constructed above satisfies the prop-
erty of a GDH group since we can determine whether
a given tuple (P, aP, bP, cP) is a Diffie-Hellman
one by checking whether ê(P, cP) = ê(aP, bP),
whereby solving the DDH problem.

B. Discussions on Publicly Checkable Cryptosystem

Validity check of ciphertexts is necessary in de-
signing public key crytosystems to ensure chosen
ciphertext security. However, in many public key
cryptosystems, such check can be done only if a
verifier (or a receiver) knows a private key. There
are only a few schemes that are known to be pub-
licly checkable, e.g., [1], [12], [14]. As observed by
Lim and Lee [10], publicly checkable cryptosystems
are particularly useful in designing threshold cryp-
tosystems. The main reason is that in a threshold
cryptosystem an attacker has decryption shares as ad-
ditional information, as well as decryption of chosen

plaintexts2.
In the schemes in [1], [12], [14], the “public

checkability” is achieved by using NIZK proofs (of
language membership [14] or of knowledge [1],
[12]) on ciphertexts. A downside of using ZKIP is
that such proofs make the schemes more complex,
computationally less efficient and more importantly,
longer ciphertexts.

In what follows we present a publicly checkable
cryptosystem. This efficient cryptosystem will be a
building block for our threshold cryptosystem that
does not rely on a NIZK proof, largely thanks to
the special property of the GDH group on which the
scheme is based.

C. Description of the Scheme PCCG
Let Gbe a GDH group with order q and a generator

P . q and P are shared between a sender and a
receiver. Assume that the receiver has published a
public key Y = xP where x is a private key chosen
uniformly at random from ZZ∗

q .
The sender encrypts a message m ∈ {0, 1}l by

creating a ciphertext

C = (U, V,W) = (rP,G(rY) ⊕ m, rH(U, V))

where G : G → {0, 1}l and H : G × {0, 1}l → G
are two one-way hash functions modelled as random
oracles. Upon receiving the ciphertext C, the receiver
decrypts C by computing m = G(xU) ⊕ V after
checking if ê(P,W) = ê(U,H). If C does not pass
this test, the receiver simply rejects C.

The scheme presented above is very simple – it is a
simple ElGamal encryption scheme followed by a tag
produced by signing on the ElGamal ciphertext using
Boneh et al. [7]’s short signature scheme. Note also
that the above scheme is publicly checkable without
using a NIZK proof.

It can be shown that the scheme PCCG is secure
against CCA in the random oracle model, relative to
the CDH problem on the group G. We skip the proof
due to the limit in space.

III. THRESHOLD CRYPTOSYSTEM FROM THE

GDH GROUP

We start with a review of the basic (but informal)
definition of a (t, n)-threshold cryptosystem. It fol-
lows largely Reference [14].

In a threshold cryptosystem, we assume the exis-
tence of a trusted dealer who runs a key generation
algorithm denoted by K to output a public key, a

2Readers are referred to [10] and [14] for more detailed
explanations on this.

GLOBECOM 2003 - 1492 - 0-7803-7974-8/03/$17.00 © 2003 IEEE

verification key and distributes a share of private keys
to each decryption server.

Given the public key, a sender encrypts a plaintext
by running an encryption algorithm E.

Given a ciphertext, a receiver requests the decryp-
tion servers to generate each decryption share using
algorithm denoted by D. The receiver can check
the validity of the shares by running a decryption
share verification algorithm denoted by V. When the
receiver collects valid decryption shares from at least
t servers, the ciphertext can be decrypted by running
a share combining algorithm SC.

A. Description of the Proposed Scheme T CG
Now, we describe our threshold cryptosystem from

the GDH group, called T CG = (K,E,D,V,SC).
Note that in the key generation described below, the
Shamir’s secrete sharing technique [13] is used.

Assume that the GDH group G with order q and
its generator P is shared among all the parties. We
need two hash functions G : G → {0, 1}l and H : G×
{0, 1}l → G which are modelled as random oracles.

• K(k, n, t): given a security parameter k,
the number n of decryption servers and a
threshold parameter t, this algorithm picks
a0, a1, . . . , at−1 uniformly at random from
ZZ∗

q and defines a polynomial Poly(X) =∑t−1
j=0 ajX

j . Then, for 0 ≤ i ≤ n, it sets
xi = Poly(i) ∈ ZZ∗

q and computes Yi = xiP .

Without loss of generality, it defines x
def=

a0 = Poly(0) and Y
def= Y0 = xP . Finally,

it outputs a public key pk = Y , verification
key vk = (pk, Y1, Y2, . . . , Yn) and a private key
sk = {ski} = {(pk, i, xi)} for 1 ≤ i ≤ n.

• Epk(m): given a plaintext message m ∈
{0, 1}n, and a random value uniformly chosen
from ZZ∗

q , this algorithm computes U = rP ,
V = G(rY) ⊕ m and W = rH(U, V) and
outputs a ciphertext C = (U, V,W).

• Dski
(C): given a ciphertext C, this algorithm

first computes H = H(U, V) and checks if
ê(P,W) = ê(U,H). If this test holds, it com-
putes Ui = xiU and outputs Di = (i, Ui).
Otherwise, it returns (i, “?”).

• Vvk(C,Di): this algorithm first computes H =
H(U, V) and then checks if ê(P,W) = ê(U,H).
If this tests holds then it does the following:

– If Di is of the form (i, “?”) output “in-
valid”.

– Else do the following:

∗ Parse Di as (i, Ui).
∗ Check if ê(P,Ui) = ê(U, Yi).

∗ If the test above holds, output “valid”,
else output “invalid”.

Otherwise, do the following:

– If Di is of the form (i, “?”), output “valid”,
else output “invalid”.

• SCvk(C, {Di}i∈Φ) where Φ has cardinality t:
this algorithm computes H = H(U, V). If
ê(P,W) = ê(U,H) then it computes m =
G(

∑
i∈Φ λΦ

0iUi)⊕V and outputs m. Otherwise,
it outputs “?”3. Here, λΦ

0i denotes the Lagrange
coefficient.

B. Security Analysis of the Scheme T CG
First we formally define a security notion for

threshold cryptosystem against CCA. We are inter-
ested the so-called semantic security notion against
CCA for threshold cryptosystem, which we call
“THD-IND-CCA”, given in [14].

Definition 1 (THD-IND-CCA): Consider an at-
tacker ACCA in the following experiment which con-
sists of several stages.

Corrupt: ACCA corrupts a fixed subset of t − 1
servers.
Setup: The key generation algorithm on input a
security parameter k is run. The private keys of the
corrupted servers, the public key and the verification
key (all of which are output by the key generation
algorithm) are given to ACCA. However, the private
keys of uncorrupted servers are kept secret from
ACCA.
Phase 1: ACCA adaptively interacts with the uncor-
rupted decryption servers, submitting ciphertexts and
obtaining decryption shares.
Challenge: ACCA chooses two equal length plaintexts
(m0, m1). If these are given to the encryption al-
gorithm then it chooses b ∈ {0, 1} at random and
returns a target ciphertext C∗ = Epk(mb) to ACCA.
Phase 2: ACCA adaptively interacts with the uncor-
rupted decryption servers, submitting ciphertexts and
obtaining decryption shares. However, the target ci-
phertext C∗ is not allowed to query to the decryption
servers.
Guess: ACCA outputs a guess b′ ∈ {0, 1}.

We define the attacker ACCA’s success probabil-
ity by SuccTHD−IND−CCA(ACCA) = 2Pr[b′ =
b] − 1. The probability is over the random bits
used by the experiment and the attacker. We de-
note by SuccTHD−IND−CCA(tCCA, qD) the maxi-
mal success probability SuccTHD−IND−CCA(ACCA)
over all attackers whose running time and number
of queries to the decryption share generation oracles
are bounded by tCCA and qD, respectively.

3In this case, all the decryption shares are of the form (i,“?”)
due to the validity test of C in the decryption share genera-
tion/verification algorithms run before.

GLOBECOM 2003 - 1493 - 0-7803-7974-8/03/$17.00 © 2003 IEEE

Next we define formally the CDH problem on the
GDH group G.

Definition 2 (CDH): Let G denote the GDH group
of prime order q as defined above. Let P be a
generator of G. Consider a probabilistic polyno-
mial time attacker ACDH that tries to compute abP ,
given (P, aP, bP) ∈ G for a, b, c ∈ ZZ∗

q . We de-
fine the attacker ACDH’s success by the probability
SuccCDH(ACDH) = Pr[ACDH outputs abP]. We de-
note by SuccCDH(tCDH) the maximal success prob-
ability SuccCDH(ACDH) over all attackers whose
running time is bounded by tCDH.

The following theorem is central to this paper,
which basically says that our threshold cryptosystem
T CG is THD-IND-CCA secure. Due to lack of space,
we only provide a sketch of the proof here. More
detailed analysis can be found in the full version [2].

Theorem 1: The (t, n)-threshold cryptosystem
from the GDH group T CG is secure against CCA
in the random oracle model, relative to the CDH
problem. More precisely,

1
2
SuccTHD−IND−CCA

T CG (tCCA, qG, qH , qD)

≤ SuccCDH(tCDH) +
qD + qHqD

2k
,

where tCDH=tCCA + nO(k3)qG + qHO(k3) +
qGqHqDO(k3). In addition, qG, qH and qD denote
the number of queries made by ACCA to the random
oracles G and H and the decryption oracles (servers),
respectively.

Proof: [Sketch] The basic idea of the proof is
to construct an algorithm ACDH for solving the CDH
problem by invoking an attack algorithm ACCA that
defeats THD-IND-CCA of the scheme T CG.

Below, we describe how ACDH simulates ACCA’s
view’s in the real attack described in Definition 1.
Suppose that (G, q, P, aP, bP) for a, b ∈R ZZ∗

q is
given to ACDH. The aim of this attacker is to find
out abP , a Diffie-Hellman key of aP and bP .

Preparation: When ACCA corrupts a subset of
t − 1 servers where t is a threshold parame-
ter, ACDH assumes the servers P1, P2, . . . , Pt−1

have been corrupted without loss of generality.
Let S = {0, 1, . . . , t − 1}. Then, ACDH chooses
x1, x2, . . . , xt−1 uniformly at random from ZZ∗

q and

sets Y
def= aP as a public key. Then it computes

Yi = λS
i0Y +

∑t−1
j=1 xjλ

S
ijP for t ≤ i ≤ n.

Simulation of the random oracle G: Whenever the
random oracle G is queried at some point during
the attack, ACDH checks if the value of the random
oracle has been already defined at the given point.
If there exists one, ACDH returns it to ACCA as an

answer, otherwise it chooses a random value from
appropriate space and returns the random value as
answer to the query. Note that ACDH keeps records
of all the “query-answer” pairs.

Simulation of the random oracle H: The random
oracle H can be simulated in the same way as the
random oracle G. However, this time, if there is no
entry for the given query, ACDH picks s uniformly at
random from ZZ∗

q , computes sY and returns it as an
answer. Note that ACDH also keeps records of all the
“query-answer” pairs as well as the value s ∈ ZZ∗

q .
Simulation of a target ciphertext: Suppose that

ACCA submits two plaintext-messages (m0,m1) to
the encryption oracle. On receiving (m0,m1), ACDH

generates a random string V ∗ from the space {0, 1}l.
(That is, it ignores the messages that ACCA submit-
ted.) Now ACDH sets U∗ = bP and defines the value
of H∗ def= H(U∗, V ∗) as s∗P for random s∗ ∈ ZZ∗

q .
Then it sets W ∗ = s∗U∗. Finally it returns C∗ =
(U∗, V ∗,W ∗) to ACCA as a target ciphertext. Note
here that (P,U∗,H∗,W ∗) = (P, bP, s∗P, bs∗P) is
a legitimate Diffie-Hellman tuple. Therefore, as long
as ACCA does not query the random oracle H at the
point abP , the simulation is perfect. However if such
an event happens ACDH solves the CDH problem, so
ACDH just simulates ACCA’s view up to this event.

Simulation of the uncorrupted decryption servers:
Recall that whenever ACCA queries H at a point
(U, V) which is different from (U∗, V ∗), ACDH picks

s uniformly at random from ZZ∗
q and sets H

def=
H(U, V) = sY . Now suppose that ACCA submits a
decryption query C = (U, V,W) �= C∗ to one of the
uncorrupted decryption server Pi.

We claim that (U, V) �= (U∗, V ∗). We prove this
by a contradiction. Suppose that (U, V) = (U∗, V ∗).
Then we have U = U∗ and V = V ∗. Since
H is well-defined, we have H(U, V)(def= H) =
H(U∗, V ∗)(def= H∗). But, we also have W = W ∗,
since (P,U∗,H∗,W ∗) is a Diffie-Hellman tuple by
the construction above and the Diffie-Hellman key
W ∗ (of U∗ and H∗) is unique and hence W = W ∗

by the assumption that U = U∗ and H = H∗.
However this contradicts the fact that C �= C∗.
Therefore, we conclude that (U, V) �= (U∗, V ∗).

Now, we demonstrate how ACDH can simulate
decryption share generation upon decryption query
C = (U, V,W) made by ACDH. Assume that ACCA

has already made a query (U, V) to the random

oracle H, so we have H
def= H(U, V) = sY . It

is important to notice that ACDH knows the value
s ∈ ZZ∗

q . If C is legitimate, (P,U,H,W) is a
Diffie-Hellman tuple, which passes the test check-
ing whether ê(P,W) = ê(U,H). In this case,

GLOBECOM 2003 - 1494 - 0-7803-7974-8/03/$17.00 © 2003 IEEE

we have (P,U,H,W) = (P, rP, sY, s(rY)) =
(P, rP, sxP, srxP). Since r, s, x ∈ ZZ∗

q , it is clear
that above tuple is a Diffie-Hellman one. Now ACDH

computes (1/t)W = (1/s)srP = rY . That is, ACDH

has obtained the Diffie-Hellman key of U and Y
without knowing r and x. Finally, ACDH can simulate
the output (decryption share) of each uncorrupted
server Pi, where t ≤ i ≤ n, by computing

Ui = (λS
i0/s)W +

t−1∑

j=1

xjλ
S
ijU = rλS

i0Y +

t−1∑

j=1

xjλ
S
ijrP

= rλS
i0Y + (rYi − rλS

i0Y) = rYi.

Since ACDH has Ui = rYi, it can determine whether
(P,U, Yi, Ui) is a Diffie-Hellman tuple by checking
whether ê(P,Ui) = ê(U, Yi).

IV. IMPLEMENTATION ISSUES

To implement our threshold cryptosystem, the su-
persingular curves over a finite field with character-
istic 3, which was used to construct the Boneh et
al.’s short signature [7], might be the best choice in
terms of computation and communication overheads.
In these curves, e.g., an elliptic curve group whose
size is 151 bits and provides a signature of length 154
bits with security comparable to that provided by the
discrete logarithm problem in an 923-bit finite field.
Accordingly, the size of a ciphertext and a decryption
share of our scheme is much smaller than that of
elliptic curve versions of the threshold cryptosystems
proposed in [14] and [8].

In our scheme, we need to compute the hash
function H which maps an arbitrary string to the
group element. This hash function can be constructed
in a similar way to the algorithm “MapToGroup”
described in [7]. Also, we need several pairing com-
putations. It was known that pairing computation,
even the Tate pairing which is more efficient than the
Weil pairing, is far more expensive than point mul-
tiplication,. Fortunately, significant improvements on
pairing computation have been made quite recently
by Barreto et al. [3]. Their results indicate that
when the Tate pairing is used, the verification time
of the Boneh et al.’s short signature scheme has
been done nearly 55 times faster than all previously
known methods. Hence, when the Barreto et al.’s
pairing computation method is adopted, our threshold
cryptosystem is expected to be preferable over other
schemes in terms of computational and communica-
tion overheads.

V. CONCLUSION

In this paper, we have constructed a threshold
cryptosystem from the GDH group. Our scheme is
not only simple due to the elegant structure of the

GDH group, but also enjoys all the important security
requirements of a robust threshold cryptosystem.

REFERENCES

[1] M. Abe, “Securing ‘Encryption + Proof of Knowledge’
in the Random Oracle Model”, Proceedings of Topics in
Cryptology - CT-RSA 2002, Vol. 2271 of LNCS, Springer-
Verlag 2002, pages 277–289.

[2] J. Baek and Y. Zheng, “Simple and Efficient
Threshold Cryptosystem from the Gap Diffie-
Hellman Group”, Full version, Available at
http : //phd.pscit.monash.edu.au/joonsang.

[3] P. Barreto, H. Kim, B. Lynn and M. Scott, “Efficient
Algorithms for Pairing-Based Cryptosystems”, Advances in
Cryptology - Proceedings of CRYPTO 2002, Vol. 2442 of
LNCS, Springer-Verlag 2002, pages 354–369.

[4] M. Bellare and P. Rogaway, “Random Oracles are Practical:
A Paradigm for Designing Efficient Protocols”, Proceedings
of First ACM Conference on Computer and Communications
Security 1993, pages 62–73.

[5] A. Boldyreva, “Efficient Threshold Signatures, Multisig-
natures and Blind Signatures Based on the Gap-Diffie-
Hellman-group Signature Scheme”, Proceedings of Public
Key Cryptography 2003 (PKC 2003), Vol. 2567 of LNCS,
Springer-Verlag 2003, pages 31–46.

[6] D. Boneh and M. Franklin, “Identity-Based Encryption from
the Weil Pairing”, Advances in Cryptology - Proceedings of
CRYPTO 2001, Vol. 2139 of LNCS, Springer-Verlag 2001,
pages 213–229.

[7] D. Boneh, B. Lynn and H. Shacham, “Short Signatures from
the Weil Pairing”, Advances in Cryptology - Proceedings
of ASIACRYPT 2001, Vol. 2248 of LNCS, Springer-Verlag
2001, pages 566–582.

[8] P. Fouque and D. Pointcheval, “Threshold Cryptosystems
Secure Chosen-Ciphertext Attacks”, Advances in Cryptology
- Proceedings of ASIACRYPT 2001, Vol. 2248 of LNCS,
Springer-Verlag 2001, pages 351–368.

[9] A. Joux, “The Weil and Tate Pairings as Building Blocks
for Public Key Cryptosystems”, Proceedings of Algorithmic
Number Theory Symposium (ANTS-V) 2002, Vol. 2369 of
LNCS, Springer-Verlag 2002, pages 20–32.

[10] C. Lim and P. Lee, “Another Method for Attaining Security
Against Adaptively Chosen Ciphertext Attack”, Advances
in Cryptology - Proceedings of CRYPTO ’93, Vol. 773 of
LNCS, Springer-Verlag 1993, pages 410–434.

[11] A. Lysyanskaya, “Unique signatures and verifiable random
functions from the DH-DDH separation”, Advances in Cryp-
tology - Proceedings of CRYPTO 2002, Vol. 2242 of LNCS,
Springer-Verlag 2002, pages 597–612.

[12] M. Naor and M. Yung, “Public-key Cryptosystems Provably
Secure against Chosen Ciphertext Attacks”, Proceedings of
the 22nd Annual ACM Symposiumm on the Theory of
Computing STOC, 1990, pages 427–437.

[13] A. Shamir, “How to Share a Secret”, Communications of the
ACM, Vol. 22, 1979, pages 612–613.

[14] V. Shoup and R. Gennaro, “Securing Threshold Cryptosys-
tems against Chosen Ciphertext Attack”, Advances in Cryp-
tology - Proceedings of EUROCRYPT ’98, Vol. 1403 of
LNCS, Springer-Verlag 1998, pages 1–16.

GLOBECOM 2003 - 1495 - 0-7803-7974-8/03/$17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

