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Abstract. It is a well known fact that the nonlinearity of a function f
on the n-dimensional vector space Vn is bounded from above by 2n−1 −
2

1
2 n−1. In cryptographic practice, nonlinear functions are usually con-

structively obtained in such a way that they support certain mathe-
matical or cryptographic requirements. Hence an important question is
how to calculate the nonlinearity of a function when extra information
is available. In this paper we address this question in the context of
auto-correlations, and derive four (two upper and two lower) bounds on
the nonlinearity of a function (see Table 1). Strengths and weaknesses of
each bound are also examined. In addition, a few examples are given to
demonstrate the usefulness of the bounds in practical applications. We
anticipate that these four bounds will be very useful in calculating the
nonlinearity of a cryptographic function when certain extra information
on the auto-correlations of the function is available.

1 Introduction

The significance of nonlinear functions in cryptology is best illustrated by the
success of linear cryptanalytic attacks recently discovered by Matsui in [6]. Real-
izing its importance, cryptographers often wish to find out the nonlinearity of a
cryptographic function, or when the exact value is not easily obtainable, a lower
and/or an upper bound on the nonlinearity.

A well-known fact about the upper bound on nonlinearity is Nf ≤ 2n−1 −
2

1
2 n−1, where Nf denotes the nonlinearity of f and f is a function from Vn (the

n-dimensional vector space on GF (2)) to GF (2). In contrast, less is known about
the lower bound on nonlinearity, other than (to the authors knowledge) some
progress made in [11, 13], as well as such trivial facts as Nf > 0 if and only if f
is nonlinear.

In cryptographic practice, such as the design of a substitution-box employed
by a private key encryption algorithm or a one-way hashing algorithm, or a non-
linear feedback function used in a pseudorandom sequence generator, one usually
generates a nonlinear function in such a way that the function would satisfy cer-
tain mathematical or cryptographic requirements. A question one would face is
how to calculate the nonlinearity of the function using extra information available
on the function. If the exact value of the nonlinearity cannot be easily obtained,



the next question is how to estimate the nonlinearity using extra information on
the function.

This paper addresses the two questions mentioned above. In particular, we
derive four formulas for estimating the nonlinearity of a function, among which
two are about upper bound while the other are about lower bounds. Table 1
summarizes the four bounds on nonlinearity. We hope that these bounds will be
particularly helpful in estimating the nonlinearity of a cryptographic function
when extra information on the auto-correlations of the function is available.

The rest of the paper is organized as follows: Section 2 introduces the basic
notions and notations used in this paper. Section 3 proves two upper bounds
on nonlinearity, while Section 4 provides details on two lower bounds on non-
linearity. A few example applications are provided in Section 5, which show the
usefulness of the bounds in practice.

2 Definitions

We consider Boolean functions from Vn to GF (2) (or simply functions on Vn),
where Vn is the vector space of n tuples of elements from GF (2). The truth
table of a function f on Vn is a (0, 1)-sequence defined by (f(α0), f(α1), . . .,
f(α2n−1)), and the sequence of f is a (1,−1)-sequence defined by ((−1)f(α0),
(−1)f(α1), . . ., (−1)f(α2n−1)), where α0 = (0, . . . , 0, 0), α1 = (0, . . . , 0, 1), . . .,
α2n−1−1 = (1, . . . , 1, 1). The matrix of f is a (1,−1)-matrix of order 2n defined
by M = ((−1)f(αi⊕αj)). f is said to be balanced if its truth table contains an
equal number of ones and zeros.

An affine function f on Vn is a function that takes the form of f(x1, . . . , xn) =
a1x1 ⊕ · · · ⊕ anxn ⊕ c, where aj , c ∈ GF (2), j = 1, 2, . . . , n. Furthermore f is
called a linear function if c = 0.

Definition 1. The Hamming weight of a (0, 1)-sequence s, denoted by W (s), is
the number of ones in the sequence. Given two functions f and g on Vn, the
Hamming distance d(f, g) between them is defined as the Hamming weight of
the truth table of f(x) ⊕ g(x), where x = (x1, . . . , xn). The nonlinearity of f ,
denoted by Nf , is the minimum Hamming distance between f and all affine
functions on Vn, i.e., Nf = mini=0,1,...,2n+1−1 d(f, ϕi) where ϕ0, ϕ1, . . ., ϕ2n+1−1

are all the affine functions on Vn.

Note that the maximum nonlinearity of functions on Vn coincides with the
covering radius of the first order binary Reed-Muller code RM(1, n) of length
2n, which is bounded from above by 2n−1 − 2

1
2 n−1 (see for instance [3]). Hence

Nf ≤ 2n−1 − 2
1
2 n−1 for any function on Vn.

Next we introduce the definition of propagation criterion from [8].

Definition 2. Let f be a function on Vn. We say that f satisfies

1. the propagation criterion with respect to α if f(x) ⊕ f(x ⊕ α) is a balanced
function, where x = (x1, . . . , xn) and α is a vector in Vn.



2. the propagation criterion of degree k if it satisfies the propagation criterion
with respect to all α ∈ Vn with 1 ≤ W (α) ≤ k.

f(x)⊕ f(x⊕ α) is also called the directional derivative of f in the direction
α. Further work on the topic can be found in [7].

Given two sequences a = (a1, . . . , am) and b = (b1, . . . , bm), their component-
wise product is defined by a ∗ b = (a1b1, . . . , ambm). The scalar product 〈a, b〉 of
a and b is defined as the sum of the components in a ∗ b. Note that depending
on where the components of a and b are drawn from, the meaning of a “sum”
operation may vary.

Definition 3. Let f be a function on Vn. For a vector α ∈ Vn, denote by ξ(α)
the sequence of f(x ⊕ α). Thus ξ(0) is the sequence of f itself and ξ(0) ∗ ξ(α)
is the sequence of f(x) ⊕ f(x ⊕ α). The auto-correlation of f with a shift α is
defined as

∆(α) = 〈ξ(0), ξ(α)〉.

A (1,−1)-matrix H of order m is called a Hadamard matrix if HHt = mIm,
where Ht is the transpose of H and Im is the identity matrix of order m. A
Sylvester-Hadamard matrix of order 2n, denoted by Hn, is generated by the
following recursive relation

H0 = 1, Hn =
[

Hn−1 Hn−1

Hn−1 −Hn−1

]
, n = 1, 2, . . . . (1)

Let `i, 0 ≤ i ≤ 2n − 1, be the i row (column) of Hn. By Lemma 1 of [10], `i

is the sequence of a linear function ϕi(x) defined by the scalar product ϕi(x) =
〈αi, x〉, where αi is the ith vector in Vn according to the ascending lexicographic
order.

Definition 4. Let f be a function on Vn. The Walsh-Hadamard transform of f
is defined as

f̂(α) = 2−
n
2

∑

x∈Vn

(−1)f(x)⊕〈α,x〉

where α = (a1, . . . , an) ∈ Vn, x = (x1, . . . , xn), 〈α, x〉 is the scalar product of α
and x, namely, 〈α, x〉 =

⊕n
i=1 aixi, and f(x)⊕〈α, x〉 is regarded as a real-valued

function.

The Walsh-Hadamard transform, also called the discrete Fourier transform,
has numerous applications in areas ranging from physical science to communi-
cations engineering. It appears in several slightly different forms [9, 5, 4]. The
above definition follows the line in [9]. It can be equivalently written as

(f̂(α0), f̂(α1), . . . , f̂(α2n−1)) = 2−
n
2 ξHn

where αi is the ith vector in Vn according to the ascending order, ξ is the
sequence of f and Hn is the Sylvester-Hadamard matrix of order 2n.



Definition 5. A function f on Vn is called a bent function if its Walsh-Hadamard
transform satisfies

f̂(α) = ±1
for all α ∈ Vn.

Bent functions on Vn exist only when n is even [9]. They achieve the highest
possible nonlinearity 2n−1 − 2

1
2 n−1.

The following lemma will be used in this paper (For a proof see for instance
Lemma 6 of [10].)

Lemma6. The nonlinearity of a function f on Vn can be calculated by

Nf = 2n−1 − 1
2

max{|〈ξ, `i〉|, 0 ≤ i ≤ 2n − 1}
where ξ is the sequence of f and `0, . . ., `2n−1 are the rows of Hn, namely, the
sequences of the linear functions on Vn.

As the number of linear functions on Vn is exponential in n, it is impractical
to calculate Nf for a large n by examining all linear functions against the formula
in Lemma 6.

3 Two Upper Bounds on Nonlinearity

Let f be a function on Vn and ξ be the sequence of f . The following is a special
form of the Wiener-Khintchine Theorem [1]:

(∆(α0),∆(α1), . . . , ∆(α2n−1))Hn = (〈ξ, `0〉2, . . . , 〈ξ, `2n−1〉2). (2)

By exploring (2) in different ways, we will obtain two upper bounds on the
nonlinearity of functions.

3.1 The First Upper Bound

Our first upper bound can be regarded as a straightforward application of (2).
For simplicity, write

η∗ = (∆(α0), ∆(α1), . . . , ∆(α2n−1))

and
ξ∗ = (〈ξ, `0〉2, . . . , 〈ξ, `2n−1〉2).

Then (2) is simplified to η∗Hn = ξ∗. This causes (η∗Hn)(η∗Hn)T = ξ∗ξ∗T , i.e.,

2n
2n−1∑

j=0

∆2(αj) =
2n−1∑

j=0

〈ξ, `j〉4.

Thus there exists a j0, 0 ≤ j0 ≤ 2n − 1, such that

〈ξ, `j0〉4 ≥
2n−1∑

j=0

∆2(αj).

Note that ∆(α0) = ∆(0) = 2n. Hence from Lemma 6, we have



Theorem 7. For any function f on Vn, the nonlinearity of f satisfies

Nf ≤ 2n−1 − 1
2

4

√√√√22n +
2n−1∑

j=1

∆2(αj).

It is easy to verify that the bound in Theorem 7 does not exceed the well-
known bound 2n−1 − 2

1
2 n−1. In addition, as the equality holds if f is bent, the

bound is tight.

3.2 The Second Upper Bound

In order to derive the second upper bound on nonlinearity, we generalize (2) in
the following direction. For any integer t, 0 ≤ t ≤ n, rewrite (2) as

(∆(α0),∆(α1), . . . ,∆(α2n−1))(Hn−t ×Ht) = (〈ξ, `0〉2, . . . , 〈ξ, `2n−1〉2)
where × denotes the Kronecker product (see P.421, [5]).

Now set

σj =
2t−1∑

k=0

〈ξ, `j2t+k〉2,

where j = 0, 1, . . . , 2n−t − 1, Let e = (1, . . . , 1) be the all-one sequence of length
2t and I denote the identity matrix of order 2n−t. Then

(∆(α0),∆(α1), . . . ,∆(α2n−1))(Hn−t×Ht)(I×eT ) = (〈ξ, `0〉2, . . . , 〈ξ, `2n−1〉2)(I×eT ).

Note that (Hn−t ×Ht)(I × eT ) = (Hn−tI)× (Hte
T ) and Hte

T = (2t, 0, . . . , 0)T .
Hence

(∆(α0),∆(α1), . . . ,∆(α2n−1))(Hn−t × (2t, 0, . . . , 0)T ) = (σ0, σ1, . . . , σ2n−t−1)

and

2t(∆(α0),∆(α2t), ∆(α2·2t), . . . , ∆(α(2n−t−1)2t))Hn−t = (σ0, σ1, . . . , σ2n−t−1).

Thus we have proved the following result:

Lemma 8. Let f be a function on Vn and ξ be the sequence of f . For any integer
t, 0 ≤ t ≤ n, set σj =

∑2t−1
k=0 〈ξ, `j2t+k〉2, where j = 0, 1, . . . , 2n−t − 1. Then

2t(∆(α0),∆(α2t),∆(α2·2t), . . . , ∆(α(2n−t−1)2t))Hn−t = (σ0, σ1, . . . , σ2n−t−1).(3)

We can see that (3) is more general than (2), by noting the fact that the two
equations become identical when t = 0.

Now compare the jth components in the two sides of (3), we have

2t
2n−t−1∑

k=0

ak∆(αk·2t) = σj , (4)



where j = 0, 1, . . . , 2n−t − 1 and (a0, a1, . . . , a2n−t−1) denotes the jth row (col-
umn) of Hn−t. Since we also have σj =

∑2t−1
k=0 〈ξ, `j2t+k〉2, for any fixed j there

is a k0, 0 ≤ k0 ≤ 2t − 1, such that |〈ξ, `j2t+k0〉| ≥
√∑2n−t−1

k=0 ak∆(αk·2t). As
∆(α0) = 2n, by using Lemma 6, we have

Nf ≤ 2n−1 − 1
2

√√√√2n +
2n−t−1∑

k=1

ak∆(αk·2t).

Now note that α0, α2t , α2·2t , . . . , α(2n−t−1)2t form a (n − t)-dimensional linear
subspace of Vn with {α2t , α2t+1 , . . . , α2n−1} as its basis, and that the nonlinearity
of a function is invariant under a nondegenerate linear transformation on the
input coordinates. Set r = n−t. By using a nondegenerate linear transformation
on the input coordinates, we have proved the following lemma:

Lemma9. For any integer r, 0 ≤ r ≤ n, let β1, . . ., βr be r linearly independent
vectors in Vn. Write γj = c1β1 ⊕ · · · ⊕ crβr, where j = 0, 1, . . . , 2r − 1 and
(c1, . . . , cr) is the binary representation of integer j. Then

Nf ≤ 2n−1 − 1
2

√√√√2n +
2r−1∑

j=1

aj∆(γj)

holds for every row (column), denoted by (a0, a1, . . . , a2r−1), of Hr, where a0 = 1
due to the structure of a Sylvester-Hadamard matrix.

In practice, simpler forms than that in Lemma 9 would be preferred. This
can be achieved by letting r = 1 in Lemma 9. This results in

Nf ≤ 2n−1 − 1
2

√
2n ±∆(β),

for any nonzero vector β ∈ Vn. Thus we have derived a simple formula for the
upper bound on nonlinearity:

Theorem10. For any function f on Vn, the nonlinearity of f satisfies

Nf ≤ 2n−1 − 1
2

√
2n + ∆max,

where ∆max = max{|∆(α)||α ∈ Vn, α 6= 0}.

In situations where a more accurate estimate of nonlinearity is required,
slightly more involved forms can be used. In particular, by substituting r with 2
in Lemma 9, we have

(i) Nf ≤ 2n−1 − 1
2

√
2n + ∆(β) + ∆(γ) + ∆(β ⊕ γ),

(ii) Nf ≤ 2n−1 − 1
2

√
2n + ∆(β)−∆(γ)−∆(β ⊕ γ),

(iii) Nf ≤ 2n−1 − 1
2

√
2n −∆(β) + ∆(γ)−∆(β ⊕ γ),



(iv) Nf ≤ 2n−1 − 1
2

√
2n −∆(β)−∆(γ) + ∆(β ⊕ γ).

where β and γ are nonzero vectors in Vn with β 6= γ. These four formulas are
subsumed in the following corollary:

Corollary 11. Let f be a function on Vn. Then

1. for any nonzero vectors β, γ ∈ Vn with β 6= γ, the nonlinearity f satisfies

Nf ≤ 2n−1 − 1
2

√
2n + |∆(β)|+ |∆(γ)| − |∆(β ⊕ γ)|;

2. for |∆(αj1)| ≥ |∆(αj2)| ≥ · · · ≥ |∆(αj2n−1)| where (j1, . . . , j2n−1) is a per-
mutation of (1, . . . , 2n − 1), the nonlinearity f satisfies

Nf ≤ 2n−1 − 1
2

√
2n + |∆(αj1)|+ |∆(αj2)| − |∆(αj3)|.

None of the bounds in Lemma 9, Theorem 10 and Corollary 11 goes beyond
the well-known bound 2n−1 − 2

1
2 n−1. The equalities in these bounds hold if f is

bent, which indicates that all the bounds are tight.

4 Two Lower Bounds on Nonlinearity

In comparison with upper bounds, far less is known about lower bounds on non-
linearity, although some progress in this direction has been made in [11, 13]. This
section proves two lower bounds on nonlinearity, of which the first lower bound
has an extremely simple form while the second reveals an intimate relationship
between the lower bound on nonlinearity and the propagation characteristic.

4.1 The First Lower Bound

Let ξ = (a0, a1, . . . , a2n−1) = (b0, b1, . . . , b2n−1−1) be the sequence of a function
on Vn where each bj = (a2j , a2j+1) is called a basis. A basis, say bj , is called a
(++)-basis if bj = ±(1, 1) and is called a (+−)-basis if bj = ±(1,−1). A fact is
that any (1,−1)-sequence of length 2n (n ≥ 2) is a concatenation of (++)-bases
and (+−)-bases.

In the following discussion, the number of (++)-bases in a sequence under
consideration will be denoted by τ(++) and the number of (+−)-bases by τ(+−).

Lemma 12. Let ξ be the sequence of a function f on Vn. Then τ(++) =
2n−2 + 1

4∆(α1) and τ(+−) = 2n−2 − 1
4∆(α1), where α1 = (0, . . . , 0, 1), the

binary representation of integer 1.

Proof. Write ξ = a0, a1, a2, a3, . . . , a2n−2, a2n−1. Thus ξ(α1) = a1, a0, a3, a2, . . .,
a2n−1, a2n−2 and

∆(α1) = 〈ξ, ξ(α1)〉 =
2n−1−1∑

j=0

(a2ja2j+1 + a2j+1a2j).



Note that

a2ja2j+1 + a2j+1a2j =
{

2 if (a2ja2j+1) is a (++)-basis
−2 if (a2ja2j+1) is a (+−)-basis

Thus ∆(α1) = 2(τ(++)− τ(+−)). On the other hand, 2(τ(++)+ τ(+−)) = 2n.
Hence τ(++) = 2n−2 + 1

4∆(α1) and τ(+−) = 2n−2 − 1
4∆(α1). ut

Lemma13. For any function f on Vn, the nonlinearity of f satisfies

Nf ≥ 2n−2 − 1
4
|∆(α1)|.

Proof. Obviously, W (f) ≥ τ(+−). By using Lemma 12, W (f) ≥ 2n−2− 1
4∆(α1),

where W (f) is the Hamming weight of f i.e. the number of ones f assumes.
Set gj(x) = f(x) ⊕ ϕj(x), where ϕj is the linear function on Vn, whose

sequence is `i, j = 0, 1, . . . , 2n − 1.
Similarly to ∆(α) for f , we can write ∆(j) to denote the auto-correlation of

gj . It is easy to verify that

∆(j)(α1) =
{

∆(α1) if ϕj(α1) = 0
−∆(α1) if ϕj(α1) = 1

By the same reasoning for W (f), we have

W (f ⊕ ϕj) ≥
{

2n−2 − 1
4∆(α1) if ϕj(α1) = 0

2n−2 + 1
4∆(α1) if ϕj(α1) = 1

Finally, note that d(f, ϕj) = W (f ⊕ϕj). Hence we have Nf ≥ 2n−2 − 1
4 |∆(α1)|.

ut

Now we introduce the first lower bound on nonlinearity:

Theorem14. For any function f on Vn, the nonlinearity of f satisfies

Nf ≥ 2n−2 − 1
4
∆min,

where ∆min = min{|∆(α)||α ∈ Vn, α 6= 0}.

Proof. For any fixed s, 0 ≤ s ≤ 2n−1, let A be a nondegenerate matrix of order
n, over GF (2), such that α1A = αs. Define g(x) = f(xA). Set xA = u. Hence
g(x) = f(u) where xA = u. Note that

g(x)⊕ g(x⊕ α1) = f(xA)⊕ f(xA⊕ α1A) = f(u)⊕ f(u⊕ αs). (5)

Similarly to ∆(α) defined for f , we can write ∆′(α) as the auto-correlation of g.
From (5), ∆′(α1) = ∆(αs). By using Lemma 13, Ng ≥ 2n−2 − 1

4 |∆′(α1)|.
Since A is nondegenerate, Ng = Nf . Hence Nf ≥ 2n−2 − 1

4 |∆(αs)|. As s is
arbitrary, Nf ≥ 2n−2 − 1

4∆min. ut



Theorem 14 is tight. This can be seen from the following fact. Let f(x) =
x1ϕ(y)⊕ ψ(y) be a function on Vn, where x = (x1, . . . , xn), y = (x3, . . . , xn), ϕ
and ψ are linear functions on Vn−2 and ϕ 6= ψ. Note that f is quadratic. Using the
truth table of f , we can verify that the nonlinearity of f is Nf = 2n−2. Obviously,
∆(α2n−1) = 0, where α2n−1 = (1, 0, . . . , 0) is the binary representation of integer
2n−1. This means that the equality in Theorem 14 holds for such a function
f(y) = x1ϕ(y)⊕ ψ(y).

4.2 The Second Lower Bound

By using a result in [2], the authors pointed out in [13] that if f , a function
on Vn, satisfies the propagation criterion with respect to all but a subset < of
vectors in Vn, then the nonlinearity of f satisfies

Nf ≥ 2n−1 − 2
n
2−1|<| 12 . (6)

More recently, a further improvement has been made in [11]:

Nf ≥ 2n−1 − 2n− 1
2 ρ−1 (7)

where ρ is the maximum dimension of the linear sub-spaces in {0} ∪ <c and
<c = Vn −<. (see Theorem 11, [11]).

A shortcoming with (6) and (7) is that when |<| is large, estimates provided
by (6) or (7) are too far from the real value. For example, let g be a bent function
on Vn (n must be even). Suppose n ≥ 4. Now we construct a function f on Vn:
f(x) = g(x) if x 6= 0 and f(0) = 1 ⊕ g(0). Since W (g) is even, W (f) must be
odd. Hence f does not satisfy the propagation characteristics with respect to
any vectors and hence |<| = 2n. In this case both (6) and (7) give the trivial
inequality Nf ≥ 0. This problem is addressed in the rest of this section.

Let f , a function on Vn, satisfy the propagation criterion with respect to all
but a subset < of vectors in Vn. For any integer t, 0 ≤ t ≤ n, set

Ω = {α0, α2t , α2·2t , . . . , α(2n−t−1)2t}.
Recall α0, α2t , α2·2t , . . . , α(2n−t−1)2t form a (n − t)-dimensional linear subspace
of Vn, and {α2t , α2t+1 , . . . , α2n−1} is a basis of this subspace.

From (4),
σj ≤ 2t(∆(α0) + (|< ∩Ω| − 1)∆max),

where ∆max = max{|∆(α)||α ∈ Vn, α 6= 0} and σj =
∑2t−1

k=0 〈ξ, `j2t+k〉2, j =
0, 1, . . . , 2n−t − 1. Hence

〈ξ, `j2t+k〉2 ≤ 2t(∆(α0) + (|< ∩Ω| − 1)∆max),

j = 0, 1, . . . , 2n−t − 1, k = 0, 1, . . . , 2t − 1.
Note that ∆(α0) = 2n. By using Lemma 6, the nonlinearity of f satisfies

Nf ≥ 2n−1 − 2
1
2 t−1

√
2n + (|< ∩Ω| − 1)∆max.

Set r = n− t. By using a nondegenerate linear transformation on the variables,
we have the second lower bound:



Theorem15. Let f , a function on Vn, satisfy the propagation criterion with
respect to all but a subset < of vectors in Vn. Let W be any r-dimensional linear
subspace of Vn, r = 0, 1, . . . , n. Then the nonlinearity of f satisfies

Nf ≥ 2n−1 − 2
1
2 (n−r)−1

√
2n + (|< ∩W | − 1)∆max,

where ∆max = max{|∆(α)||α ∈ Vn, α 6= 0}.

Since |∆(α)| ≤ 2n for each α ∈ Vn, from Theorem 15, we have

Corollary 16. Let f , a function on Vn, satisfy the propagation criterion with
respect to all but a subset < of vectors in Vn. Let W be any r-dimensional linear
subspace of Vn, r = 0, 1, . . . , n. Then the nonlinearity of f satisfies

Nf ≥ 2n−1 − 2n− 1
2 r−1

√
|< ∩W |.

Theorem 15 is more general and gives a better estimate of lower bound than
all other known lower bounds. To see this, let W = Vn i.e. r = n. Hence we
have Nf ≥ 2n−1 − 1

2

√
2n + (|<| − 1)∆max. As ∆max ≤ 2n, this estimate is

clearly better than (6). On the other hand, if < ∩ W = {α0 = 0} then Nf ≥
2n−1 − 2n− 1

2 r−1, which is exactly (7).
Corollary 16 shows a subtle relationship between the nonlinearity and the

propagation characteristic: the nonlinearity is not only influenced by the size of
< but also by the distribution of <. This is expressed in a different way in the
following corollary:

Corollary 17. Let f , a function on Vn, satisfy the propagation criterion with
respect to all but a subset < of vectors in Vn. If the nonlinearity of f satisfies

Nf ≤ 2n−1 − 2n− 1
2 r−1p,

where r is an integer, 0 ≤ r ≤ n, and p > 0, then there is a r-dimensional linear
subspace of Vn, say W , such that |< ∩W | ≥ p2.

Table 1 summarizes the main results obtained in this paper, namely two
upper and two lower bounds on the nonlinearity of cryptographic functions.

5 Examples and Applications

5.1 For the Two Upper Bounds

The upper bounds stated in Theorems 7 and 10, as well as those in Corol-
lary 11, all represent an improvement on the well-known upper bound Nf ≤
2n−1 − 2

1
2 n−1. We found that the two upper bounds described in Theorems 7

and 10, however, have different strengths and weaknesses. This is illustrated by
examining the following two different cases.

In the first case, we consider a function f on Vn satisfying the propagation
criterion with respect to all but a small subset < of vectors in Vn. In particular,



Table 1. Upper and Lower Bounds on Nonlinearity

Upper Theorem 7: Nf ≤ 2n−1 − 1
2

4
√

22n +
∑2n−1

j=1 ∆2(αj)
Bounds Theorem 10: Nf ≤ 2n−1 − 1

2

√
2n + ∆max

Lower Theorem 14: Nf ≥ 2n−2 − 1
4 |∆min|

Bounds Theorem 15: Nf ≥ 2n−1 − 2
1
2 (n−r)−1

√
2n + (|< ∩W | − 1)∆max

where
∆(α) = 〈ξ(0), ξ(α)〉 is the auto-correlation of f with a shift α,
∆max = max{|∆(α)||α ∈ Vn, α 6= 0},
∆min = min{|∆(α)||α ∈ Vn, α 6= 0},
< is the set of vectors where the propagation criterion is not fulfilled by f , and
W is any r-dimensional linear subspace of Vn, r = 0, 1, . . . , n.

when |<| = 2, by Corollary 2 of [13], there exists a nondegenerate matrix A of
order n over GF (2) such that

f(xA) = c1x1 ⊕ g(y)

where g(y) is a bent function on Vn−1 and x = (x1, y) ∈ Vn. In the same paper
it was also proved that the two vectors in <, say β0 = 0 and β1 6= 0, satisfy
∆(βj) = ±2n, j = 0, 1.

Using Theorem 7,

Nf ≤ 2n−1 − 1
2

4√
22n + 22n = 2n−1 − 1

2
4
√

2 · 2 1
2 n, (8)

while using Theorem 10,

Nf ≤ 2n−1 − 1
2
√

2n + 2n = 2n−1 − 1
2

√
2 · 2 1

2 n. (9)

For this particular example, the right hand side of (9) is clearly less than that
of (8). Consequently, Theorem 10 provides a better estimate than Theorem 7
does.

In the second case, we consider a function g on Vn that is defined as g(x) = 0
if x 6= 0 and g(0) = 1. It is easy to check that for such a function g, ∆(α) =
±(2n − 4) if α 6= 0, namely < = Vn.

Applying Theorem 7,

Nf ≤ 2n−1 − 1
2

4√
22n + (2n − 1)(2n − 4)2, (10)

while applying Theorem 10,

Nf ≤ 2n−1 − 1
2

√
2n + (2n − 4) = 2n−1 − 1

2

√
2n+1 − 4. (11)



One can check that the right hand side of (10) is less than that of (11).
Hence for such a function g Theorem 7 provides more accurate information than
Theorem 10 does.

Theorem 7 generally provides a more accurate estimate on the upper bound
of nonlinearity than Theorem 10 when < is large, but less so when < is small.

Let f , a function on Vn, satisfy the propagation criterion with respect to all
but a subset < of vectors in Vn. From Theorem 7,

Nf ≤ 2n−1 − 1
2

4
√

22n + |<|∆2
min,

where ∆min = min{|∆(α)||α ∈ Vn, α 6= 0}.
It is easy to verify that |∆(α)| is divisible by four. Thus ∆(α) 6= 0 implies

|∆(α)| ≥ 4. From Theorem 7,

Nf ≤ 2n−1 − 1
2

4√
22n + 16|<|.

Now we consider another example. From Theorem 3 of [12], if f is a non-bent
cubic function then ∆max ≥ 2

1
2 (n+1), where ∆max = max{|∆(α)||α ∈ Vn, α 6=

0}. Applying Theorem 10 in this paper, we have

Nf ≤ 2n−1 − 1
2

√
2n + 2

1
2 (n+1).

On the other hand, from Theorem 14 in this paper, we obtain Theorem 12
of [11]: if a function f on Vn satisfies the propagation criterion with respect
to a vector then the nonlinearity of f satisfies Nf ≥ 2n−2. In other words, if
the nonlinearity of f is less than 2n−2 then f does not satisfy the propagation
criterion with respect to any vector.

5.2 For the Two Lower Bounds

First, we consider an arbitrary function f on Vn, f . f can always be written
as f(x) = p(y)xt ⊕ q(y), for a fixed t, 1 ≤ t ≤ n, where x = (x1, . . . , xn),
y = (x1, . . . , xt−1, xt+1, . . . , xn), p and q are functions on Vn−1. We can con-
clude that the nonlinearity of f , Nf , satisfies Nf ≥ 2n−2 if p is balanced.
This follows from the fact that f satisfies the propagation criterion with re-
spect to α2n−t = (0, . . . , 0, 1, 0, . . . , 0), whose tth component is the only nonzero
bit. Hence according to Theorem 14, we have Nf ≥ 2n−2.

Now we consider another example that is related to Theorem 15. Let f be
a function on Vn, whose nonlinearity Nf satisfies Nf = 2n−2. The function
f(x) = x1ϕ(y) ⊕ ψ(y) presented at the end of Subsection 4.1 is an example of
such a function. For any function f with Nf = 2n−2, the equality in Corol-
lary 17 which is derived from Theorem 15, holds when p = 2

1
2 r−1, where r is an

arbitrary integer, 2 ≤ r ≤ n. Using the same corollary, one can see that there
is a r-dimensional linear subspace of Vn, say W , such that |< ∩W | ≥ 2r−2. In
particular, when r = n, i.e. W = Vn, we have |<| ≥ 2n−2.



6 Conclusion

Two upper and two lower bounds on the nonlinearity of a Boolean function
have been established. These bounds could be particularly useful when certain
structural information on a Boolean function is available. All the bounds have
been primarily based on the auto-correlation of a function under consideration.
This opens up a possible new avenue for future research, that is to extend the
results so that they take into account other factors such as linear structures,
algebraic degree and global avalanche characteristics (GAC) introduced in [12].

Acknowledgments: We would like to thank the anonymous referees for Euro-
crypt’96 whose comments helped in improving the presentation of this paper.
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