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Summary Let In = {0, 1}n, and Hn be the set of all functions from

In to In. For f ∈ Hn, define the DES-like transformation associated with

f by F2n,f (L, R) = (R ⊕ f(L), L), where L, R ∈ In. For f1, f2, . . . , fs ∈
Hn, define ψ(fs, . . . , f2, f1) = F2n,fs ◦ · · · ◦ F2n,f2 ◦ F2n,f1 . Our main

result is that ψ(fk, f j , f i) is not pseudorandom for any positive integers

i, j, k, where f i denotes the i-fold composition of f . Thus, as immediate

consequences, we have that (1) none of ψ(f, f, f), ψ(f, f, f2) and ψ(f2, f, f)

are pseudorandom and, (2) Ohnishi’s constructions ψ(g, g, f) and ψ(g, f, f)

are optimal. Generalizations of the main result are also considered.

1. Introduction

Random generation is of supreme importance for cryptography, and has

recently received extensive investigation by many computer scientists [GGM] [S]

[Y]. As mentioned in [LR], if polynomial-time computable pseudorandom invertible

permutations are available, then we can design ideal secret-key block ciphers that are

provably secure against the chosen plaintext attack. This paper also deals with the

construction of pseudorandom (invertible) permutations.

The set of positive integers is denoted by N. For each n ∈ N, let In = {0, 1}n.

Denote by s1 ⊕ s2 the bit-wise XOR of two strings s1, s2 ∈ In, and by Hn the set of all



2n2n

functions from In to In. The composition of two functions f and g in Hn, denoted

by f ◦ g, is defined by f ◦ g(x) = f(g(x)) where x ∈ In. And in particular, f ◦ f is

denoted by f2, f ◦ f ◦ f by f3, and so on.

Associate with f ∈ Hn a function F2n,f ∈ H2n defined by F2n,f (L,R) =

(R ⊕ f(L), L) for all L, R ∈ In. (Note that our definition for F2n,f is notationally

different from that given in [LR] and [S]. However, the difference is not essential, and

does not affect the results to be proved below.) F2n,f is a permutation in H2n, and

called the DES-like transformation associated with f [NBS] [FNS]. Furthermore, for

f1, f2, . . . , fs ∈ Hn, define ψ(fs, . . . , f2, f1) = F2n,fs
◦ · · · ◦ F2n,f2 ◦ F2n,f1 . We say that

ψ(fs, . . . , f2, f1) consists of s rounds of DES-like transformations.

In their wonderful paper [LR], Luby and Rackoff showed that permutations

ψ(h, g, f), where f, g, h∈R Hn, cannot be efficiently distinguished from an r∈R H2n,

here by x∈R X we mean that x is drawn randomly and uniformly from a finite multi-

set X. In other words, from three independent random functions f, g, h ∈ Hn, one

can construct, by three applications of DES-like transformations, a permutation in H2n

which cannot be efficiently distinguished from a truly random function in H2n.

Ohnishi [O] observed that two independent random functions are sufficient in Luby

and Rackoff’s construction. In particular, he showed that both ψ(g, f, f) and ψ(g, g, f),

where f, g∈R Hn, cannot be efficiently distinguished from an r∈R H2n. See Appendix

for more information on the proof of it.

In the thesis, Ohnishi also showed that neither ψ(f, f, f) nor ψ(f, g, f) are

pseudorandom. This result was independently obtained by Rueppel in [R].1 However,

it still remains open whether or not permutations like ψ(f, f, f2) and ψ(f2, f, f) are

pseudorandom. The technique used in [O] and [R], which is described in the final

section of this paper, is not applicable to these cases.

In the remaining part of this paper, we first introduce the notion of

pseudorandomness, then show that for any f and for any i, j, k ∈ N, there is a circuit

that distinguishes ψ(fk, f j , f i) from an r∈R H2n. Thus, as immediate consequences, we

have that (1) none of ψ(f, f, f), ψ(f, f, f2) and ψ(f2, f, f) are pseudorandom and, (2)

Ohnishi’s constructions ψ(g, f, f) and ψ(g, g, f) are optimal among the pseudorandom

1 At Eurocrypt’88, Schnorr [S] erroneously claimed that ψ(f, f, f), where f∈R Hn,

cannot be efficiently distinguished from an r∈R H2n.



permutations ψ(fk
3 , f j

2 , f i
1) where i, j, k ∈ N and f1, f2, f3 ∈ Hn such that for any

1 ≤ s, t ≤ 3, either fs = ft or fs is independent of ft. We also investigate generalizations

of our main result.

2. Notion of Pseudorandomness

Let n ∈ N. An oracle circuit Tn is an acyclic circuit which contains, in addition to

ordinary AND, OR, NOT and constant gates, also a particular kind of gates — oracle

gates. Each oracle gate has an n-bit input and an n-bit output, and it is evaluated using

some function from Hn. The output of Tn, a single bit, is denoted by Tn[f ] when a

function f ∈ Hn is used to evaluate the oracle gates. The size of Tn is the total number

of connections in it. Note that one can view an oracle circuit as a circuit with no inputs

or as a circuit with inputs to which constants are assigned.

A family of circuits T = {Tn | n ∈ N } is called a statistical test for functions if

each Tn is an oracle circuit whose size is bounded by some polynomial in n.

Assume that Sn is a multi-set consisting of functions from Hn. Let S = {Sn |
n ∈ N } and H = {Hn | n ∈ N }. We say that T is a distinguisher for S if for some

polynomial P and for infinitely many n, we have |Pr{Tn[s] = 1} − Pr{Tn[h] = 1}| ≥
1/P (n), where s∈R Sn and h∈R Hn. We say that S is pseudorandom if there is no

distinguisher for it. (See also [GGM], [LR] and [Y].)

In this paper we are only concerned with pseudorandom permutations, i.e.,

pseudorandom functions S = {Sn | n ∈ N } where each Sn consists of permutations

from Hn. It is convenient to say that an s∈R Sn is pseudorandom whenever S is

pseudorandom, and not pseudorandom (or can be distinguished from an r∈R Hn)

otherwise.

3. Main Result

This section proves our main result on permutations ψ(fk, f j , f i) where f ∈ Hn

and i, j, k ∈ N. For i, j, k ∈ N, let Ψ2n(i, j, k) be the multi-set consisting of all functions

ψ(fk, f j , f i) ∈ H2n where f ∈ Hn, and let Ψ(i, j, k) = {Ψ2n(i, j, k) | n ∈ N }.

[Theorem 1] For any i, j, k ∈ N, there is a distinguisher T = {T2n | n ∈ N } for

Ψ(i, j, k), i.e., Ψ(i, j, k) is not pseudorandom. Each T2n has (m1 +m2 +1) oracle gates,

where m1 = (i + j)/d, m2 = (j + k)/d and d = gcd(i + j, j + k).



Proof: Denote by O0, O1, . . . , Om1+m2 the (m1 +m2 +1) oracle gates, by (Xs1, Xs2)

and (Ys1, Ys2) the input to and output of Os respectively, and by 0n the all-0 string in

In. The structure of T2n is as follows. (See also Figure 1.)

DESCRIPTION OF T2n :

(1) The input to O0 is (X01, X02) = (0n, 0n).

(2) The input to O1 is (X11, X12) = (0n, Y01). And if m1 > 1,

then for each 1 < p ≤ m1, the input to Op is (Xp1, Xp2) =

(0n, X(p−1)2 ⊕ Y(p−1)1).

(3) The input to Om1+1 is (X(m1+1)1, X(m1+1)2) = (Y02, 0n). And if

m2 > 1, then for each m1 + 1 < t ≤ m1 + m2, the input to Ot is

(Xt1, Xt2) = (X(t−1)1 ⊕ Y(t−1)2, 0n).

(4) Finally, T2n outputs a bit 1 iff Ym12 = X(m1+m2)1 ⊕ Y(m1+m2)2.



Obviously, the size of T2n is of polynomial in n. Now we analyze the behavior of

T2n in the following two cases: CASE-1, where a function ψ(fk, f j , f i) ∈ Ψ2n(i, j, k) is

used to evaluate the oracle gates, and CASE-2, where a function drawn randomly and

uniformly from H2n is used to evaluate the oracle gates. We show that in the former

case, the probability that T2n outputs a bit 1 is 1 and, in the latter case, the probability

is less than 1/2n−1. Thus T = {T2n | n ∈ N } is a distinguisher for Ψ(i, j, k).

CASE-1: Notice that ψ(fk, f j , f i)(L,R) = (R⊕f i(L)⊕fk(L⊕f j(R⊕f i(L))), L⊕
f j(R⊕ f i(L))). Thus the output of O0 is (Y01, Y02) = (f i(0n)⊕ fk+j+i(0n), f j+i(0n)).

Denote by ∼ a string which we do not care. The inputs to and outputs of

O1, O2, . . . , Om1 are as follows:

O1 : (X11, X12) = (0n, f i(0n)⊕ fk+j+i(0n)),

(Y11, Y12) = (fk+j+i(0n)⊕ f2k+2j+i(0n),∼);

O2 : (X21, X22) = (0n, f i(0n)⊕ f2k+2j+i(0n)),

(Y21, Y22) = (f2k+2j+i(0n)⊕ f3k+3j+i(0n),∼);

..................

Om1 : (Xm11, Xm12) = (0n, f i(0n)⊕ fm1k+m1j+i(0n)),

(Ym11, Ym12) = (∼, fm1k+(m1+1)j+i(0n)).

Similarly, for Om1+1, Om1+2, . . . , Om1+m2 , we have:

Om1+1 : (X(m1+1)1, X(m1+1)2) = (f j+i(0n), 0n),

(Y(m1+1)1, Y(m1+1)2) = (∼, f j+i(0n)⊕ f2j+2i(0n));

Om1+2 : (X(m1+2)1, X(m1+2)2) = (f2j+2i(0n), 0n),

(Y(m1+2)1, Y(m1+2)2) = (∼, f2j+2i(0n)⊕ f3j+3i(0n));

..................

Om1+m2 : (X(m1+m2)1, X(m1+m2)2) = (fm2j+m2i(0n), 0n),

(Y(m1+m2)1, Y(m1+m2)2) = (∼, fm2j+m2i(0n)⊕ f (m2+1)j+(m2+1)i(0n)).

Thus
Ym12 = fm1k+(m1+1)j+i(0n) = fm1(k+j)+j+i(0n)

= f
i+j

d (k+j)+j+i(0n) = f j k+j
d +i k+j

d +j+i(0n)

= f jm2+im2+j+i(0n) = f (m2+1)j+(m2+1)i(0n)

= X(m1+m2)1 ⊕ Y(m1+m2)2,



and the probability that T2n outputs a bit 1 is 1.

CASE-2: There are two sub-cases to be analyzed: (Y01, Y02) = (0n, 0n) and

(Y01, Y02) 6= (0n, 0n).

1) When (Y01, Y02) = (0n, 0n), we have Ym12 = X(m1+m2)1 ⊕ Y(m1+m2)2. But

Pr{(Y01, Y02) = (0n, 0n)} = 1/22n.

2) When (Y01, Y02) 6= (0n, 0n), we have (X11, X12) 6= (X(m1+1)1, X(m1+1)2),

and hence (X11, X12) 6= (0n, 0n) or (X(m1+1)1, X(m1+1)2) 6= (0n, 0n). Sup-

pose that (X11, X12) 6= (0n, 0n). (The other case is similar.) Then

(Y11, Y12), and hence (Y21, Y22), (Y31, Y32), . . ., (Ym11, Ym12) are all random

strings in I2n. These strings are independent of (X(m1+1)1, X(m1+1)2), and hence

of (Y(m1+1)1, Y(m1+1)2), (Y(m1+2)1, Y(m1+2)2), . . . , (Y(m1+m2)1, Y(m1+m2)2). So when

(Y01, Y02) 6= (0n, 0n), the probability that Ym12 = X(m1+m2)1 ⊕ Y(m1+m2)2, i.e., T2n

outputs a bit 1, is 1/2n.

Thus, for CASE-2, we have

Pr{T2n[f ] = 1}
= Pr{T2n[f ] = 1 | (Y01, Y02) = (0n, 0n)} · Pr{(Y01, Y02) = (0n, 0n)}

+ Pr{T2n[f ] = 1 | (Y01, Y02) 6= (0n, 0n)} · Pr{(Y01, Y02) 6= (0n, 0n)}
= 1 · 1/22n + 1/2n · (1− 1/22n)

< 1/2n−1.

This completes the proof.

As a consequence of Theorem 1, we know that none of ψ(f, f, f), ψ(f, f, f2) and

ψ(f2, f, f), where f∈R Hn, are pseudorandom.

Next we discuss the optimality of ψ(g, g, f) and ψ(g, f, f) where f, g∈R Hn.

Apparently, F2n,f can be distinguished from an r∈R H2n. It was proved in [LR] that two

applications of DES-like transformations cannot obtain a pseudorandom permutation.

In particular, Luby and Rackoff showed that ψ(g, f), where f, g ∈ Hn, can be easily

distinguished from an r∈R H2n.

Thus, by putting together Theorem 1 and Ohnishi’s observations mentioned above,

we see that to get a pseudorandom permutation in H2n, two independent random

functions from Hn and three applications of DES-like transformations are not only

sufficient but also necessary , as far as our construction is restricted to the permutations



ψ(fk
3 , f j

2 , f i
1), where i, j, k ∈ N and f1, f2, f3 ∈ Hn such that for any 1 ≤ s, t ≤ 3,

either fs = ft or fs is independent of ft. In other words, under the above condition,

pseudorandom permutations ψ(g, f, f) and ψ(g, g, f) proposed by Ohnishi [O], where

f, g∈R Hn, are optimal in the sense that they consist of the minimal rounds of DES-like

transformations, and “consume” the minimal number of independent random functions

from Hn.

4. Generalizations

This section extends in two directions Theorem 1 to the case of generalized DES-like

transformations.

Let ` ∈ N with ` ≥ 2. Following [FNS, pp.1547-1549] and [S], we associate

with an f ∈ Hn a function F`n,f ∈ H`n defined by F`n,f (B1, B2, . . . , B`) =

(B2 ⊕ f(B1), B3, . . . , B`, B1), where Bi ∈ In. Call F`n,f the generalized DES-like

transformation associated with f .

For f1, f2, . . . , fs ∈ Hn, define θ(fs, . . . , f2, f1) = F`n,fs ◦ · · · ◦ F`n,f2 ◦ F`n,f1 . It

is easy to show that when s < 2` − 1, θ(fs, . . . , f2, f1) can be distinguished from an

r∈R H`n. By modifying the proof for the Main Lemma of [LR], it can be shown that

when s = 2`− 1, θ(fs, . . . , f2, f1) is pseudorandom where f1, f2, . . . , fs∈R Hn.

Now we prove an impossibility result on θ(f2`−1, . . . , f2, f1). For (2` − 1)

integers i1, i2, . . . , i2`−1 ∈ N, let Θ`n(i1, i2, . . . , i2`−1) be the multi-set consisting of

all functions θ(f i2`−1 , . . . , f i2 , f i1) ∈ H`n where f ∈ Hn, and let Θ(i1, i2, . . . , i2`−1) =

{Θ`n(i1, i2, . . . , i2`−1) | n ∈ N }.

[Theorem 2] For any i1, i2, . . . , i2`−1 ∈ N, there is a distinguisher T = {T`n | n ∈ N }
for Θ(i1, i2, . . . , i2`−1). Each T`n has (m1 +m2 +1) oracle gates, where m1 = (i1 + i2 +

· · ·+ i`)/d, m2 = (i2 + i3 + · · ·+ i`+1)/d and d = gcd(i1 + i2 + · · ·+ i`, i2 + i3 + · · ·+ i`+1).

Proof: There are two cases to be treated: ` = 2 and ` > 2. The former has been

proved in Theorem 1. The proof for the latter is similar to that for the former.

As in the proof of Theorem 1, denote by O0, O1, O2, . . . , Om1+m2 the (m1 +m2 +1)

oracle gates, by (Xs1, Xs2, . . . , Xs`) and (Ys1, Ys2, . . . , Ys`) the input to and output of

Os respectively, and by 0n the all-0 string in In.



DESCRIPTION OF T`n :

(1) The input to O0 is (X01, X02, . . . , X0`) = (0n, 0n, . . . , 0n).

(2) The input to O1 is (X11, X12, . . . , X1`) = (0n, Y03, 0n, . . . , 0n).

And if m1 > 1, then for each 1 < p ≤ m1, the input to Op is

(Xp1, Xp2, . . . , Xp`) = (0n, X(p−1)2 ⊕ Y(p−1)3, 0n, . . . , 0n).

(3) The input to Om1+1 is (X(m1+1)1, X(m1+1)2, . . . , X(m1+1)`) =

(Y02, 0n, . . . , 0n). And if m2 > 1, then for each m1 + 1 < t ≤
m1 + m2, the input to Ot is (Xt1, Xt2, . . . , Xt`) = (X(t−1)1 ⊕
Y(t−1)2, 0n, . . . , 0n).

(4) T`n outputs a bit 1 iff Ym12 = X(m1+m2)1 ⊕ Y(m1+m2)2.

See also Figure 2 for the structure of T`n. Analysis necessary is also similar to

Theorem 1, and omitted here.



Further analysis of the proof for Theorem 2 reveals that even given (` − 1)

independent random functions from Hn, it is not guaranteed that one can always obtain

pseudorandom permutations in H`n, by (2` − 1) applications of generalized DES-like

transformations. This is formally stated below.

Let i1, i2, . . . , i`+1 ∈ N, and let Θ̃`n(i1, i2, . . . , i`+1) be the multi-set consisting of

all functions θ(f`−1, . . . , f3, f2, f
i`+1
1 , . . . , f i2

1 , f i1
1 ) ∈ H`n where f1, f2, . . . , f`−1 ∈ Hn,

and let Θ̃(i1, i2, . . . , i`+1) = {Θ̃`n(i1, i2, . . . , i`+1) | n ∈ N }.

[Theorem 3] For any i1, i2, . . . , i`+1 ∈ N, Θ̃(i1, i2, . . . , i`+1) is not pseudorandom.

5. Concluding Remarks

Our consideration has been restricted to the case of ψ(fk
3 , f j

2 , f i
1) where i, j, k ∈ N

and f1, f2, f3 ∈ Hn such that for any 1 ≤ s, t ≤ 3, either fs = ft or fs is independent of

ft. It is worth while examining other cases, such as ψ(f̂ , f, f) and ψ(f, f, f̂) where f̂ is

constructed from f with f̂ 6= fm for any m ∈ N.

Also, it is not clear to us whether or not one independent random function f ∈ Hn

can be used to construct a pseudorandom permutation, by more than three applications

of DES-like transformations such as ψ(f, f, f, f2) and ψ(f2, f, f, f).

Some partial impossibility results were implied in [O], where Ohnishi showed

that both ψ(fs, . . . , f2, f1, f0, f1, f2, . . . , fs) and ψ(fs, . . . , f2, f1, f1, f2, . . . , fs), where

fi ∈ Hn, can be distinguished from an r∈R H2n by an oracle circuit T̄2n with two

oracle gates O1 and O2. The structure of T̄2n is as follows: (1) Choose X1, X2 ∈ In. (2)

Input (X1, X2) to O1. Assume that the output of O1 is (Y1, Y2). (3) Input (Y2, Y1) to O2.

Assume that the output of O2 is (Z1, Z2). (4) T̄2n outputs a bit 1 iff (X1, X2) = (Z2, Z1).

To the end, we pose an open problem: Prove or disprove that from one random

function in Hn, one can obtain in some way a pseudorandom (invertible) permutation

in H2n.2
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Appendix

In [O], Ohnishi showed that both ψ(g, f, f) and ψ(g, g, f), where f, g∈R Hn, cannot

be efficiently distinguished from an r∈R H2n. He obtained the result by carefully

modifying the proof for the Main Lemma of [LR]. The major modification begins with

the definition of B-gatei [LR,p.382]. Now we describe the definition for the case of

ψ(g, g, f). The case of ψ(g, f, f) is similar.

Let Ω = {0, 1}3nm, and ω = ω1, · · · , ω3nm ∈ Ω. For 1 ≤ i ≤ m, define

Xi(ω), Y2i−1(ω) and Y2i(ω) as follows:

Xi(ω) = ω(i−1)n+1 • · · · • ω(i−1)n+n,

Y2i−1(ω) = ωmn+(2i−2)n+1 • · · · • ωmn+(2i−2)n+n,

Y2i(ω) = ωmn+(2i−1)n+1 • · · · • ωmn+(2i−1)n+n.

Also let
X(ω) =< X1(ω), . . . , Xm(ω) >,

Y (ω) =< Y1(ω), . . . , Y2m(ω) > .

The ith oracle gate is computed as follows:

B-gatei:

The input is Li(ω) •Ri(ω),

` ← min{j : 1 ≤ j ≤ i, Ri(ω) = Rj(ω)},
α′i(ω) ← Li(ω)⊕X`(ω),

` ← min{{2j − 1 : 1 ≤ j ≤ i, α′i(ω) = α′j(ω)}⋃

{2j : 1 ≤ j ≤ i− 1, α′i(ω) = β′j(ω)}},
β′i(ω) ← Ri(ω)⊕ Y`(ω),

` ← min{{2j − 1 : 1 ≤ j ≤ i, β′i(ω) = α′j(ω)}⋃

{2j : 1 ≤ j ≤ i, β′i(ω) = β′j(ω)}},
γ′i(ω) ← α′i(ω)⊕ Y`(ω),

The output is β′i(ω) • γ′i(ω).

Note that the same function g is applied in both the second and the third rounds of

DES-like transformations of ψ(g, g, f). So the key point is that each input to g should

be compared with all previous inputs to it, no matter which round they appear in.

The remaining portion of the proof proceeds in the same way as [LR], with some

obvious modifications introduced by the above defined B-gatei.
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