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SUMMARY Efficient ID-based key sharing schemes are de-
sired worldwide in order to obtain secure communications on the
Internet and other related networks, and Key Pre-distribution
System (KPS) is one of the majority of such key sharing schemes.
The remarkable property of KPS, is that, user need only input
the partner’s identifier to the secret KPS-algorithm in order to
share a key between them. Although this is just a small part of
many advantages KPS has in terms of efficiency, an enormous
amount of memory is always required to achieve perfect security.
While the conventional KPS methods can establish communica-
tion links between any pair of entities in a communication system,
in most of the practical communication environment, such as in
a broadcast system, not all links will be required. In this article,
we achieved a desirable method to remove the unnecessary com-
munication links between any pair of entities in a communication
system. In our scheme, required memory size per entity was just
proportional to the number of entities of the partner’s, while that
in conventional KPS, it is proportional to the number of entities
of the whole communication system. As an example, if an entity
communicates with only 1/r others, the memory requirement is
reduced to 1/r of the conventional KPS’s. Furthermore, it was
proven that the obtained memory size was optimum. Overall,
our scheme confirmed greater efficiency to achieve secure com-
munication particularly suited in large-scale networks.
key words: key predistribution system, ID-based cryptosystem,

collusion attack

1. Introduction

For information security, ID-based key distribution
technologies are very important. The concept of ID-
based key cryptosystems was originally proposed by
Shamir [3], [4]. Maurer and Yacobi presents an ID-
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based key distribution scheme following Shamir’s con-
cept [5], [6]. However, their scheme requires a huge
computational power. Okamoto and Tanaka [7] also
proposed a key-distribution scheme based on a user’s
identifier, but it requires prior communications be-
tween a sender and a receiver to share the employed
key. Thus, the performance of these schemes is unsat-
isfactory. However, Blom’s ID-based key-distribution
scheme [2], which is generalized by Matsumoto and
Imai [1], has very good properties in terms of compu-
tational complexity and non-interactivity. Many useful
schemes based on Blom’s scheme have been proposed
[1], [11]–[17], and they are called Key Predistribution
Systems (KPS) [1].

In a KPS, no previous communication is required
and its key-distribution procedure consists of simple
calculations. Furthermore in order to share the key, a
participant should only input its communication part-
ner’s identifier to its secret KPS-algorithm. Blundo
et al. [14], [15], Kurosawa et al. [18], [19] showed lower
bounds on memory size of users’ secret algorithms and
developed KPS for a conference-key distribution. More-
over Fiat and Naor [16], Kurosawa et al. [19] applied a
KPS for a broadcasting encryption system.

Although KPS has many desired properties, the
following problem exists: When a number of users,
which exceeds a certain threshold, they can calculate
the central authority’s secret information. Thus, to
achieve perfect security the collusion threshold is de-
termined to be larger than the number of entities in
the network. Setting up such a high collusion thresh-
old in this scheme requires large amounts of memory in
the center as well as for the users. Solving this prob-
lem will make KPS much more attractive for ID-based
key-distribution. Tsujii and others [9] made attempts
to enhance the KPS’s security level with less amounts
of memory. However, it has been shown that majority
of their atttempted schemes are of equivalent level as
of the conventional KPS [10], and moreover, their other
schemes seem to be too complex to prove their accurate
security.

Although KPS provides common keys for all pos-
sible communication links among entities, in practical
communication systems most of them are not necessary.
By removing such unnecessary communication links, we
can significantly reduce the required memory∗∗. In our



HANAOKA et al.: OPTIMAL UNCONDITIONALLY SECURE KEY SHARING SCHEME FOR LARGE-SCALED NETWORKS
223

scheme, the required memory for each entity is propor-
tional to the number of its communication partners,
while in the conventional KPS it is proportional to the
number of entities in the whole system. E.g., if an en-
tity communicates only with 1/r of others, the required
memory is reduced for a factor 1/r in comparison with
the conventional KPS. Furthermore, this memory size
is proven optimal. In this work, we also propose an op-
timal asymmetric t-conference key distribution scheme.
Since this scheme has good properties, it is considered
to be utilized effectively in other applications.

Section 2 gives a brief review of the KPS. Then, in
Sect. 3, straight-forward implementation of our scheme
and the corresponding problem are described. Section 4
explains an asymmetric t-conference key scheme as the
solution of straight-forward implementation problem.
Afterwards, an optimal construction based on asym-
metric t-conference key distribution scheme is described
in Sect. 5. This is followed by the evaluation and discus-
sion of the security of our scheme in Sect. 6. In Sect. 7,
we show a modification of our scheme. Finally, Sect. 8
closes the paper with some concluding remarks.

2. A Brief Overview of KPS

A KPS consists of two kinds of entities: One entity
is the KPS center, the other entities are the users who
want to share a common key. The KPS center possesses
the KPS-center algorithm by which it can generate an
individual secret algorithm for each user. These indi-
vidual algorithms are (pre-) distributed by the center to
their users and allow each user to calculate a common
key from the ID of his communication partner. This
section explains how the users’ secret KPS-algorithms
are generated and how users share a common key.

Let a symmetric function G(x, y) be the KPS-
center algorithm. Then, each entity ui (i = 1, 2, · · · , N)
is given the secret algorithm Uui(x)(= G(x, ui)) (i =
1, 2, · · · , N), respectively. In order to share the com-
munication key between ui and uj , they should simply
input uj and ui to their secret algorithms, respectively.
Since G(x, y) is a symmetric function, they both obtain
kuiuj = Uui(uj) = Uuj (ui) = G(ui, uj).

KPS has three noteworthy properties. First, there
is no need to send messages for the key distribution
between entities who want to establish a cryptographic
communication channel. Second, its key-distribution
procedure consists of simple calculations so that its
computational costs are quite small. Finally, in or-
der to share the key, a participant has only to input
its communication partner’s identifier to its secret al-
gorithm. Thus, KPS is well applicable to one-pass or

∗∗We have shown implementations of this concept for
broadcasting and electronic toll collection systems (ETC)
in [17] and [20], respectively. Our new scheme in this pa-
per can be regarded as a generalized version of the above
schemes.

quick-response transactions, e.g. mail systems, broad-
casting systems, electronic toll collection systems, and
so on.

However, KPS has a certain collusion threshold;
when more users cooperate they can calculate the KPS-
center algorithm G(x, y). Thus, to achieve perfect se-
curity the collusion threshold should be determined to
be larger than the number of entities in the network.
Accordingly, the required memory for users’ secret algo-
rithms are increased due to the collusion threshold. In
the following subsection, the relationship between the
memory size and the collusion threshold is discussed in
more detail.

2.1 A Lower Bound of |Uui(x)|

For a random variable X, H(X) denotes the entropy of
X. Generally,

0 ≤ H(X) ≤ log2 |X|, (1)

where X = {x | Pr(X = x) > 0}. In particular,
H(X) = log2 |X| iff X is uniformly distributed.

Blundo et al. [14] showed a lower bound of required
memory size for users as follows:

Proposition 1 ([14]): Suppose that for each P ⊆ {u1,
u2, · · · , uN} such that |P| = t, there is a key kP as-
sociated with P. Each user ui ∈ P can compute kP ,
and if colluders F ⊆ {u1, u2, · · · , uN}, |F| ≤ ω and
|F ∩ P| = 0, where ω is the collusion threshold in the
system, then F cannot obtain any information about
kP . Accordingly, a lower bound of the required mem-
ory size for users’ secret algorithm Uui is estimated as
follows:

log2 |Uui | ≥
(

t+ ω − 1
t− 1

)
H(K), (2)

where K is a random variable which takes on the key
space K, and kP ∈ K for any P. Note that the key
length of a shared key is H(K). In order to achieve
perfect security, ω + t must be equal to the number
of entities in the whole network. For t = 2, Eq. (2)
becomes log2 |Uui | ≥ (ω + 1)H(K).

2.2 Optimal Schemes

Blundo et al. [14] presented a KPS which achieves the
optimal memory size. In this scheme, the center chooses
a random symmetric polynomial in t variables over
GF (q) in which the degree of any variable is at most
ω, that is, a polynomial

f(x1, · · · , xt) =
ω∑

i1=0

· · ·
ω∑

it=0

ai1···itx1
i1 · · ·xtit , (3)

where ai1···it = aσ(i1···it) for any permutation



224
IEICE TRANS. FUNDAMENTALS, VOL.E84–A, NO.1 JANUARY 2001

σ on (i1, · · · , it). The center computes Uui =
f(x1, x2, · · · , xt)|x1=ui and gives Uui (i = 1, · · · , N) to
ui (i = 1, · · · , N), respectively. Then, they can share
their communication keys by inputting t − 1 partners’
identifiers. For t = 2, Blom’s scheme [2], Matsumoto-
Imai scheme [1] and some others are also known as be-
ing optimal schemes. Although these schemes achieve
the optimal memory size: log2 |Uui | = (ω + 1)H(K)
(See Proposition 1), the amount of memory is still large
(For perfect security, ω must be equal to N − 2). Es-
pecially, in large-scale networks required memory size
is enlarged according to the high collusion threshold.
Furthermore, on a smart card since its size of storage
is strictly limited, the collusion threshold cannot be set
up high enough to avoid strong collusion attacks by
huge number of entities. For example, ω = 8191 is se-
lected as the collusion threshold in “KPSL1 card” [21],
where the key length is 64bits. The secret-algorithm
itself then consumes 64-KBytes of memory size in each
IC card. Therefore KPS was considered to be some-
what expensive for real IC card systems at that time.
By introducing 128–256 bits symmetric key cryptosys-
tems (namely, H(K) = 128–256 bits), this problem will
be more serious.

3. Straight-Forward Method for Removing
Unnecessary Functions

As already mentioned, some KPSs are proven to be op-
timal, and it is impossible to reduce the required mem-
ory size providing all the communication links. How-
ever, the required memory size of these schemes are
still high. Although a possibility to reduce the required
memory is to reduce the collusion threshold or the key
length, the security is also reduced considerably. So, we
pay attention to the unnecessary communication links
in networks in order to reduce the memory size main-
taining the same security level. In this section, we show
a basic concept to attain the specified goal and we con-
sider its requirements.

3.1 Unnecessary Communication Links

In a large-scale network, there are many pairs of entities
that do not communicate with each other at all. As
an illustration we point out the following two reasons.
Firstly, to avoid the illegal access, certain users are not
allowed to access specific resources by access controlling
techniques. Secondly, there exist many resources which
perform only to some specific client computers. Also,
pairs of entities, which are not related with each other,
do not need to communicate with each other.

Although there are many unnecessary communi-
cation links, conventional KPSs cannot deal with them
efficiently. Namely, in conventional KPSs it seems to be
impossible to remove only unnecessary communication
links.

3.2 Straight-Forward Implementation and Its Prob-
lem

A possible solution to reduce memory size by remov-
ing unnecessary communication links is to construct a
whole large network by using small KPSs. Namely, if
small KPSs are provided only for necessary communica-
tion links, then the unnecessary ones can be removed.
However, straight-forward implementation of this ap-
proach has a serious problem. The required memory
can be even more than that of the conventional KPS.
We explain this problem in more details below.

Here, we assume that the set of all entities U are
devided to NU subsets {U1,U2, · · · ,UNU } (|Ui ∩ Uj | =
0). Each Ui (i = 1, · · · , NU ) fulfills the following
condition: The set of all communication partners of
all ui ∈ Ui is Ûi = {Ui,1,Ui,2, · · · ,Ui,Ni}, where ∃j
Ui,k = Uj (k = 1, 2, · · · , Ni) and Ni ≤ NU , and for
i1, i2 ∈ {1, 2, · · · , NU}, if Ui1 ∈ Ûi2 , then Ui2 ∈ Ûi1 . For
convenience, if Ui1 ∈ Ûi2 , we say < i1, i2 >= 1, other-
wise, < i1, i2 >= 0. In this paper, we assume that each
entity’s identity includes the infomation of the subset
which the entity belongs to†.

Then, if a whole network is constructed by small
KPSs straight-forwardly, the critical problems will ap-
pear in following two situations:

Case1: < i1, i2 >= 1, < i1, i1 >= 0 (i1 �= i2)

For the communication < i1, i2 >= 1, a small KPS is
provided. The collusion threshold of this KPS is deter-
mined to be equal to |Ui1 | + |Ui2 | − 2. From Eq. (2),
the required memory size for this communication is
also proportional to |Ui1 | + |Ui2 | − 1. However, since
< i1, i1 >= 0, even ui1 ∈ Ui1 communicates only with
|Ui2 | entities using the above memory.

Case2: < i1, i2 >= 1, < i1, i3 >= 1, < i2, i3 >= 0
(i1 �= i2, i1 �= i3, i2 �= i3)

For these communications, we consider two kinds of
construction of small KPSs: a KPS for {Ui1 ,Ui2}
and a KPS for {Ui1 ,Ui3} are set up, or a KPS for
{Ui1 ,Ui2 ,Ui3} is set up. For the first construction, the
collusion threshold of two KPSs are |Ui1 | + |Ui2 | − 2
and |Ui1 | + |Ui3 | − 2, respectively. Thus, the required
memory size of ui1 ∈ Ui1 for these communications
is proportional to 2|Ui1 | + |Ui2 | + |Ui3 | − 2. On the
other hand, for the second construction the collusion
threshold of the KPS is |Ui1 |+ |Ui2 |+ |Ui3 | − 2. Hence,

†For example, if an entity is a terminal of a (local-area)
network, the information of the subset which the entity be-
longs to can be extracted from the network domain name
or IP address of the entity, assuming that the terminals in
the network are equally access controlled to other external
networks.
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the amount of memory of ui1 ∈ Ui1 is proportional to
|Ui1 | + |Ui2 | + |Ui3 | − 1. Further, the required memory
size for ui2 ∈ Ui2 and ui3 ∈ Ui3 are also proportional to
|Ui1 |+ |Ui2 |+ |Ui3 | − 1. Anyway, in both constructions
since ui1 ∈ Ui1 communicate only with |Ui2 |+|Ui3 | enti-
ties by these KPS(s), the required memory size for ui1
is large comparing with the amount of memory. More-
over, in the second construction ui2 ∈ Ui2 and ui3 ∈ Ui3
communicate only with |Ui1 | entities. Hence, their re-
quired memory size is also large.

In the worst case, the required memory size
for an entity is almost 2 times of that in conven-
tional KPS. Namely, if < i1, i >= 1 (i = 1, · · · ,
NU , i �= i1) and < j, k >= 0 (j, k = 1, · · ·,
NU , j, k �= i1), then, the required memory size is(∑

i∈{1,2,···,NU},i 	=i1 (|Ui|+ |Ui1 | − 1)
)
H(K). On the

other hand, in conventional KPS the required mem-
ory size is

(∑
i∈{1,2,···,NU},i 	=i1 |Ui| − 1

)
H(K). Hence,

straight-forward implementation of constructing a
whole network by small KPSs is inefficient. Note that
Case1 and Case2 can not be considered as rare. These
cases cannot occur iff U can be divided to hold the fol-
lowing condition:

< i, j >=
{

0 (i �= j)
1 (i = j) ∀i,∀j ∈ {1, 2, · · · , NU}.

4. Optimal Key Sharing Schemes

As mentioned in the previous section, we can not con-
struct a large-scale network efficiently by only using
normal KPSs. In this section, we show a new concept of
key sharing schemes to construct a large-scale network
optimally. The following lemma indicates the required
key sharing schemes for optimal constructions in terms
of memory size:

Lemma 1: The required memory size for entities is
optimal if a whole network is constructed by optimal
normal KPSs [1], [2], [14] for < i, i >= 1 for all i ∈
{1, · · · , NU} and other key sharing schemes whose mem-
ory size for < i, j >= 1 for all i, j ∈ {1, · · · , NU}, i �= j
is optimal for < i, j >= 1 for all i, j ∈ {1, · · · , NU},
i �= j.

Proof. In large scale networks, there are two kinds of
communication, i.e. communication among the same
subset and that between different two subsets. There-
fore, if optimal key sharing systems for < i, i >= 1
for all i ∈ {1, · · · , NU} and those for < i, j >= 1 for
all i, j ∈ {1, · · · , NU}, i �= j are provided, a key shar-
ing system for a large scale network can be constructed
optimally.

Since optimal normal KPSs provide optimal mem-
ory size for < i, i >= 1 for all i ∈ {1, · · · , NU}, the
required memory size for entities becomes optimal if a

Fig. 1 An asymmetric t-conference key distribution.

whole network is constructed by optimal normal KPSs
[1], [2], [14] for < i, i >= 1 for all i ∈ {1, · · · , NU}
and other key sharing schemes whose memory size for
< i, j >= 1 for all i, j ∈ {1, · · · , NU}, i �= j is optimal
for < i, j >= 1 for all i, j ∈ {1, · · · , NU}, i �= j. ✷

4.1 Requirement for the Optimal Key Sharing Scheme

In this subsection, a lower bound of the memory size
of a key sharing scheme for < i1, i2 >= 1 (i1 �= i2) is
shown. For other applications, we further generalize the
key sharing scheme and call it asymmetric t-conference
key distribution. Asymmetric t-conference key distri-
bution is defined as follows:

Definition 1: Let U be a set of entities and U is di-
vided to t subsets U = {U1,U2, · · · ,Ut}. A key-sharing
scheme for U is called asymmetric t-conference key dis-
tribution if

1. u1 ∈ U1, u2 ∈ U2, · · · , ut ∈ Ut can compute their
common key among them non-interactively (note
that common keys among a same subset are not
required).

2. Collusion thresholds ψ1, ψ2, · · · , ψt are indepen-
dently set up for each of U1,U2, · · · ,Ut. And unless
a group of colluders Fi ∈ Ui holds |Fi| > ψi, any
information of a common key is not exposed to
entities who should not have it.

Figure 1 illustrates an example of an asymmetric
t-conference key distribution. Note that a key sharing
scheme for < i1, i2 >= 1 (i1 �= i2) is an asymmetric
2-conference key distribution. Therefore, from Lemma
1 it is clear that optimal normal KPSs and optimal
asymmetric 2-conference key distribution schemes are
required to construct a optimal key distribution system
for a large-scale network.

Lemma 2: In an asymmetric t-conference key distri-
bution system, for ui ∈ Ui the amount of memory of the
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secret algorithm Ui holds the following lower bound:

log2 |Ui| ≥


 ∏
j∈{1,···,t},j 	=i

(ψj + 1)


H(K). (4)

Proof. The mutual information between random valu-
ables X and Y fulfills following two equations:

I(X ;Y ) = H(X)−H(X |Y ), (5)

I(X ;Y ) = I(Y ;X). (6)

From Eq. (5) and Eq. (6), following equation is ob-
tained:

H(X) = H(Y )−H(Y |X) +H(X |Y ). (7)

Let Uj ′ (j = 1, · · · , i − 1, i + 1 · · · , t) be sets
{u0

j , · · · , u
ψj
j } ⊆ Uj (j = 1, · · · , i − 1, i + 1 · · · , t),

respectively, and K
ui,u

k1
1 ,···,uki−1

i−1 ,u
ki+1
i+1 ,···,uktt

be the

set of all possible values of the shared key among
ui, u

k1
1 ∈ U ′

1, · · · , u
ki−1
i−1 ∈ U ′

i−1, u
ki+1
i+1 ∈ U ′

i+1, · · · , uktt ∈
U ′
t such that kj ∈ {0, · · · , ψj}, j = 1, · · · , i −

1, i + 1, · · · , t. Letting Kui be Kui,u0
1,···,u0

t
× · · · ×

K
ui,u

ψ1
1 ,···,uψtt

(Kui is a Cartesian product of all
K
ui,u

k1
1 ,···,uki−1

i−1 ,u
ki+1
i+1 ,···,uktt

(kj = 0, · · · , ψj , j =

1, · · · , i− 1, i+ 1 · · · , t) and Kui be a random valuable
which takes on Kui , from Eq. (7), the entropy of Ui is
described as follows:

H(Ui) = H(Kui)−H(Kui |Ui) +H(Ui|Kui). (8)

Since in an asymmetric t-conference key distribution
scheme, Kui can be computed by using Ui,

H(Kui |Ui) = 0. (9)

Then, from Eq. (8) and Eq. (9) the following inequality
is obtained:

H(Ui) = H(Kui) +H(Ui|Kui) ≥ H(Kui). (10)

In a secure asymmetric t-conference key distribution
system, no information of a shared key among a com-
munication group can be obtained by other illegal enti-
ties unless the number of colluders in any Uj exceeds ψj .
Therefore, letting K

ui,u
k1
1 ,···,uki−1

i−1 ,u
ki+1
i+1 ···,uktt

be a ran-

dom valuable which takes on K
ui,u

k1
1 ,···,uki−1

i−1 ,u
ki+1
i+1 ···,uktt

,

we obtain

H(K
ui,u1

k10 ,···,ui−1
ki−10 ,ui+1

ki+10 ,···,utkt0

|K
ui,u

k1
1 ,···,ui−1

ki−1 ,ui+1
ki+1 ,···,uktt

kj = 0, · · · , kj0−1, kj0+1, · · · , ψj ,
j = 1, · · · , i− 1, i+ 1 · · · , t)

= H(K
ui,u

k10
1 ,···,u

ki−10
i−1 ,u

ki+10
i+1 ,···,u

kt0
t

)

= H(K), (11)

for all k10 , · · · , kt0 (kj0 ∈ {1, · · · , ψj}, j = 1, · · · , i −
1, i+ 1, · · · , t). Thus, for H(Kui) we have

H(Kui) =


 ∏
j∈{1,···,t},j 	=i

(ψj + 1)


H(K). (12)

From Eq. (10) and Eq. (12), we obtain

H(Ui) ≥


 ∏
j∈{1,···,t},j 	=i

(ψj + 1)


H(K). (13)

Hence, from Eq. (1) Eq. (13) becomes Eq. (4). ✷

Proposition 2: For perfect security, in an asymmet-
ric t-conference key distribution system the amount of
memory of the secret algorithm Ui holds following lower
bound:

log2 |Ui| ≥


 ∏
j∈{1,···,t},j 	=i

|Uj |


H(K). (14)

Proof. For perfect security, each ψi (i = 1, · · · , t) must
be equal to |Ui| − 1. By introducing this collusion
threshold, Eq. (4) becomes Eq. (14). ✷

4.2 An Example of Optimal Asymmetric t-Conference
Key Distribution Schemes

In this subsection an optimal asymmetric t-conference
key distribution scheme is shown. In this scheme,
the symmetric polynomial which is the KPS-center al-
gorithm in Blundo et al.’s scheme is replaced with
an asymmetric polynomial in t variables x1, x2, · · · , xt
over GF (q) in which the degree of each variable is
ψ1, ψ2, · · · , ψt, respectively, that is, a polynomial

f(x1, · · · , xt) =
ψ1∑
i1=0

· · ·
ψt∑
it=0

ai1···itx1
i1 · · ·xtit . (15)

Note that ai1···it is not necessary to be equal to
aσ(i1···it) for any permutation σ on (i1, · · · , it). The
center computes Ui = f(x1, x2, · · · , xt)|xi=ui and gives
each Ui to ui, respectively. When ui communicates
with u1 ∈ U1, u2 ∈ U2, · · · , ui−1 ∈ Ui−1, ui+1 ∈
Ui+1, · · · , ut ∈ Ut, ui computes their communication
keys by Ui|x1=u1,x2=u2,···,xi−1=ui−1,xi+1=ui+1,···,xt=ut .
By this procedure, an asymmetric t-conference key dis-
tribution is exactly realized.

In this scheme, the required memory size for Ui is
estimated as follows:

Theorem 1: The above scheme (Eq. (15)) is optimal
in terms of memory size. Namely, it achieves the lower
bound on |Ui| (Lemma 2);

log2 |Ui| =


 ∏
j∈{1,···,t},j 	=i

(ψj + 1)


H(K). (16)
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For t = 2, we then obtain an optimal key sharing
scheme for < i1, i2 >= 1, < i1, i1 >= 0, < i2, i2 >=
0 (i1 �= i2). When we apply this, the required memory
for users is estimated as follows:

Corollary 1: The required memory for ui1 ∈ Ui1 is

log2 |Ui1 | = |Ui2 |H(K), (17)

which is much less than that of normal KPSs as shown
in Sect. 3.2.

5. Optimal Construction by Normal KPSs and
Asymmetric 2-Conference Key Distribution
Schemes

As already mentioned in Sect. 4.1, if optimal KPSs
and optimal asymmetric 2-conference key distribution
schemes are applied, the required memory size can be
optimal. In this section, we show an optimal construc-
tion of a large-scale network by removing unnecessary
communication links.

(1) Procedure of the center:

The center provides center algorithms of normal KPSs
and asymmetric t-conference key distribution systems.
For each < i, i >= 1 (i = 1, 2, · · · , NU ), a normal
KPS is applied. And for each < i, j >= 1 (i �=
j), an optimal asymmetric 2-conference key distribu-
tion scheme is applied. Gi(x, y) and Gij(x, y) (i, j ∈
{1, 2, · · · , NU}, i �= j) denote the center algorithms
for normal KPSs and asymmetric t-conference key dis-
tribution systems, respectively (Gi(x, y) and Gij(x, y)
holds Gi(x, y) = Gi(y, x) and Gij(x, y) = Gji(y, x), re-
spectively). Then, the center gives the following secret
algorithm Uui to ui ∈ Ui:

Uui = {U ijui(y) |For < i, j >= 1,

U ijui(y) = Gi(ui, y) (i = j),

U ijui(y) = Gij(ui, y) (i �= j)} (18)

Since applied KPSs (for < i, i >= 1) and asymmetric
2-conference key distribution schemes (for < i, j >=
1, i �= j) are optimal, required memory size for each
small key sharing system is estimated as follows:

log2 |U ijui(y)| =
{

(|Uj | − 1)H(K) (i = j)

|Uj |H(K) (i �= j).
(19)

As an optimal KPS, Blundo et al.’s scheme,
Matsumoto-Imai scheme and Blom’s scheme are avail-
able. On the other hand, as an optimal asymmetric
2-conference key distribution scheme, our scheme pre-
sented in Sect. 4.3 is available.

(2) Procedure of the entities:

ui computes the common key with uj ∈ Uj as follows:
ui : kui,uj = U ijui(uj),

uj : kui,uj = U jiuj (ui)(= U ijui(uj)).
(20)

6. Memory Size for Entities

In this section, we estimate the required memory size
for users. Theorem 2 shows the amount of memory
required for users’ secret algorithms.

Theorem 2: By our construction, the required mem-
ory size for ui ∈ Ui is estimated as follows:

log2 |Uui |

=


 ∑
j∈{1,···,NU}

(< i, j > |Uj |)− < i, i >




·H(K). (21)

In addition, our scheme is optimal in terms of memory
size.

Proof. Equation (21) is obviously obtained from
Eq. (19). Additionally, this memory size is optimal due
to Lemma 1. ✷

Here let log2 |U ′| be the required memory size for
an entity when the whole network is constructed only
by one normal KPS. Then, from Theorem 2 we obtain
the following equation:

log2 |Uui |

=

∑
j∈{1,···,NU}(< i, j > |Uj |)− < i, i >(∑

j∈{1,···,NU} |Uj |
)
− 1

log2 |U ′|.(22)

Since
∑

j∈{1,···,NU}(< i, j > |Uj |)− < i, i > is equal
to the number of communication partners of ui, and∑
j∈{1,···,NU} |Uj | is equal to the number of entities in

the whole system, from Eq. (22) we have:

Theorem 3: Comparing with the required memory
size for the conventional KPS, the required memory
size for our scheme is estimated as follows:

log2 |Uui |

=
the number of partners

the number of entities− 1
log2 |U ′|. (23)

Namely, by using our scheme the memory size for an en-
tity is reduced to be almost same as (# of partners)/(#
of entities).

7. Modification for Not-Perfectly Secure Mod-
els

Our proposed scheme can be said perfectly secure since
any subset of entities have no information on a key they
should not know. When we reduce the collusion thresh-
old for reduction of memory size, the security becomes
inperfect. Namely, if the collusion threshold is less than
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the given one, by carrying out a collusion attack collud-
ers can compute common keys of a victim. However,
to succeed the attack, huge number of colluders will be
required, and it seems still impossible to succeed collu-
sion attacks in the real world if the collusion threshold
is sufficiently large.

Generally, as described above, in such non-
perfectly secure cases the system can be broken by col-
lusion attacks if the number of colluders exceeds the
collusion threshold. Namely, if the collusion threshold
in entities E , say ωE , is less than |E|−1, ωE+1 colluders
from E will be able to break the system. In this sec-
tion, we show a modification of our proposed scheme to
deal with the collusion attack more efficiently, assuming
that the number of colluders is determined according to
Poisson distribution.

Let p be the probability that a user joins a col-
lusion attack. Assuming that p is constant among all
users, the number of colluders is determined according
to Poisson distribution. Hence, by a collusion attack
in E the probability of attack success P (E , ωE) is esti-
mated as follows:

P (E , ωE) =
|E|∑

i=ωE+1

e−p|E|
(p|E|)i
i!

. (24)

In this situation, we have

Lemma 3: We choose ωUi (i = 1, · · · , NU ) such that
P (Ui, ωUi) = P (0 < P < 1) and ωUi > p|Ui|. Then,
the following inequality holds

P (V , ωV) ≤ P for all V , (25)

such that V = {Ui1 ,Ui2 , · · · ,UiNV
}, where {i1, i2, · · · ,

iNV} ⊆ {1, 2, · · · , NU} and ωV =
(∑

i∈{i1,···,iNV } ωi

)
+

NV − 1.

Proof. Regarding the law of large number, we obviously
obtain the following inequality:

P (X ∩ Y , ωX + ωY + 1)
≤ max{P (X , ωX ), P (Y , ωY)} for all X ,Y , (26)

where p|X | < ωX < |X | − 1, p|Y| < ωY < |Y| − 1.
From Eq. (26), for the parameter setting such that for
all i P (Ui, ωUi) = P (0 < P < 1) and ωUi > p|Ui|,
Eq. (25) is obtained. ✷

Lemma 3 implies that the collusion threshold can
be determined at a relatively small value if the number
of entities is large. Namely, for the same security level
the collusion threshold/the number of entities decreases
as the number of entities increases. This fact can be
formalized as follows:

Lemma 4: We choose ωV
′ such that P (VωV

′) = P .
Then, the following inequality holds

ωV
′ ≤ ωV for all V . (27)

Proof. Since P (V , ωV) ≤ P (Lemma 3), the collusion
threshold in V which allows the probability of attack
success = P is less than ωV . ✷

In the proposed key-sharing scheme, for commu-
nication between ui ∈ Ui and uj ∈ Uj , j ∈ J ′ for all
J ′, such that J ′ ⊆ J = {j| < i, j >= 1, j �= i},
applied asymmetric 2-conference key distribution sys-
tems are established separately. By combining them
into one system, we can reduce the memory size for
ui. As described in Eq. (18), Uui consists of U ijui(y)
for all j such that < i, j >= 1. Recall that U ijui(y) is
ui’s secret algorithm of the asymmetric 2-conference
key distribution scheme for communication between
Ui and Uj . Since asymmetric 2-conference key dis-
tribution systems for communication between Ui and
Uj , j ∈ J ′ ⊆ J = {j| < i, j >= 1, j �= i} can
be replaced with an asymmetric 2-conference key dis-
tribution system for communication between Ui and
{Uj |j ∈ J ′}. Here, we call this replacement combin-
ing.

Theorem 4: If a system allows combining U ijui(y), j ∈
J ′ into U iJ

′

ui (y) which is an optimal asymmetric 2-
confernce key distribution system between Ui and all
Uj , j ∈ J ′, for the same security level (the probabil-
ity of attack success is P ) the required memory size is
reduced as follows:

log2 |U iJ
′

ui (y)| = ωJ ′ ′ + 1
ωJ ′ + 1

∑
j∈J ′

log2 |U ijui(y)|, (28)

where for all j ∈ J ′ P (Uj , ωUj ) = P , ωUj > p|Uj |,
ωJ ′ =

(∑
j∈J ′ ωUj

)
+ |J ′| − 1 and P (J ′, ωJ ′ ′) = P .

Proof. Since log2 |U iJ
′

ui (y)| = (ωJ ′ ′ + 1)H(K)

and
∑
j∈J ′ log2 |U ijui(y)| =

(∑
j∈J ′(ωUj + 1)

)
H(K),

Eq. (28) is obtained. Note that
∑
j∈J ′(ωUj + 1) =

ωJ ′ + 1. In addition, the memory size is exactly re-
duced due to Lemma 4. ✷

8. Conclusion

In this paper, an optimal construction of ID-based key
sharing scheme for large-scale networks is proposed. It
has been pointed out that in order to achieve perfect
security a huge amount of memory is required in con-
ventional KPS, and it has been shown how KPS can
be improved for practical communication systems. By
removing communication links that are not required
in a practical communication system. This approach
yields that the amount of memory is reduced signifi-
cantly. In our scheme, the required memory for each
entity is (the number of partners) × (the length of a
common key), while in the conventional KPS is (the
number of entities −1) × (the length of a common key).
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So, if an entity communicates only with 1/r of others,
the required memory is reduced almost 1/r of that re-
quired in conventional KPS. Furthermore, our scheme is
proven to be optimal. The previous makes our scheme
attractive for various applications like broadcasting or
E-commerce in the Internet. In this paper, we also pro-
pose an optimal asymmetric t-conference key distribu-
tion scheme. Since this scheme has good properties,
it could be utilized effectively in other applications.
Additionally, since public-key cryptosystems have no
advantages over KPS in terms of computational costs,
ID-basedness, and so on, the efficient combination of
a public-key cryptosystem and our scheme will yield
a more efficient and secure communication system in
comparison with single use of a public-key cryptosys-
tem.
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