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Abstract

Many practical information authentication techniques are based on such crypto-
graphic means as data encryption algorithms and one-way hash functions. A core
component of such algorithms and functions are nonlinear functions. In this paper, we
reveal a relationship between nonlinearity and propagation characteristic, two critical
indicators of the cryptographic strength of a Boolean function. We also investigate the
structures of functions that satisfy the propagation criterion with respect to all but
six or less vectors. We show that these functions have close relationships with bent
functions, and can be easily constructed from the latter.

1 Introduction

Cryptographic techniques for information authentication and data encryption require func-
tions with a number of critical properties that distinguish them from linear (or affine)
functions. Among the properties are high nonlinearity, high degree of propagation, few
linear structures, high algebraic degree etc. These properties are often called nonlinearity
criteria. An important topic is to investigate relationships among the various nonlinearity
criteria. Progress in this direction has been made in [2], [8], [14], where connections have
been revealed among the strict avalanche characteristic (SAC), differential characteristics,
linear structures and nonlinearity, of quadratic functions.

In this paper we carry on the investigation initiated in [14] and bring together non-
linearity and propagation characteristic of a function (quadratic or non-quadratic). These
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two cryptographic criteria seem to be quite different, in the sense that the former indicates
the minimum distance between a function and all the affine functions whereas the latter
forecasts the avalanche behavior of the function when some input bits to the function are
complemented.

We further extend our investigation into the structures of cryptographic functions. The
organization of the remaining part of this paper is as follows: After introducing basic defini-
tions in Section 2, we show in Section 3 the relationship between propagation characteristic
and nonlinearity. We further explore this result in Sections 4, 5, 6, 7, 8 and 9, and make ex-
plicit the structural forms of functions that satisfy the propagation criterion with respect to
all but six or less vectors. We examine degrees of propagation of the functions in Section 10,
and finally, close the paper with some remarks in Section 11.

A short summary of the results is presented in Table 1.

2 Basic Definitions

We consider functions from Vn to GF (2) (or simply functions on Vn), Vn is the vector space
of n tuples of elements from GF (2). The truth table of a function f on Vn is a (0, 1)-sequence
defined by (f(α0), f(α1), . . . , f(α2n−1)), and the sequence of f is a (1,−1)-sequence defined
by ((−1)f(α0), (−1)f(α1), . . . , (−1)f(α2n−1)), where α0 = (0, . . . , 0, 0), α1 = (0, . . . , 0, 1), . . .,
α2n−1−1 = (1, . . . , 1, 1). The matrix of f is a (1,−1)-matrix of order 2n defined by M =
((−1)f(αi⊕αj)). f is said to be balanced if its truth table contains an equal number of ones
and zeros.

An affine function f on Vn is a function that takes the form of f(x1, . . . , xn) = a1x1 ⊕
· · ·⊕anxn⊕c, where aj , c ∈ GF (2), j = 1, 2, . . . , n. Furthermore f is called a linear function
if c = 0.

Definition 1 The Hamming weight of a (0, 1)-sequence s, denoted by W (s), is the number
of ones in the sequence. Given two functions f and g on Vn, the Hamming distance d(f, g)
between them is defined as the Hamming weight of the truth table of f(x) ⊕ g(x), where
x = (x1, . . . , xn). The nonlinearity of f , denoted by Nf , is the minimal Hamming distance
between f and all affine functions on Vn, i.e., Nf = mini=1,2,...,2n+1 d(f, ϕi) where ϕ1, ϕ2,
. . ., ϕ2n+1 are all the affine functions on Vn.

Now we introduce the definition of propagation criterion.

Definition 2 Let f be a function on Vn. We say that f satisfies

1. the propagation criterion with respect to α if f(x)⊕ f(x⊕ α) is a balanced function,
where x = (x1, . . . , xn) and α is a vector in Vn.

2. the propagation criterion of degree k if it satisfies the propagation criterion with respect
to all α ∈ Vn with 1 <= W (α) <= k.

The above definition for propagation criterion is from [10]. Further work on the topic
can be found in [9]. Note that the strict avalanche criterion (SAC) introduced by Webster
and Tavares [15, 16] is equivalent to the propagation criterion of degree 1 and that the
perfect nonlinearity studied by Meier and Staffelbach [6] is equivalent to the propagation
criterion of degree n where n is the number of the coordinates of the function.
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In a relevant development [18], the authors have recently identified various limitations
of the SAC and the propagation criterion. In particular, we have found that the two criteria
are primarily focused on local avalanche characteristics of cryptographic functions, which
would limit their usability in certain cryptographic applications. In the same paper we have
also proposed a new criterion called GAC that captures global avalanche characteristics of
cryptographic functions.

While the propagation characteristic measures the avalanche effect of a function, the
linear structure is a concept that in a sense complements the former, namely, it indicates
the straightness of a function.

Definition 3 Let f be a function on Vn. A vector α ∈ Vn is called a linear structure of f
if f(x)⊕ f(x⊕ α) is a constant.

By definition, the zero vector in Vn is a linear structure of all functions on Vn. It is
not hard to see that the linear structures of a function f form a linear subspace of Vn.
The dimension of the subspace is called the linearity dimension of f . We note that it was
Evertse who first introduced the notion of linear structure (in a sense broader than ours)
and studied its implication on the security of encryption algorithms [4].

A (1,−1)-matrix H of order m is called a Hadamard matrix if HHt = mIm, where Ht

is the transpose of H and Im is the identity matrix of order m. A Sylvester-Hadamard
matrix of order 2n, denoted by Hn, is generated by the following recursive relation

H0 = 1, Hn =

[
Hn−1 Hn−1

Hn−1 −Hn−1

]
, n = 1, 2, . . . .

Let ã = (a1, · · · , am) and b̃ = (b1, · · · , bm) be two vectors (or sequences), the scalar
product of ã and b̃, denoted by 〈ã, b̃〉, is defined as the sum of the component-wise mul-
tiplications. In particular, when ã and b̃ are from Vm, 〈ã, b̃〉 = a1b1 ⊕ · · · ⊕ ambm, where
the addition and multiplication are over GF (2), and when ã and b̃ are (1,−1)-sequences,
〈ã, b̃〉 =

∑m
i=1 aibi, where the addition and multiplication are over the reals.

Definition 4 A function f on Vn is called a bent function if

2−
n
2

∑

x∈Vn

(−1)f(x)⊕〈β,x〉 = ±1,

for all β ∈ Vn. Here 〈β, x〉 is the scalar product of β and x, namely, 〈β, x〉 =
∑n

i=1 bixi,
and f(x)⊕ 〈β, x〉 is regarded as a real-valued function.

Bent functions can be characterized in various ways [1, 3, 11, 12, 17]. In particular the
following four statements are equivalent [3, 11]:

(i) f is bent.

(ii) 〈ξ, `〉 = ±2
1
2
n for any affine sequence ` of length 2n, where ξ is the sequence of f .

(iii) f satisfies the propagation criterion with respect to all non-zero vectors in Vn.

(iv) M , the matrix of f , is a Hadamard matrix.

Bent functions on Vn exist only when n is even. Another important property of bent
functions is that they achieve the highest possible nonlinearity 2n−1 − 2

1
2
n−1.
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3 A Relationship of Propagation Characteristic and Nonlin-
earity

Given two sequences a = (a1, . . . , am) and b = (b1, . . . , bm), their component-wise product
is defined by a ∗ b = (a1b1, . . . , ambm). Let f be a function on Vn. For a vector α ∈ Vn,
denote by ξ(α) the sequence of f(x⊕α). Thus ξ(0) is the sequence of f itself and ξ(0)∗ξ(α)
is the sequence of f(x)⊕ f(x⊕ α).

Set
∆(α) = 〈ξ(0), ξ(α)〉,

the scalar product of ξ(0) and ξ(α). Obviously, ∆(α) = 0 if and only if f(x)⊕ f(x⊕ α) is
balanced, i.e., f satisfies the propagation criterion with respect to α. On the other hand, if
|∆(α)| = 2n, then f(x)⊕ f(x⊕α) is a constant and hence α is a linear structure of f . Note
that in the literature [5], ∆ is also called the autocorrelation function of f . In particular,
∆(0) = 〈ξ(0), ξ(0)〉 = 2n.

Let M = ((−1)f(αi⊕αj)) be the matrix of f and ξ be the sequence of f . Due to a very
pretty result by R. L. McFarland (see Theorem 3.3 of [3]), M can be decomposed into

M = 2−nHn diag(〈ξ, `0〉, · · · , 〈ξ, `2n−1〉)Hn

where `i is the ith row of Hn, a Sylvester-Hadamard matrix of order 2n. By Lemma 2
of [12], `i is the sequence of a linear function defined by ϕi(x) = 〈αi, x〉, where αi is the ith
vector in Vn according to the ascending lexicographical order.

Clearly

MMT = 2−nHn diag(〈ξ, `0〉2, · · · , 〈ξ, `2n−1〉2)Hn. (1)

On the other hand, we always have

MMT = (∆(αi ⊕ αj)),

where i, j = 0, 1, . . . , 2n − 1.
Comparing the first row of the two sides of (1), we have

(∆(α0), ∆(α1), . . . ,∆(α2n−1)) = 2−n(〈ξ, `0〉2, . . . , 〈ξ, `2n−1〉2)Hn

where αj is the jth vector in Vn in the ascending lexicographical order. Equivalently we
have

Lemma 1

(∆(α0), ∆(α1), . . . ,∆(α2n−1))Hn = (〈ξ, `0〉2, . . . , 〈ξ, `2n−1〉2).

This lemma is precisely a relation proved on Page 137 of [2].
Let S be a set of vectors in Vn. The rank of S is the maximum number of linearly

independent vectors in S. Note that when S forms a linear subspace of Vn, its rank coincides
with its dimension.

The distance between two functions f1 and f2 on Vn can be expressed as d(f1, f2) =
2n−1 − 1

2〈ξf1 , ξf2〉, where ξf1 and ξf2 are the sequences of f1 and f2 respectively. As an
immediate consequence we have:
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Lemma 2 The nonlinearity of a function f on Vn can be calculated by

Nf = 2n−1 − 1
2

max{|〈ξ, `i〉|, 0 <= i <= 2n − 1}

where ξ is the sequence of f and `0, . . ., `2n−1 are the sequences of the linear functions on
Vn.

Pages 414-415 of [5] provide a more detailed discussion related to the above lemma. Now
we are ready to show a relationship between nonlinearity and propagation characteristic.

Corollary 1 Let f be a function on Vn that satisfies the propagation criterion with respect
to all but a subset < of vectors in Vn. Then the nonlinearity of f satisfies Nf

>= 2n−1 −
2

n
2
−1|<| 12 .

Proof. In [2], Carlet shows that max{|〈ξ, `i〉|, 0 <= i <= 2n − 1} <= 2
n
2 |<| 12 (see Remark (2)

on Page 139 of [2]). By Lemma 2, we have Nf
>= 2n−1 − 2

n
2
−1|<| 12 . ut

It was observed by Nyberg in Proposition 3 of [7] (see also a detailed discussion in [14])
that knowing the linearity dimension, say `, of a function f on Vn, the nonlinearity of the
function can be expressed as Nf = 2`Nr, where Nr is the nonlinearity of a function obtained
by restricting f on an (n− `)-dimensional subspace of Vn. Therefore, in a sense Corollary 1
is complementary to Proposition 3 of [7].

More recently, we have further improved the result stated in Corollary 1. In particular
we have proved that Nf

>= 2n−1−2n− 1
2
ρ−1, where ρ is the maximum dimension of the linear

sub-spaces in {0} ∪ <c and <c = Vn −< (see Theorem 11, [13]).
In the next section we discuss an interesting special case where |<| = 2. More general

cases where |<| > 2, which need very different proof techniques, will be fully discussed in
the later part of the paper.

4 Functions with |<| = 2

Since < consists of two vectors, a zero and a nonzero one, it forms a one-dimensional
subspace of Vn. The following result on a unique way to split a power of 2 into two squares
will be used in later discussions.

Lemma 3 Let n >= 2 be a positive integer and 2n = p2 + q2 where both p >= q >= 0 are
integers. Then p = 2

1
2
n and q = 0 when n is even, and p = q = 2

1
2
(n−1) when n is odd.

Proof. We first prove that if n >= 2 and 2n = p2 + q2 then both p and q are even. Assume
for contradiction that p = 2p1 +1 and q = 2q1 +a where p1 and q1 are positive integers and
a is 0 or 1. Then 2n = p2 + q2 can be written as 2n = 4N + 1 or 2n = 4N + 2 for a positive
integer N . This contradicts either the fact that 2n is even or the fact that 2n is divisible by
4.

We now prove the lemma by induction. It is easy to verify that the lemma is true for
n = 2, 3. Suppose that the lemma is true for 3 <= n <= n0. Consider

2n0+1 = p2 + q2.
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Since both p and q are even, we can write p = 2p1 and q = 2q1. Thus

2n0−1 = p2
1 + q2

1.

Note that n0 + 1 is even (odd) if and only if n0 − 1 is even (odd). By the induction
assumption, the lemma is true for n = n0 + 1. ut

Now we prove

Theorem 1 If f , a function on Vn, satisfies the propagation criterion with respect to all
but two (a zero and a nonzero) vectors in Vn, then

(i) n must be odd,

(ii) the nonzero vector where the propagation criterion is not satisfied must be a linear
structure of f and

(iii) the nonlinearity of f satisfies Nf = 2n−1 − 2
1
2
(n−1).

Proof. Let β be the vector where the propagation criterion is not satisfied. We can
always find a nonsingular matrix of order n over GF (2), say B, such that βB = α1, where
α1 = (0, 0, . . . , 1). The new function g, defined by g(x) = f(xB), has the same nonlinearity
as that of f , and satisfies the propagation criterion with respect to every nonzero vector
except for α1. In addition, β is a linear structure of f if and only if α1 is a linear structure
of g.

Note that ∆(αj) = 0 if j 6= 0, 1. Thus Lemma 1 is specialized as

(∆(α0),∆(α1), 0, . . . , 0)Hn = (〈ξ, `0〉2, . . . , 〈ξ, `2n−1〉2) (2)

From the construction of Hn, the first and the second columns of Hn are (1, 1, . . . , 1)T and
(1,−1, 1,−1, . . . , 1,−1)T respectively. From (2), we have

∆(α0) + ∆(α1) = 〈ξ, `0〉2

and
∆(α0)−∆(α1) = 〈ξ, `1〉2.

Note that ∆(α0) = 2n. Hence

2n + ∆(α1) = 〈ξ, `0〉2, (3)

2n −∆(α1) = 〈ξ, `1〉2. (4)

From (3) and (4), we have

2n+1 = 〈ξ, `0〉2 + 〈ξ, `1〉2. (5)

We now prove that n must be odd. Suppose n is even. By Lemma 3,

〈ξ, `0〉2 = 〈ξ, `1〉2 = 2n.
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From (3) or (4), ∆(α1) = 0. This contradicts the fact that f does not satisfy the
propagation characteristic with respect to α1. Thus n must be odd, i.e. the part (i) of the
theorem is true.

Since n is odd, from (5) and Lemma 3 we have 〈ξ, `0〉2 = 2n+1 or 0.
Case 1: 〈ξ, `0〉2 = 2n+1 and hence 〈ξ, `1〉2 = 0. From (3) or (4), we have ∆(α1) = 2n.
Case 2: 〈ξ, `0〉2 = 0 and hence 〈ξ, `1〉2 = 2n+1. Again from (3) or (4), we have ∆(α1) =

−2n.
In both cases, α1 is a linear structure of g. Thus β = α1B

−1 is a linear structure of f .
This proves (ii) of the theorem.

The above discussions for Cases 1 and 2, together with (2), imply that 〈ξ, `i〉2 = 2n+1

or 0, i.e., |〈ξ, `i〉| = 2
1
2
(n+1) or 0, for all 0 <= i <= 2n − 1. Applying Lemma 2,

Nf = Ng = 2n−1 − 2
1
2
(n−1).

This completes the proof. ut
By Part (ii) of Theorem 1, ∆ only takes the values of 0 and ±2n. From Carlet’s

characterization of what he calls partially bent functions [2], we have

Corollary 2 A function f on Vn satisfies the propagation criterion with respect to all but
two (a zero and a nonzero) vectors in Vn, if and only if there exists a nonsingular linear
matrix of order n over GF (2), say B, such that g(x) = f(xB) can be written as

g(x) = cxn ⊕ h(x1, . . . , xn−1)

where h is a bent function on Vn−1 and c is a constant in GF (2).

By Theorem 1 and Corollary 2, functions on Vn that satisfy the propagation criterion
with respect to all but two vectors in Vn exist only if n is odd, and such a function can
always be (informally) viewed as being obtained by repeating twice a bent function on Vn−1

(subject to a nonsingular linear transformation on the input coordinates).
When < has more than two vectors, it does not necessarily form a linear subspace of Vn.

Therefore discussions presented in this section do not directly apply to the more general
case. Nevertheless, using a different technique, we show in the next section the structure of
<, namely, the nonzero vectors in < with |<| > 2 are linearly dependent.

5 Linear Dependence in <
The following result on vectors will be used in the proof of the main result in this section.

Lemma 4 Let ψ1, . . . , ψk be linear functions on Vn which are linearly independent. Set

P =




`1
...
`k




where `i is the sequence of ψi, i = 1, . . . , k. Then each k-dimensional (1,−1)-vector appears
as a column in P precisely 2n−k times.
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This lemma is equivalent to a result proved in [14], where it is called Lemma 7. Next
we show the linear dependence of nonzero vectors in <.

Theorem 2 Suppose that f , a function on Vn, satisfies the propagation criterion with
respect to all but k +1 vectors 0, β1, . . . , βk in Vn, where k > 1. Then β1, . . . , βk are linearly
dependent, namely, there exist k constants c1, . . . , ck ∈ GF (2), not all of which are zeros,
such that c1β1 ⊕ · · · ⊕ ckβk = 0.

Proof. The theorem is obviously true if k > n. Now we prove the theorem for k <= n by
contradiction. Assume that β1, . . . , βk are linearly independent. Let ξ be the sequence of
f .

Let P be a matrix that consists of the 0th, β1th, . . ., βkth rows of Hn. Here we
regard βi as an integer. Set a2

j = 〈ξ, `j〉2, j = 0, 1, . . . , 2n − 1. Note that ∆(α) = 0 if
α 6∈ {0, β1, . . . , βk}. Hence Lemma 1 can be written as

(∆(0), ∆(β1), . . . , ∆(βk))P = (a2
0, a

2
1, . . . , a

2
2n−1) (6)

Here 0 is identical to α0 in Lemma 1.
Write P = (pij), i = 0, 1, . . . k, j = 0, 1, . . . , 2n − 1. As the top row of P is (1, 1, . . . , 1),

a2
j in (6) can be expressed as

∆(0) +
k∑

i=1

pij∆(βi) = a2
j

j = 0, 1, . . . , 2n − 1. Let P ∗ be the submatrix of P obtained by removing the top row from
P . As was mentioned earlier, the βith row of Hn is the sequence of a linear function defined
by ψi(x) = 〈βi, x〉 (see Lemma 2 of [12]). The linear independence of the vectors β1, . . . , βk

implies the linear independence of the linear functions ψ1(x) = 〈β1, x〉, . . . , ψk(x) = 〈βk, x〉.
By Lemma 4, each k-dimensional (1,−1)-vector appears in P ∗, as a column vector, precisely
2n−k times. Thus for each fixed j there exists a j0 such that (p1j , . . . , pkj) = −(p1j0 , . . . , pkj0)
and hence

∆(0) +
k∑

i=1

pij0∆(βi) = a2
j0 .

Adding together both sides of the above two equations, we have 2∆(0) = a2
j + a2

j0
. Hence

a2
j + a2

j0
= 2n+1. There are two cases to be considered: n even and n odd.

Case 1: n is even. By Lemma 3, a2
j = a2

j0
= 2n. This implies that 〈ξ, `j〉2 = 2n

for any fixed j, which in turn implies that f is bent and that it satisfies the propagation
criterion with respect to every nonzero vector in Vn (see also the equivalent statements
about bent functions in Section 2). This clearly contradicts the fact that f does not satisfy
the propagation criterion with respect to β1, . . . , βk.

Case 2: n is odd. Again by Lemma 3, a2
j = 2n+1 or 0. If a2

j = 2n+1, then
∑k

i=1 pij∆(βi) =
2n. Otherwise if a2

j = 0, then
∑k

i=1 pij∆(βi) = −2n. Thus we can write

k∑

i=1

pij∆(βi) = cj2n (7)

8



where cj = ±1, j = 0, 1, . . . , 2n − 1. For each fixed j rewrite (7) as

p1j∆(β1) +
k∑

i=2

pij∆(βi) = cj2n.

From Lemma 4, there exists a j1 such that p1j1 = p1j and pij1 = −pij , i = 2, . . . , k. Note
that

p1j1∆(β1) +
k∑

i=2

pij1∆(βi) = cj12
n.

Adding the above two equations together, we have

2p1j∆(β1) = (cj + cj1)2
n.

As f does not satisfy the propagation criterion with respect to β1, we have ∆(β1) 6= 0 and
cj + cj0 6= 0. This implies cj + cj0 = ±2, and hence ∆(β1) = ±2n. By the same reasoning,
we can prove that ∆(βj) = ±2n, j = 2, . . . , k. Thus we can write

(∆(β1), . . . , ∆(βk)) = 2n(b1, . . . , bk)

where each bj = ±1. By Lemma 4, there exists an s such that

(p1s, . . . , pks) = (b1, . . . , bk).

This gives us

k∑

i=1

pis∆(βi) =
k∑

i=1

bi∆(βi) =
k∑

i=1

bibi2n = k2n. (8)

Since k > 1, (8) contradicts (7).
Summarizing Cases 1 and 2, we conclude that the assumption that β1, . . . , βk are linearly

independent is wrong. This proves the theorem. ut
We believe that Theorem 2 is of significant importance, as it reveals for the first time

the interdependence among the vectors where the propagation criterion is not satisfied by
f . Of particular interest is the case when < = {0, β1, . . . , βk} forms a linear subspace of
Vn. Recall that linear structures form a linear subspace. Therefore, when < is a subspace,
a nonzero vector in < is a linear structure if and only if all other nonzero vectors are linear
structures of f .

In the following sections we examine the cases when |<| = 3, 4, 5, 6.

6 Functions with |<| = 3

When |<| = 3, the two distinct nonzero vectors in < cannot be linearly dependent. By
Theorem 2 we have

Theorem 3 There exists no function that does not satisfy the propagation criterion with
respect to only three vectors.

9



7 Functions with |<| = 4

Next we consider the case when |<| = 4. Similarly to the case of |<| = 2, the first step we
take is to introduce a result on a unique way to split a power of 2 into four, but not two,
squares.

Lemma 5 Let n >= 3 be a positive integer and 2n =
∑4

j=1 p2
j where each p1

>= p2
>= p3

>=
p4

>= 0 is an integer. Then

(i) p2
1 = p2

2 = 2n−1, p3 = p4 = 0, if n is odd;

(ii) p2
1 = 2n, p2 = p3 = p4 = 0 or p2

1 = p2
2 = p2

3 = p2
4 = 2n−2, if n is even.

Proof. We first prove that if n >= 3 and 2n =
∑4

j=1 p2
j then each pj must be even. Write

pj = 2tj + rj , where rj = 0 or 1, j = 1, 2, 3, 4. Then we have 2n =
∑4

j=1(4t
2
j + 4tjrj + r2

j )
or equivalently

2n =
4∑

j=1

r2
j + 4

4∑

j=1

tj(tj + rj). (9)

Note that the left hand side of (9) is always even. If {r1, r2, r3, r4} contains one or three
ones, then the right hand side of (9) is odd, which is something that cannot stand in parallel
with the left hand side of (9). Otherwise, if {r1, r2, r3, r4} contains two or four ones, then
by dividing both sides of (9) by 2 or 4, and also noting that t(t + a) is even for a = 1, we
obtain the same contradiction. Hence none of the four numbers r1, r2, r3, r4 can take the
value one, i.e., p1, p2, p3, p4 must be even.

Next we prove the lemma by induction. It is easy to verify the lemma for n = 3, 4.
Suppose that the lemma is true for 3 <= n <= n0. Consider

2n0+1 =
4∑

j=1

p2
j .

Since pj is even, we can write pj = 2tj . Thus

2n0−1 =
4∑

j=1

t2j .

Note that n0 + 1 is even (odd) if and only if n0 − 1 is even (odd). By the induction
assumption, the lemma is true for n = n0 + 1. ut

Now we can prove a key result on the case of |<| = 4.

Theorem 4 If f , a function on Vn, satisfies the propagation criterion with respect to all
but four vectors (0, β1, β2, β3) in Vn. Then

(i) < = {0, β1, β2, β3} forms a two-dimensional linear subspace of Vn,

(ii) n must be even,

(iii) β1, β2 and β3 must be linear structures of f ,
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(iv) the nonlinearity of f satisfies Nf = 2n−1 − 2
1
2
n.

Proof. By Lemma 2, β1, β2 and β3 are linearly dependent. The only possibility is β1⊕β2⊕
β3 = 0. Since β1, β2 and β3 are mutually distinct, < is a two-dimensional linear subspace
of Vn. This proves the part (i).

Let B be a nonsingular matrix of order n on GF (2) such that βiB = αi, where i = 1, 2, 3
and αi is the ith vector in Vn according to the ascending lexicographical order. Let g(x) =
f(xB). Then g has the same nonlinearity as f and the only vectors where the propagation
criterion is not satisfied by g are {α0, α1, α2, α3}. Now applying Lemma 1 to the function
g, we have

(〈ξ, `0〉2, · · · , 〈ξ, `2n−1〉2) = (∆(α0), ∆(α1), ∆(α2), ∆(α3), 0, . . . , 0)Hn. (10)

Recall that the first, second, third and fourth columns of Hn have the following forms:

(1, 1, 1, 1, . . . , 1, 1, 1, 1)T ,

(1,−1, 1,−1, . . . , 1,−1, 1,−1)T ,

(1, 1,−1,−1, . . . , 1, 1,−1,−1)T ,

(1,−1,−1, 1, . . . , 1,−1,−1, 1)T

By noting the first four elements of each of the four columns, we have

〈ξ, `0〉2 = ∆(α0) + ∆(α1) + ∆(α2) + ∆(α3),
〈ξ, `1〉2 = ∆(α0)−∆(α1) + ∆(α2)−∆(α3),
〈ξ, `2〉2 = ∆(α0) + ∆(α1)−∆(α2)−∆(α3),
〈ξ, `3〉2 = ∆(α0)−∆(α1)−∆(α2) + ∆(α3).

This can be translated into

∆(α0) =
1
4
(〈ξ, `0〉2 + 〈ξ, `1〉2 + 〈ξ, `2〉2 + 〈ξ, `3〉2),

∆(α1) =
1
4
(〈ξ, `0〉2 − 〈ξ, `1〉2 + 〈ξ, `2〉2 − 〈ξ, `3〉2),

∆(α2) =
1
4
(〈ξ, `0〉2 + 〈ξ, `1〉2 − 〈ξ, `2〉2 − 〈ξ, `3〉2),

∆(α3) =
1
4
(〈ξ, `0〉2 − 〈ξ, `1〉2 − 〈ξ, `2〉2 + 〈ξ, `3〉2).

Note that ∆(α0) = 2n. Hence

〈ξ, `0〉2 + 〈ξ, `1〉2 + 〈ξ, `2〉2 + 〈ξ, `3〉2 = 2n+2.

It turns out that that n must be even. Suppose that n is odd. By Lemma 5, we have
〈ξ, `0〉2 = 〈ξ, `1〉2 = 2n+1, 〈ξ, `2〉2 = 〈ξ, `3〉2 = 0. Thus ∆(α1) = 0. This contradicts the
fact that g does not satisfy the propagation criterion with respect to α1. This proves the
part (ii), namely, n must be even.

Next we show that the part (iii) is true. Since n is even, by Lemma 5, we need to
consider the following two cases.
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Case 1: 〈ξ, `j〉2 = 2n, j = 0, 1, 2, 3. In this case we have ∆(αj) = 0, j = 0, 1, 2, 3,
contradicting the fact that g does not satisfy the propagation criterion with respect to the
four vectors.

So we are left with Case 2: one of the four quantities 〈ξ, `0〉2, 〈ξ, `1〉2, 〈ξ, `2〉2 and
〈ξ, `3〉2 is 2n+2, and the other three are all zero. Without loss of generality, suppose that
〈ξ, `1〉2 = 2n+2 and 〈ξ, `j〉2 = 0, j = 0, 2, 3. Then we have ∆(α0) = ∆(α2) = 2n, ∆(α1) =
∆(α3) = −2n. This implies that α1, α2 and α3 all are linear structures of g. Hence β1, β2

and β3 must be linear structures of the original function f . This shows that the part (iii)
holds.

The above discussions also show that 〈ξ, `i〉2 = 2n+2 or 0 for all 0 <= i <= 2n − 1. By
Lemma 2, Nf = Ng = 2n−1 − 2

1
2
n. Hence the part (iv) is true. ut

Part (iii) of Theorem 4 indicates that ∆ only takes the values of 0 and ±2n. This fact,
together with the theorem of Carlet [2], shows that the following holds.

Corollary 3 A function f on Vn satisfies the propagation criterion with respect to all but
four vectors in Vn if and only if there exists a nonsingular linear matrix of order n over
GF (2), say B, such that g(x) = f(xB) can be written as

g(x) = c1xn−1 ⊕ c2xn ⊕ h(x1, . . . , xn−2)

where c1 and c2 are constants in GF (2), and h is a bent function on Vn−2.

In [12], it has been shown that repeating twice or four times a bent function on Vn,
n even, results in a function on Vn−1 or Vn−2 that satisfies the propagation criterion with
respect to all but two or four vectors in Vn−1 or Vn−2. Combining Corollaries 3 and 2 with
results shown in [12], we conclude that the methods of repeating bent functions presented
in [12] generate all the functions that satisfy the propagation criterion with respect to all
but two or four vectors.

8 Functions with |<| = 5

Let f be a function on Vn with |<| = 5 and let < = {0, β1, β2, β3, β4}. First we discuss
properties of and relationship among the four nonzero vectors. This is followed by a method
showing how to construct functions with |<| = 5.

8.1 β1 ⊕ β2 ⊕ β3 ⊕ β4 = 0

By Theorem 2, β1, β2, β3, β4 are linearly dependent. As β1, β2, β3, β4 are distinct nonzero
vectors, the rank of {β1, β2, β3, β4} must be 3.

Without loss of generality, we assume that β1, β2, β3 are linearly independent. As a
nonsingular linear transformation on the input coordinates does not affect the total number
of vectors where the propagation criterion is satisfied by f , we can further assume that
β1 = α1 = (0, . . . , 0, 0, 0, 1), β2 = α2 = (0, . . . , 0, 0, 1, 0) and β3 = α4 = (0, . . . , 0, 1, 0, 0).
Our goal is to prove that β1, β2, β3 and β4 are related by β1 ⊕ β2 ⊕ β3 ⊕ β4 = 0; that is,
β4 = β1 ⊕ β2 ⊕ β3. We achieve this by showing that there exist no “shorter” relations than
β4 = β1 ⊕ β2 ⊕ β3, namely, none of the three shorter equations β4 = β1 ⊕ β2, β4 = β2 ⊕ β3

and β4 = β1 ⊕ β3 can hold.
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We first show that β4 6= β1 ⊕ β2. Assume for contradiction that β4 = β1 ⊕ β2. Thus
β4 = α1 ⊕ α2 = (0, . . . , 0, 1, 1) = α3.

Rewrite Lemma 1 as

(∆(α0),∆(α1), . . . , ∆(α2n−1))Hn = (a2
0, a

2
1, . . . , a

2
2n−1) (11)

where aj = 〈ξ, `j〉, j = 0, 1, . . . , 2n − 1, and ξ is the sequence of f . Since β1 = α1, β2 = α2,
β3 = α4, β4 = α3, and ∆(α) = 0 for α 6= 0, α1, α2, α3, α4, (11) is specialized as

(∆(α0),∆(α1), ∆(α2),∆(α3), ∆(α4))P = (a2
0, a

2
1, . . . , a

2
2n−1) (12)

where P is a matrix that consists of the 0th, 1st, 2nd, 3rd and 4th rows of Hn. The matrix
P can be viewed as

P = (P0, P1, . . . , P2n−3)

where each Pj is a 5× 8 matrix specified by:

Pj =




1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1




.

Using the 0th, 1st, 6th and 7th columns of Pj , we obtain from (12) the following four
equations:

∆(α0) + ∆(α1) + ∆(α2) + ∆(α3) + ∆(α4) = a2
0

∆(α0)−∆(α1) + ∆(α2)−∆(α3) + ∆(α4) = a2
1

∆(α0) + ∆(α1)−∆(α2)−∆(α3)−∆(α4) = a2
6

∆(α0)−∆(α1)−∆(α2) + ∆(α3)−∆(α4) = a2
7

Since ∆(α0) = 2n we have

∆(α1) + ∆(α2) + ∆(α3) + ∆(α4) = a2
0 − 2n

−∆(α1) + ∆(α2)−∆(α3) + ∆(α4) = a2
1 − 2n

∆(α1)−∆(α2)−∆(α3)−∆(α4) = a2
6 − 2n

−∆(α1)−∆(α2) + ∆(α3)−∆(α4) = a2
7 − 2n (13)

Thus

a2
0 + a2

1 + a2
6 + a2

7 = 2n+2, (14)

∆(α1) =
1
4
(a2

0 − a2
1 + a2

6 − a2
7), (15)

∆(α2) + ∆(α4) =
1
4
(a2

0 + a2
1 − a2

6 − a2
7). (16)

Similarly, using the 2nd, 3rd, 4th and 5th columns of Pj , we have

∆(α1)−∆(α2)−∆(α3) + ∆(α4) = a2
2 − 2n

−∆(α1)−∆(α2) + ∆(α3) + ∆(α4) = a2
3 − 2n

∆(α1) + ∆(α2) + ∆(α3)−∆(α4) = a2
4 − 2n

−∆(α1) + ∆(α2)−∆(α3)−∆(α4) = a2
5 − 2n (17)
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and

a2
2 + a3

3 + a2
4 + a2

5 = 2n+2, (18)

∆(α1) =
1
4
(a2

2 − a2
3 + a2

4 − a2
5), (19)

∆(α2)−∆(α4) =
1
4
(−a2

2 − a2
3 + a2

4 + a2
5). (20)

We continue our discussions with the cases n odd and n even. In both cases we present
a contradiction by showing that f satisfies the propagation criterion with respect to at least
one of the four vectors β1, β2, β3 and β4.

The 0th,1st, 6th and 7th columns of Pj provide us with enough information for the case
when n is odd. To repeat the equation (15), we have ∆(α1) = 1

4(a2
0− a2

1 + a2
6− a2

7). We can
obtain one more equation from (13):

∆(α3) =
1
4
(a2

0 − a2
1 − a2

6 + a2
7). (21)

According to (14), the sum of the squares of a0, a1, a6 and a7 is 2n+2. As n is odd, by
Lemma 5, a2

j1
= a2

j2
= 2n+1, for some j1 and j2 ∈ {0, 1, 6, 7}, and aj = 0, for the other

two js. Comparing (15) with (21), we can see that at least one of ∆(α1) and ∆(α3) must
be zero, which contradicts the fact that f does not satisfy the propagation criterion with
respect to βj , j = 1, 2, 3, 4. Hence β4 = β1 ⊕ β2 does not hold for n odd.

Next we consider the case when n is even. In this case, by Lemma 5, (14) implies

a2
0 = a2

1 = a2
6 = a2

7 = 2n, (22)

or

a2
j0 = 2n+2, for a j0 ∈ {0, 1, 6, 7}, and aj = 0, for the other three js, (23)

while (18) implies

a2
2 = a2

3 = a2
4 = a2

5 = 2n, (24)

or

a2
k0

= 2n+2, for an k0 ∈ {2, 3, 4, 5}, and ak = 0, for the other three ks. (25)

(22) or (24), together with (15), causes ∆(α1) = 0, a contradiction. This leaves us with
(23) and (25).

When (23) and (25) hold, (16) results in ∆(α2) + ∆(α4) = ±2n, while (20) gives us
∆(α2)−∆(α4) = ±2n. Thus we have

∆(α2) + ∆(α4) = ±(∆(α2)−∆(α4)).

This causes ∆(α2) = 0 or ∆(α4) = 0. In either case it contradicts the fact that f does not
satisfy the propagation criterion with respect to βj , j = 1, 2, 3, 4. Hence β4 = β1 ⊕ β2 does
not hold for n even.

In summary, β4 6= β1 ⊕ β2 both for n odd and for n even. The other two cases,
β4 6= β2 ⊕ β3 and β4 6= β1 ⊕ β3, can be proved in the same way. Hence we have proved the
following result:

Lemma 6 Let f be a function on Vn that satisfies the propagation criterion with respect to
all but five vectors 0, β1, β2, β3, β4 in Vn. Then β1 ⊕ β2 ⊕ β3 ⊕ β4 = 0.
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8.2 β1, β2, β3 and β4 Are Not Linear Structures

We have proved that β1 = α1, β2 = α2, β3 = α4 and β4 = β1⊕β2⊕β3 = (0, . . . , 0, 1, 1, 1) =
α7. The next topic is to find out the value of ∆(βi), i = 1, 2, 3, 4.

Since ∆(α) = 0 for α 6= 0, α1, α2, α4, α7, (11) is simplified as

(∆(α0), ∆(α1), ∆(α2), ∆(α4), ∆(α7))Q = (a2
0, a

2
1, . . . , a

2
2n−1) (26)

where Q is a matrix that consists of the 0th, 1st, 2nd, 4th and 7th rows of Hn, in other
words,

Q = (Q0, Q1, . . . , Q2n−3)

where each Qj is defined by

Qj =




1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 1 1 1 −1 −1 −1 −1
1 −1 −1 1 −1 1 1 −1




Note that the 0th (the first) and the 7th (the last) columns of Qj coincide only in the first
entry. The same observation applies to the 1st and the 6th, the 2nd and the 5th, the 3rd
and the 4th columns of Qj . This information will be useful in the following discussions.

From (26), we have

∆(α0) + ∆(α1) + ∆(α2) + ∆(α4) + ∆(α7) = a2
0

∆(α0)−∆(α1)−∆(α2)−∆(α4)−∆(α7) = a2
7 (27)

which correspond to the first and last columns of Qj respectively. Hence

a2
0 + a2

7 = 2∆(α0) = 2n+1. (28)

We distinguish two cases: n even and n odd.
When n is even, by Lemma 3, we have a2

0 = a2
7 = 2n. Similarly we have a2

1 = a2
6 = 2n,

a2
2 = a2

5 = 2n and a2
3 = a2

4 = 2n. Hence a2
i = 2n for all 0 <= i <= 7.

On the other hand, from (26),

∆(α0) + ∆(α1) + ∆(α2) + ∆(α4) + ∆(α7) = a2
0

∆(α0)−∆(α1) + ∆(α2) + ∆(α4)−∆(α7) = a2
1

∆(α0) + ∆(α1)−∆(α2) + ∆(α4)−∆(α7) = a2
2

∆(α0)−∆(α1)−∆(α2) + ∆(α4) + ∆(α7) = a2
3

From the above four equations, it is necessary that ∆(α7) = 0. This contradicts the fact
that f does not satisfy the propagation criterion with respect to β4 = α7. Thus we have
the following conclusion:

Lemma 7 Let f be a function on Vn that satisfies the propagation criterion with respect to
all but five vectors 0, β1, β2, β3, β4 in Vn. Then n is odd.
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Now we know that n must be odd. From (28) and Lemma 3, we have

a2
0 = 2n+1 or 0, (a2

7 = 0 or 2n+1).

By the same reasoning,

a2
0 = 2n+1 or 0 (a2

7 = 0 or 2n+1), a2
1 = 2n+1 or 0 (a2

6 = 0 or 2n+1),
a2

2 = 2n+1 or 0 (a2
5 = 0 or 2n+1), a2

3 = 2n+1 or 0 (a2
4 = 0 or 2n+1). (29)

The first four columns of Qj , together with (26), yield,

∆(α0) + ∆(α1) + ∆(α2) + ∆(α4) + ∆(α7) = a2
0

∆(α0)−∆(α1) + ∆(α2) + ∆(α4)−∆(α7) = a2
1

∆(α0) + ∆(α1)−∆(α2) + ∆(α4)−∆(α7) = a2
2

∆(α0)−∆(α1)−∆(α2) + ∆(α4) + ∆(α7) = a2
3

Using (29), they can be rewritten as

∆(α1) + ∆(α2) + ∆(α4) + ∆(α7) = c12n

−∆(α1) + ∆(α2) + ∆(α4)−∆(α7) = c22n

∆(α1)−∆(α2) + ∆(α4)−∆(α7) = c32n

−∆(α1)−∆(α2) + ∆(α4) + ∆(α7) = c42n

where cj = ±1, j = 1, 2, 3, 4. Hence

∆(α1) = (c1 − c2 + c3 − c4)2n−2

∆(α2) = (c1 + c2 − c3 − c4)2n−2

∆(α3) = (c1 + c2 + c3 + c4)2n−2

∆(α4) = (c1 − c2 − c3 + c4)2n−2. (30)

Since ∆(αj) 6= 0, j = 1, 2, 3, 4, we have (c1, c2, c3, c4) 6= ±(1, 1, 1, 1), ±(1, 1,−1,−1),
(1,−1, 1,−1) or ±(1,−1,−1, 1). Hence (c1, c2, c3, c4) can come only from ±(1, 1, 1,−1),
±(1, 1,−1, 1), (1,−1, 1, 1) and ±(−1, 1, 1, 1).

Without loss of generality, suppose that (c1, c2, c3, c4) = ±(1, 1, 1,−1). From (30), we
have

∆(α1) = 2n−1, ∆(α2) = 2n−1, ∆(α4) = 2n−1, ∆(α7) = −2n−1.

This proves the result shown below.

Lemma 8 Let f be a function on Vn that satisfies the propagation criterion with respect to
all but five vectors 0, β1, β2, β3, β4 in Vn. Then |∆(βj)| = 2n−1, j = 1, 2, 3, 4. Furthermore,
among the four values ∆(βj), j = 1, 2, 3, 4, three have the same sign while the remaining
one has a different sign.

Finally we examine the nonlinearity of f . Clearly, from (29) we have a2
j = 〈ξ, `j〉2 = 2n+1

or 0, namely 〈ξ, `j〉 = ±2
1
2
(n+1) or 0, for all j = 0, 1, . . . , 2n−1. By Lemma 2, the nonlinearity

of f with |<| = 5 is Nf = 2n−1 − 2
1
2
(n−1).
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Lemma 9 Let f be a function on Vn that satisfies the propagation criterion with respect to
all but five vectors 0, β1, β2, β3, β4 in Vn. Then the nonlinearity of f is Nf = 2n−1−2

1
2
(n−1).

Combining together Lemmas 6, 7, 8 and 9, we have the following conclusion

Theorem 5 Let f be a function on Vn that satisfies the propagation criterion with respect
to all but a subset < = {0, β1, β2, β3, β4}. Then

(i) n is odd,

(ii) β1 ⊕ β2 ⊕ β3 ⊕ β4 = 0,

(iii) |∆(βj)| = 2n−1, j = 1, 2, 3, 4, and three ∆(βj)’s have the same sign while the remaining
one has a different sign, and

(iv) the nonlinearity of f satisfies Nf = 2n−1 − 2
1
2
(n−1).

Recall that when |<| = 2 or 4, all nonzero vectors in < are linear structures of f , and the
structure of f is very simple — it can be (informally) viewed as the two- or four-repetition of
a bent function on Vn−1 or Vn−2. In contrast, when |<| = 5, none of the nonzero vectors in
< is a linear structure of f . Thus if a non-bent function does not possess linear structures,
then |<| must be at least 5. In this sense, functions with |<| = 5 occupy a very special
position.

8.3 Constructing Functions with |<| = 5

The structure of a function with |<| = 5 is not as simple as the cases when |<| < 5. Unlike
the case with |<| = 2 or 4, there seem to be a number of different ways to construct functions
with |<| = 5. The purpose of this section is to demonstrate one of such construction
methods.

We start with n = 5. Let ω(y) be a mapping from V2 into V3, defined as follows

ω(0, 0) = (1, 0, 0), ω(0, 1) = (0, 1, 0), ω(1, 0) = (1, 1, 0), ω(1, 1) = (0, 1, 1).

Set

f5(z) = f5(y, x) = 〈ω(y), x〉 (31)

where y ∈ V2 and x ∈ V3, z = (y, x). Obviously f5 is a function on V5 and

f5(0, 0, x1, x2, x3) = x1,

f5(0, 1, x1, x2, x3) = x2,

f5(1, 0, x1, x2, x3) = x1 ⊕ x2,

f5(1, 1, x1, x2, x3) = x2 ⊕ x3.

Hence f5 can be explicitly expressed as

f5(y1, y2, x1, x2, x3) = (1⊕ y1)(1⊕ y2)x1 ⊕ (1⊕ y1)y2x2 ⊕
y1(1⊕ y2)(x1 ⊕ x2)⊕ y1y2(x2 ⊕ x3) (32)

Let `100, `010, `110, `011 denote the sequences of ϕ100(x1, x2, x3) = x1, ϕ010(x1, x2, x3) =
x2, ϕ110(x1, x2, x3) = x1 ⊕ x2, ϕ011(x1, x2, x3) = x2 ⊕ x3 respectively, where each ϕ is
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regarded as a linear function on V3. By Lemma 1 of [12], `100, `010, `110, `011 are four
different rows of H3. By Lemma 2 of [12], the sequence of f5 is

ξ = (`100, `010, `110, `011).

Let ξ(γ) denote the sequence of

f5(z ⊕ γ) = 〈ω(y ⊕ β), x⊕ α〉

where β ∈ V2 and α ∈ V3, γ = (β, α). We now consider ∆(γ) = 〈ξ(0), ξ(γ)〉 = 〈ξ, ξ(γ)〉.
Case 1: β 6= 0. In this case we have

f5(z)⊕ f5(z ⊕ γ) = 〈ω(y)⊕ ω(y ⊕ β), x〉 ⊕ 〈ω(y ⊕ β), α〉.

Note that ω(y) ⊕ ω(y ⊕ β) is a nonzero constant vector in V3 for any fixed y ∈ V2. Thus
f5(z) ⊕ f5(z ⊕ γ) is a nonzero linear function on V3 for any fixed y ∈ V2 and hence it is
balanced. This proves that ∆(γ) = 0 with γ = (β, α) and β 6= 0.

Case 2: β = 0. In this case, it is easy to check that

f5(z)⊕ f5(z ⊕ γ) = 〈ω(y), α〉

is balanced for α = (0, 1, 1), (1, 0, 0) and (1, 1, 1). In other words, ∆(γ) = 0, if γ = (0, α)
and α = (0, 1, 1), (1, 0, 0) or (1, 1, 1). It is straightforward to verify that ∆(γ) = 24, −24,
−24 and −24 with γ = (0, α) and α = (0, 0, 1), (0, 1, 0), (1, 0, 1) and (1, 1, 0) respectively.
Obviously ∆(0) = 25. Thus f5 satisfies the propagation criterion with respect to all but
five vectors in V5.

With f5 as a basis, we now construct functions with |<| = 5 over higher dimensional
spaces. Let t >= 5 be odd and s be even. And let g be a function on Vt that satisfies the
propagation criterion with respect to all but five vectors in Vt, and h be a bent function on
Vs. Set

f(w) = g(v)⊕ h(u) (33)

where w = (v, u), v ∈ Vt and u ∈ Vs. Then we have

Lemma 10 A function constructed by (33) satisfies |<| = 5.

Proof. The concept of the Kronecker product will be used in the proof. Let σ = (a1, . . . , an)
and τ = (b1, . . . , bn). Then the Kronecker product of σ and τ , denoted by σ × τ , is the
sequence (a1b1, . . . , a1bm, a2b1, . . . , a2bm, . . . , anb1, . . . , anbm).

Let ζ(β) and η(α) be the sequences of g(v ⊕ β) and h(u ⊕ α) respectively. Write ξ(γ)
as the sequence of f(w ⊕ γ) = g(v ⊕ β) ⊕ h(u ⊕ α), where γ = (β, α). By definition,
ξ(γ) = ζ(β)× η(α), where × is the Kronecker product. Hence we have

∆f (γ) = 〈ξ(0), ξ(γ)〉 = 〈ζ(0)× η(0), ζ(β)× η(α)〉
= 〈ζ(0), ζ(β)〉〈η(0), η(α)〉
= ∆h(β)∆g(α)

Since h(u) is a bent function, ∆h(α) 6= 0 if and only if α = 0. On the other hand, since g
satisfies the propagation criterion with respect to all but five vectors 0, β1, β2, β3 and β4 in
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Vt, ∆h(β) = 0 if and only if β ∈ {0, β1, β2, β3, β4}. Thus ∆g(γ) = 0 if and only if γ = (β, α)
with α = 0 and β ∈ {0, β1, β2, β3, β4}. This proves that f satisfies the propagation criterion
with respect to all but five vectors in Vt+s. ut

As f5 defined in (32) is balanced, f constructed by (33) is also balanced. Hence we have

Theorem 6 For any odd n >= 5, there exists a balanced function f satisfying the propagation
criterion with respect to all but five vectors in Vn. The nonlinearity of f satisfies Nf =
2n−1 − 2

1
2
(n−1).

As an example, set h(x6, x7) = x6x7 and

f7(x1, x2, x3, x4, x5, x6, x7) = f5(x1, x2, x3, x4, x5)⊕ h(x6, x7)

where f5 is defined in (32). Note that h(x6, x7) is a bent function on V2, by Theorem 6, f7

is a balanced function on V7 that satisfies |<| = 5.
We note that one can also start with constructing a function ft on Vt with |<| = 5, for

any odd t > 5, by using the same method as that for designing f5.
To close this section we point out that if a function, say f(x), on Vq+p, can be represented

as f(x) = g(z)⊕ f(y), where x = (z, y), z ∈ Vq, y ∈ Vp, then f might be cryptographically
weak. The emphasis of this paper, however, is on the structure of functions, rather than on
their cryptographic weaknesses.

9 Functions with |<| = 6

This section proves that there is no function with |<| = 6. Throughout this section f is
a function on Vn satisfying the propagation criterion with respect to all but six vectors 0,
β1, β2, β3, β4 and β5 in Vn. As β1, β2, β3, β4 and β5 are linearly dependent, the rank of
{β1, β2, β3, β4, β5} can only be 3 or 4.

9.1 Rank = 3

Without loss of generality, we suppose that β1, β2, β3 are linearly independent and are
a basis of {β1, β2, β3, β4, β5}. We can further assume that β1 = α1 = (0, . . . , 0, 0, 0, 1),
β2 = α2 = (0, . . . , 0, 0, 1, 0), β3 = α4 = (0, . . . , 0, 1, 0, 0). We distinguish two cases:

Case 1: β4 = β1 ⊕ β2 = α1 ⊕ α2 = α3, and β5 = β1 ⊕ β3 = α1 ⊕ α4 = α5.
Case 2: β4 = β1 ⊕ β2 = α1 ⊕ α2 = α3, and β5 = β1 ⊕ β2 ⊕ β3 = α1 ⊕ α2 ⊕ α4 = α7.

We note that other cases can all be reduced to either Case 1 or Case 2. In both cases, a
contradiction can be derived. The proofs are similar to that for the proof of Lemma 6. The
main difference is that in Case 1, the matrix P consists of the 0th, 1st, 2nd, 3rd, 4th and
5th rows, while in Case 2, it consists of the 0th, 1st, 2nd, 3rd, 4th and 7th rows of Hn.
Hence in both cases, Pj is a 6 × 8 matrix, and, as we did with the proof of Lemma 6, we
use the 0th, 1st, 6th and 7th columns of Pj to obtain the first set of four equations, and
the 2nd, 3rd, 4th and 5th columns of Pj to generate the second set of four equations.

9.2 Rank = 4

In this case, we suppose that β1, β2, β3, β4 are linearly independent and are a basis of
{β1, β2, β3, β4, β5}. We also assume that β1 = α1 = (0, . . . , 0, 0, 0, 0, 1), β2 = α2 =
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(0, . . . , 0, 0, 0, 1, 0), β3 = α4 = (0, . . . , 0, 0, 1, 0, 0), and β4 = α8 = (0, . . . , 0, 1, 0, 0, 0). Unlike
the situation where the rank is 3, here we distinguish three different cases to which all other
cases can be reduced:

Case 1: β5 = β1 ⊕ β2 = α1 ⊕ α2 = α3.
Case 2: β5 = β1 ⊕ β2 ⊕ β3 = α1 ⊕ α2 ⊕ α4 = α7.
Case 3: β5 = β1 ⊕ β2 ⊕ β3 ⊕ β4 = α1 ⊕ α2 ⊕ α4 ⊕ α8 = α15.
The proof for the rank of 4 is a generalization of that for the rank of 3. In particular,

in Case 1, the matrix P consists of the 0th, 1st, 2nd, 3rd, 4th and 8th rows, in Case 2, of
the 0th, 1st, 2nd, 4th, 7th and 8th rows, and in Case 3, of the 0th, 1st, 2nd, 4th, 8th and
15th rows of Hn. In each case, Pj is a 6× 16 matrix.

We derive a contradiction for each of the three cases. For Case 1, we establish four
sets, each having four equations, from the 0th, 1st, 14th and 15th columns, the 2nd, 3rd,
12th and 13th columns, the 4th, 5th, 10th and 11th columns, and the 6th, 7th, 8th and 9th
columns of Pj . For Case 2, we need a set of eight equations, which are constructed from
the first eight columns of Pj . And for Case 3 a set of four equations is constructed from the
first four columns of Pj . Note that each case defines a different Pj .

Careful analysis shows that:

Theorem 7 There exists no function on Vn such that |<| = 6.

10 Degrees of Propagation

In [12] it has been shown that if f is a function on Vn with |<| = 2, then, through a
nonsingular linear transformation on input coordinates, f can be converted into a function
satisfying the propagation criterion of degree n−1. Similarly, when |<| = 4, the degree can
be ≈ 2

3n. In this section we show that with |<| = 5, the degree can be n− 3.
Assume that the four nonzero vectors in < are β1, β2, β3 and β4, and that β1, β2 and

β3 are a basis of < = {0, β1, β2, β3, β4}. Let B be an n × n nonsingular matrix on GF (2)
with the property that

β1B = (1, . . . , 1, 0, 0, 1)
β2B = (1, . . . , 1, 0, 1, 0)
β3B = (1, . . . , 1, 1, 0, 0)

As β4 = β1 ⊕ β2 ⊕ β3, we have

β4B = (β1 ⊕ β2 ⊕ β3)B = (1, . . . , 1, 1, 1, 1).

Now let g(x) = f(xB). Then g satisfies the propagation criterion of degree n−3, as the only
exceptional vectors are (0, . . . , 0, 0, 0, 0), (1, . . . , 1, 0, 0, 1), (1, . . . , 1, 0, 1, 0), (1, . . . , 1, 1, 0, 0)
and (1, . . . , 1, 1, 1, 1). These discussions, together with Theorem 6, show that for any odd
n >= 5, there exist balanced functions on Vn that satisfy the propagation criterion of degree
n− 3 and do not possess a nonzero linear structure.

Table 1 shows structural properties of functions with |<| <= 6.

11 Final Remarks

We have presented a quantitative relationship between propagation characteristic and non-
linearity. We have shown that no functions satisfy the propagation criterion with respect to
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< {0} {0, β} {0, β1, β2, β3} {0, β1, β2, β3, β4}
Dimension n even odd even odd

e.g.
Form cxn⊕ c1xn ⊕ c2xn−1⊕ f5(x1, . . . , x5)⊕

of bent h(x1, . . . , xn−1), h(x1, . . . , xn−2), h(x6, . . . , xn),
function h is bent. h is bent. f5 is defined in (32),

h is bent.
Nonzero linear No β β1, β2, β3 No
structure(s)
Nonlinearity 2n−1 − 2

1
2 n−1 2n−1 − 2

1
2 (n−1) 2n−1 − 2

1
2 n 2n−1 − 2

1
2 (n−1)

Degree
of n n− 1 ≈ 2

3n n− 3
propagation

Is < a No.
subspace ? Yes Yes Yes However,

β1 ⊕ β2 ⊕ β3 ⊕ β4 = 0.
Rank of < 0 1 2 3

Table 1: Structural Properties of Highly Nonlinear Functions (Functions with three or six
exceptional vectors do not exist.)

all but three or six vectors. We have also completely decided the structures and construc-
tion methods of cryptographic functions that satisfy the propagation criterion with respect
to all but two, four or five vectors. An interesting topic for future research is to investigate
the structures of functions with seven or more exceptional vectors.
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