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Abstract. Due to the success of differential and linear attacks on a large number of encryption algorithms, it is
important to investigate relationships among various cryptographic, including differential and linear, characteristics
of an S-box (substitution box). After discussing a precise relationship among three tables, namely the difference,
auto-correlation and correlation immunity distribution tables, of an S-box, we develop a number of results on
various properties of S-boxes. More specifically, we show (1) close connections among three indicators of S-
boxes, (2) a tight lower bound on the sum of elements in the leftmost column of its differential distribution table,
(3) a non-trivial and tight lower bound on the differential uniformity of an S-box, and (4) two upper bounds on
the nonlinearity of S-boxes (one for a general, not necessarily regular, S-box and the other for a regular S-box).
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1. Introduction

This paper deals withn×m S-boxes withn > m. Success of the notable differential crypt-
analysis on various block ciphers [3, 4] has motivated researchers to investigate properties
of the difference distribution tables of S-boxes. A core topic in this endeavor is to discover
relationships between differential distribution tables and other properties of S-boxes. In
this paper we first introduce two additional tables associated with an S-box, these being the
auto-correlation and correlation immunity distribution tables. Then we establish a precise
relationship among the three tables of an S-box (i.e., the difference, auto-correlation and
correlation immunity distribution tables). With this relationship as a basis, we show that an
S-box is regular (or balanced) if and only if the sum of the values in the leftmost column of
its difference distribution table is 22n−m. In a sense, this result complements a well-known
fact about the regularity of an S-box which states that an S-box is regular if and only if the
non-zero linear combinations of its component functions are all balanced.

The next issue addressed in this paper is on the lower bound on the differential uniformity
of an S-box which is defined as the largest non-zero value in the differential distribution
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table of the S-box, not taking into account the first entry in the top row. For ann×m S-box,
it is easy to see that its differential uniformity is at least 2n−m. As another contribution of
this paper, we will show a new tight lower bound that improves the “trivial” bound of 2n−m.

The final issue addressed in this work relates more specifically the nonlinearity of an
S-box to its difference distribution table. In particular, we give two upper bounds on the
nonlinearity of the S-box, one for the case when the S-box is an arbitrary mapping and the
other when it is regular. These two bounds are expressed in terms of three parameters: the
number of input bits, the number of output bits and the number of non-zero entries in the
entire difference distribution table or in the leftmost column of the difference distribution
table of the S-box, respectively. We also compare the second new upper bound with previous
works in the same area.

The remainder of this paper is organized as follows: Section 2 introduces formal notations
and definitions used in this paper. The difference, auto-correlation and correlation immunity
distribution tables of an S-box are defined in Section 3 where a precise relationship among
the three tables is also established. An interesting connection between the regularity of an
S-box and columns of its differential distribution table is presented in Section 4. A tight
lower bound on the differential uniformity of an S-box is presented in Section 5, and then
two upper bounds on the nonlinearity of an S-box and its difference distribution table are
proved in Section 6. Section 7 closes the paper with some concluding remarks.

2. Basic Notations and Definitions

This section is intended as a summary of the minimum amount of mathematical knowledge
required in rigorously treating issues on S-boxes to be discussed in this paper.

The vector space ofn tuples of elements fromGF(2) is denoted byVn. These vectors,
in ascending lexicographic order, are denoted byα0, α1, . . . , α2n−1. As vectors inVn and
integers in [0,2n−1] have a natural one-to-one correspondence, it allows us to switch from
a vector inVn to its corresponding integer in [0,2n − 1], and vice versa.

Let f be a function fromVn to GF(2) (or simply, a function onVn). Thesequenceof f is
defined as ((−1) f (α0), (−1) f (α1), . . . , (−1) f (α2n−1)), while thetruth tableof f is defined as
( f (α0), f (α1), . . . , f (α2n−1)). f is said to bebalancedif its truth table assumes an equal
number of zeros and ones. We callh(x) = a1x1⊕ · · · ⊕ anxn⊕ c anaffine function, where
x = (x1, . . . , xn) andaj , c ∈ GF(2). In particular,h will be called alinear functionif
c = 0. The sequence of an affine (linear) function will be called anaffine (linear) sequence.

TheHamming weightof a vectorv, denoted byW(v), is the number of ones inv. Let
f andg be functions onVn. Thend( f, g) = ∑ f (x)6=g(x) 1, where the addition is over the
reals, is called theHamming distancebetweenf andg. Let ϕ0, . . . , ϕ2n+1−1 be the affine
functions onVn. ThenNf = mini=0,...,2n+1−1 d( f, ϕi ) is called thenonlinearityof f . It is
well-known that the nonlinearity off on Vn satisfiesNf ≤ 2n−1 − 2

1
2 n−1. The equality

holds if and only if f is bent (see P. 426 of [12]).
Given two sequencesa = (a1, . . . ,am) andb = (b1, . . . ,bm), their component-wise

product is denoted bya ∗ b, while the scalar product (sum of component-wise products) is
denoted by〈a,b〉.
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Definition. Let f be a function onVn. For a vectorα ∈ Vn, denote byξ(α) the sequence
of f (x ⊕ α). Thusξ(0) is the sequence off itself andξ(0) ∗ ξ(α) is the sequence of
f (x)⊕ f (x ⊕ α). Define theauto-correlationof f with a shiftα by

1(α) = 〈ξ(0), ξ(α)〉.

The Sylvester-Hadamard matrix (or Walsh-Hadamard matrix)of order 2n, denoted by
Hn, is generated by the recursive relation

Hn =
[

Hn−1 Hn−1

Hn−1 −Hn−1

]
, n = 1,2, . . . , H0 = 1.

Each row (column) ofHn is a linear sequence of length 2n.
The following two formulas are well known to researchers (for a proof see for instance

[14, 23]).
Let ξ be the sequence of a functionf on Vn. Then the nonlinearity off , Nf can be

calculated by

Nf = 2n−1− 1

2
max{|〈ξ, `i 〉|,0≤ i ≤ 2n − 1} (1)

where`i is thei th row of Hn, i = 0,1, . . . ,2n − 1, and

(1(α0),1(α1), . . . , 1(α2n−1))Hn = (〈ξ, `0〉2, 〈ξ, `1〉2, . . . , 〈ξ, `2n−1〉2) (2)

whereαi is the binary representation of an integeri and `i is the i th row of Hn, i =
0,1, . . . ,2n − 1.

An n×m S-box or substitution box is a mapping fromVn to Vm, i.e., F = ( f1, . . . , fm),
wheren andm are integers withn ≥ m ≥ 1 and each component functionf j is a function
on Vn. In this paper, we use the terms of mapping and S-box interchangeably.

As can be seen from the design of many practical block ciphers, researchers are mainly
concerned withregular S-boxes only. A mappingF = ( f1, . . . , fm) is said to be regular if
F(x) runs through each vector inVm 2n−m times whilex runs throughVn once.

The following lemma states a useful result on the regularity of an S-box. This result has
appeared in many different forms in the literature. Our description can be viewed as the
binary version of Corollary 7.39 of [11].

LEMMA 1 Let F = ( f1, . . . , fm) be a mapping from Vn to Vm, where n and m are integers
with n≥ m ≥ 1 and each fj (x) is a function on Vn. Then F is regular if and only if every
non-zero linear combination of f1, . . . , fm is balanced.

The concept of nonlinearity can be extended to the case of an S-box [16].

Definition. The standard definition of thenonlinearityof F = ( f1, . . . , fm) is

NF = ming

{
Ng | g =

m⊕
j=1

cj f j , cj ∈ GF(2), g 6= 0

}
.



48 ZHANG, ZHENG AND IMAI

Now we consider an S-box in terms of its usefulness in designing a block cipher secure
against differential cryptanalysis [3, 4]. The essence of a differential attack is to exploit
particular entries in the difference distribution tables of S-boxes employed by a block cipher.
The difference distribution table of ann×m S-box is a 2n × 2m matrix. The rows of the
matrix, indexed by the vectors inVn, represent the changes in the inputs, while the columns,
indexed by the vectors inVm, represent the change in the output of the S-box. An entry in
the table indexed by(α, β) indicates the number of input vectors which, when changed by
α (in the sense of bit-wise XOR), result in a change in the output byβ (also in the sense of
bit-wise XOR). It should be pointed out that while in this paper the notation of difference
is restricted to XOR differences, in general other differences are also of interest, such as
those based on modular addition and multiplication.

Note that an entry in a difference distribution table can only take an even value, the sum
of the values in a row is always 2n, and the top row is always(2n,0, . . . ,0). As entries with
higher values in the table are particularly useful to differential cryptanalysis, a desirable
condition for an S-box not to be exploited in differential cryptanalysis would be that it
does not have large values in its differential distribution table (not taking into account the
leftmost entry in the top row).

In measuring the strength of an S-box (in terms of the security of a block cipher that em-
ploys the S-box) against differential attacks, a useful indicator commonly used isdifferential
uniformitywhich is defined as follows [17].

Definition. Let F be ann × m S-box, wheren ≥ m. Let δ be the largest value in the
differential distribution table of the S-box (not taking into account the leftmost entry in the
top row), namely,

δ = max
α∈Vn,α 6=0

max
β∈Vm

#{x | F(x)⊕ F(x ⊕ α) = β}

Then F is said to bedifferentially δ-uniform, and accordingly,δ is called the differential
uniformity of F .

An important ingredient in designing cryptographic Boolean functions is bent functions.
Below is the formal definition of bent functions.

Definition. Let f be a function onVn andξ denote the sequence off . Then f is called a
bentfunction if |〈ξ, `i 〉| = 2

n
2 , i = 0,1, . . . ,2n − 1, wherè i denotes thei th row of Hn.

Bent functions can be characterized in various ways [2, 8, 20, 23, 26]. A characterization
of particular interest can be found in [8, 20] which states that bent functions onVn exist
only whenn is even, and that they achieve the highest possible nonlinearity onVn, namely,
2n−1− 2

n
2−1.

3. Relationships among Three Tables

Now we introduce three more notations,kj (α), 1j (α) andηj , associated with an S-box
F = ( f1, . . . , fm).
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Definition. Let F = ( f1, . . . , fm) be ann×m S-box,α ∈ Vn, j = 0,1, . . . ,2m − 1 and
βj = (b1, . . . ,bm) be the vector inVm that corresponds to the binary representation ofj .
In addition, setgj =

⊕m
u=1 bu fu be thej th linear combination of the component functions

of F . Then we define

1. kj (α) as the number of timesF(x)⊕ F(x ⊕ α) equalsβj ∈ Vm while x runs through
Vn once,

2. 1j (α) as the auto-correlation ofgj with a shiftα,

3. ηj as the sequence ofgj .

Since bothη0 and`0 are the all-one sequence of length 2n and`j is (1,−1) balanced for
j > 0, we have

〈η0, `0〉 = 2n, 〈η0, `j 〉 = 0, j = 1, . . . ,2n − 1. (3)

From the definition ofkj (αi ), one can see that the sum of the entries in each row ofK is
2n, and that the first row has the form of(2n,0, . . . ,0). Namely,

2m−1∑
j=0

kj (αi ) = 2n, i = 0,1, . . . ,2n − 1, (4)

and

k0(α0) = 2n, kj (α0) = 0, j = 1, . . . ,2m − 1. (5)

Using the three notations introduced above, we formally define three tables/matrices
related toF = ( f1, . . . , fm).

Definition. For an S-boxF = ( f1, . . . , fm), set

K =


k0(α0) k1(α0) . . . k2m−1(α0)

k0(α1) k1(α1) . . . k2m−1(α1)
...

k0(α2n−1) k1(α2n−1) . . . k2m−1(α2n−1)



D =


10(α0) 11(α0) . . . 12m−1(α0)

10(α1) 11(α1) . . . 12m−1(α1)
...

10(α2n−1) 11(α2n−1) . . . 12m−1(α2n−1)


and

P =


〈η0, `0〉2 〈η1, `0〉2 · · · 〈η2m−1, `0〉2
〈η0, `1〉2 〈η1, `1〉2 · · · 〈η2m−1, `1〉2

...

〈η0, `2n−1〉2 〈η1, `2n−1〉2 · · · 〈η2m−1, `2n−1〉2


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where`i is thei th row of Hn, i = 0,1, . . . ,2n − 1. The three tables (or matrices)K , D
and P share the same size of 2n × 2m. Clearly K is the difference distribution table ofF
that has already been (informally) introduced in Section 2. The other two tables,D andP,
are calledauto-correlation distribution table and correlation immunity distribution table
of the S-boxF , respectively.

In designing a strong S-box, many cryptographic criteria should be examined not only
against component functions, but also against their linear combinations. Such criteria
include those related to nonlinearity, propagation characteristics [19] and difference dis-
tribution tables. The matrixK characterizes the differential characteristics of an S-box.
The matrixD indicates the auto-correlation of all linear combinations of the component
functions. While the matrixP represents the inner product between the sequence of each
linear combination of the component functions and each linear sequence.P is helpful in
studying the correlation immunity, as well as the nonlinearity, of each linear combination
of the component functions (see [22]).

The following lemma shows an intimate relationship between the three tablesK , D and
P defined above. The lemma can be easily shown to be correct by the use of a connection
between the Hamming distance between rows and the distribution of ones in the columns in
a(0,1)matrix. For completeness, a full proof for the lemma is provided in the appendix. It
turns out that the lemma is very useful in examining cryptographic properties of an S-box,
and it will be used in proving many of the main results in this paper.

LEMMA 2 Let F = ( f1, . . . , fm) be a mapping from Vn to Vm, where n and m are integers
with n ≥ m ≥ 1 and each fj is a function on Vn. Set gj =

⊕m
u=1 cu fu where(c1, . . . , cm)

is the binary representation of an integer j , j= 0,1, . . . ,2m − 1. Then

(i) (k0(αi ), k1(αi ), . . . , k2m−1(αi ))Hm = (10(αi ),11(αi ), . . . , 12m−1(αi )), whereαi is
the binary representation of an integer i ,

(ii) D = K Hm,

(iii) P = Hn D,

(iv) P = HnK Hm.

Whenn = m and F is regular, a similar relation between matricesK and P has been
derived in [7]. As permutations, a special type of S-boxes, are used in many cryptographic
algorithms, it is of interest is to look into how the three tables of a permutation are connected
to the three corresponding tables of the inverse of the permutation. The following result is
easy to verify.

COROLLARY 1 Let F be a permutation on Vn and F−1 denote the inverse of F. Let
K = (ki (αj )), D = (1i (αj )) and P = (〈ηi , `j 〉) be the difference distribution, auto-



DIFFERENTIAL DISTRIBUTION TABLES OF SUBSTITUTION BOXES 51

correlation distribution and correlation immunity distribution tables of F. Similarly,
let K∗ = (k∗i (αj )), D∗ = (1∗i (αj )) and P∗ = (〈η∗i , `j 〉) be the difference distribu-
tion, auto-correlation distribution and correlation immunity distribution tables of F−1.
Then

(i) K ∗ = K T,

(ii) P ∗ = PT,

(iii) D ∗ = H−1
n DT Hn.

4. Regularity of S-boxes and Difference Distribution Tables

Using Lemma 2, we now show that the regularity of an S-box can be characterized by its
difference distribution table. This characterization nicely complements Lemma 1 which is
stated in terms of the balance of non-zero linear combinations of component functions of
an S-box.

COROLLARY 2 Let F = ( f1, . . . , fm) be a mapping from Vn to Vm, where n and m are
integers with n≥ m ≥ 1 and each fj is a function on Vn. Then F is regular if and only
if the sum of the entries in each column in the difference distribution table is22n−m, i.e.,∑

α∈Vn
ki (α) = 22n−m, i = 0,1, . . . ,2m − 1.

Proof. Compare the first rows in both sides of the formula in Part (iv) of Lemma 2,(∑
α∈Vn

k0(α),
∑
α∈Vn

k1(α), . . . ,
∑
α∈Vn

k2m−1(α)

)
Hm

= (〈η0, `0〉2, 〈η1, `0〉2, . . . , 〈η2m−1, `0〉2). (6)

Obviously, if
∑

α∈Vn
ki (α) = 22n−m, i = 0,1, . . . ,2m − 1 then 〈η1, `0〉2 = · · · =

〈η2m−1, `0〉2 = 0. Note that̀ 0 is the all-one sequence of length 2n. Henceg1, . . . , g2m−1

are balanced, whereg1, . . . , g2m−1 are defined in Lemma 2. By Lemma 1,F is regular.
Conversely, supposeF is regular. By Lemma 1,g1, . . . , g2m−1 are balanced. Hence
〈η1, `0〉2 = · · · = 〈η2m−1, `0〉2 = 0. Note that〈η0, `0〉2 = 22n. Rewrite (6) as

2m

(∑
α∈Vn

k0(α),
∑
α∈Vn

k1(α), . . . ,
∑
α∈Vn

k2m−1(α)

)
= (22n,0, . . . ,0)Hm.

This proves that
∑

α∈Vn
ki (α) = 22n−m, i = 0,1, . . . ,2m − 1.

Corollary 2 has also been obtained independently by Tapia-Recillas, Daltabuit and Vega
[25].

The following corollary shows the uniqueness of the leftmost column of the difference
distribution table of a regular mapping.
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THEOREM1 Let F = ( f1, . . . , fm) be a mapping from Vn to Vm, where n and m are integers
with n≥ m≥ 1 and each fj is a function on Vn. Then

(i)
∑

α∈Vn
k0(α) ≥ 22n−m,

(ii) the equality in (i) holds if and only if F is regular.

Proof. (i) Right-multiplying both sides of the equality in Part (iv) of Lemma 2 byeT

where,e denotes the all-one sequence of length 2m. Hence we have

Hn


k0(α0) k1(α0) . . . k2m−1(α0)

k0(α1) k1(α1) . . . k2m−1(α1)
...

k0(α2n−1) k1(α2n−1) . . . k2m−1(α2n−1)




2m

0
...

0

 =


∑2m−1
j=0 〈ηj , `0〉2∑2m−1
j=0 〈ηj , `1〉2

...∑2m−1
j=0 〈ηj , `2n−1〉2


and hence

2mHn


k0(α0)

k0(α1)
...

k0(α2n−1)

 =


∑2m−1
j=0 〈ηj , `0〉2∑2m−1
j=0 〈ηj , `1〉2

...∑2m−1
j=0 〈ηj , `2n−1〉2

 . (7)

Comparing the top element of the vector on the two sides of equality (7), the following is
obtained

2m
2n−1∑
i=0

k0(αi ) =
2m−1∑
j=0

〈ηj , `0〉2. (8)

Recall (3),〈η0, `0〉2 = 22n. From (8), we have proved Part (i) of the theorem.
(ii) Suppose

∑
α∈Vn

k0(α) = 22n−m, then from (8),〈η1, `0〉2 = · · · = 〈η2m−1, `0〉2 = 0.
Note that̀ 0 is the all-one sequence of length 2n. Henceg1, . . . , g2m−1 are balanced, where
g1, . . . , g2m−1 are defined in Lemma 2. By Lemma 1,F is regular.

Conversely, ifF is regular, then by Corollary 2,
∑

α∈Vn
k0(α) = 22n−m. The proof of the

theorem is completed.

5. A Lower Bound on Differential Uniformity

We turn our attention back to the differential uniformity, denoted byδ, of ann×m S-box.
Recall thatδ is defined as the largest value in the differential distribution table of the S-box
(not taking into account the leftmost entry in the top row), namely,

δ = max
α∈Vn,α 6=0

max
β∈Vm

#{x | F(x)⊕ F(x ⊕ α) = β}

(See Definition 2). As discussed earlier,δ is bounded by 2n−m ≤ δ ≤ 2n, and generally
speaking S-boxes with a smallerδ are desirable in designing a block cipher secure against
differential attacks. This motivates us to improve the “trivial” lower bound 2n−m on the
differential uniformityδ.
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The following lemma will be used in our discussions. It is identical to Lemma 2 of [27].

LEMMA 3 Let real valued sequences a0, . . . ,a2n−1 and b0, . . . ,b2n−1 satisfy

(a0, . . . ,a2n−1)Hn = (b0, . . . ,b2n−1).

For any integer p and q, p+ q = n, 1 ≤ p,q ≤ n − 1, setσj =
∑2q−1

s=0 bj 2q+s, where
j = 0,1, . . . ,2p − 1. Then

2q(a0,a2q ,a2·2q , . . . ,a(2p−1)2q)Hp = (σ0, σ1, . . . , σ2p−1). (9)

Now we prove another main result of this paper.

THEOREM2 Let F = ( f1, . . . , fm) be an n×m S-box, where n and m are integers with
n ≥ m ≥ 1 and each fj is a function on Vn. Set gj =

⊕m
u=1 cu fu where(c1, . . . , cm)

is the binary representation of an integer j , j= 0,1, . . . ,2m − 1. Denote by1j (α) the
auto-correlation of gj with a shiftα, and set1M = maxα∈Vn,α 6=0 maxj=1,...,2m−1{|1j (α)|}.
Then the differential uniformityδ of F is bounded from below by2n−m+ 2−m1M, namely,
δ ≥ 2n−m + 2−m1M .

Proof. Let1j ′(αi ′) = 1M . By Part (i) of Lemma 2, we have

2−m(10(αi ′),11(αi ′), . . . , 12m−1(αi ′))Hm = (k0(α
′
i ), k1(α

′
i ), . . . , k2m−1(α

′
i )) (10)

Applying Lemma 3 to (10), we get

2m−12−m(10(αi ′),12m−1(αi ′))H1 = (σ0, σ1)

whereσj =
∑2m−1−1

s=0 kj 2m−1+s, j = 0,1. Hence

2−1(10(αi ′)+12m−1(αi ′)) = σ0

and

2−1(10(αi ′)−12m−1(αi ′)) = σ1

Thus there is aj02q + s0 for 0≤ s0 ≤ 2m−1− 1 and j0 = 0 or 1, such that

kj02q+s0 ≥ 2−m(10(αi ′)+12m−1(αi ′)).

Recall that10(α) = 2n for all α ∈ Vn. So we have

kj02q+s0 ≥ 2−m(2n +12m−1(αi ′)).

According to Section 5.3 of [21], the differential uniformity ofF is invariant under a
nonsingular linear transformation on the variables ofF . Thus by choosing an appropriate
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nonsingular linear transformation on the variables ofF , we have

kj02q+s0 ≥ 2n−m + 2−m1M

and henceδ ≥ 2n−m + 2−m1M .

Examining the new lower bound of 2n−m+2−m1M on the differential uniformityδ, where
1M is the largest value among all|1j (α)| with j = 1, . . . ,2m − 1, α ∈ Vn andα 6= 0,
a natural question would be how large and small1M can be and what could be its typical
value.

First of all, by the definition of1M , we have 0≤ 1M ≤ 2n. When1M = 0, every
non-zero linear combination of the components ofF must be a bent function. And the
converse is also true: if every non-zero linear combination of the components ofF is a bent
function, then we must have1M = 0. Note that in this case we haveδ = 2n−m, which
indicates that the bound in Theorem 2 is tight. Also note that such S-boxes do exist [1, 15],
although they are not regular.

On the other hand, if1M = 2n, then there must exist a non-zero vectorα such that it is a
linear structure of a non-zero linear combination, saygj , of the component functions ofF ,
i.e.,gj (x)⊕ gj (x ⊕ α) is a constant. Similarly, the converse is also true.

For other S-boxes, namely those whose non-zero linear combinations of component
functions are not all bent, and do not have non-zero linear structures, their1M will be a
value between 0 and 2n. Although it is not quite clear as to what would be the typical value
of1M for such S-boxes, from the boundδ ≥ 2n−m+2−m1M , at least one thing can be said:
if an S-box is designed to resist against differential attacks, then its differential uniformity
must be small, and hence its1M must be small too; conversely, if an S-box has a small
1M , we would expect that it could have a small differential uniformity too.

6. Upper Bounds on Nonlinearity of S-boxes

After the discovery of differential attacks in [4], an equally notable cryptanalysis method, the
linear cryptanalytic attack, was subsequently introduced in [13]. Identifying relationships
between these two types of attacks has been an interesting research area, both from the view
point of cryptanalysis and the design of secure ciphers. We will first show a tight upper
bound on the nonlinearity of a general S-box. This will be followed by another upper bound
on the nonlinearity of a regular S-box. The usefulness of such an explicit relationship is
obvious: the nonlinearity of an S-box represents a key indicator for the strength of a block
cipher that employs the S-box. We also compare our result on the relationship with a related
theorem in [6].

In studying ann×mS-box, a possible approach would be to use the two parametersn and
malone in determining information on the S-box. Success of this approach, however, seems
to have been limited to the case ofm ≥ n− 1 with which an upper bound on nonlinearity
has been obtained in [6] (but see discussions in the closing paragraph of this section.)

Another approach that can be used to obtain far more detailed information on an S-
box is to take into account all thekj (α), 1j (α), or 〈ηj , `i 〉2, for j = 0,1, . . . ,2m − 1,
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i = 0,1, . . . ,2n−1 andα ∈ Vn (see Definition 3). A potential problem with this approach
is that it would be impractical to apply it to an S-box with relatively largen and/orm. In
what follows, we adopt a different approach that employs more parameters other thann and
m, and hence can be viewed as a compromise between the above two approaches. More
specifically, we prove two theorems that relate the nonlinearity of ann×m S-box to three
parameters, namelyn, m and the number of non-zero entries in its difference distribution
tableK .

6.1. General Case

Here we considern×m S-box that is not necessarily regular. In addition, the restriction of
n ≥ m is not imposed on the S-box. We first introduce Hölder’s Inequality which can be
found in [9].

LEMMA 4 Let cj ≥ 0 and dj ≥ 0 be real numbers, where j= 1, . . . , s, and let p and q
satisfy 1

p + 1
q = 1 and p> 1. Then(

s∑
j=1

cp
j

)1/p( s∑
j=1

dq
j

)1/q

≥
s∑

j=1

cj dj

where the quality holds if and only if cj = νdj , j = 1, . . . , s for a constantν ≥ 0.

Whencj , dj , p andq satisfy the condition thatcj ≥ 0, dj =
{

1 if cj = 1
0 if cj = 0

, andp = q =
1
2, Hölder’s Inequality gives

s∑
j=1

c2
j ≥ s−1

(
s∑

j=1

cj

)2

(11)

where the quality holds if and only ifc1, . . . , cs are all identical. The inequality (11)
will be used in the proof of the following two theorems regarding the upper bound on the
nonlinearity of an S-box.

THEOREM3 Let F be an n×m S-box (F is not necessarily regular, and the restriction of
n ≥ m is not imposed on it). Denote by Tnz the total number of all non-zero entries, except
for k0(α0), in the difference distribution table K of the S-box (see Definition 3). Then

(i) the nonlinearity of F satisfies

NF ≤ 2n−1− 1

2

(
22n+m − 23n + T−1

nz 22n+m(2n − 1)2

2m − 1

) 1
4

,

(ii) the equality in (i) holds if and only if every non-zero linear combination of the compo-
nent functions of F is a bent function.
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Proof. We first prove Part (i) of the theorem. Using Part (iv) of Lemma 2, we have

PT P = HmK T H T
n HnK Hm = 2n HmK T K Hm = 2n+mH−1

m K T K Hm.

Note that the sum of entries on the diagonal ofPT P is equal to the sum of entries on the
diagonal of 2n+mK T K . Hence

2m−1∑
j=0

2n−1∑
i=0

〈ηj , `i 〉4 = 2n+m
2m−1∑
j=0

2n−1∑
i=0

k2
j (αi ).

From (3), (4) and (5) in Section 3, we have

24n +
2m−1∑
j=1

2n−1∑
i=0

〈ηj , `i 〉4 = 2n+m

(
22n +

2m−1∑
j=0

2n−1∑
i=1

k2
j (αi )

)
.

Now combining (4) with (11), a special form of Ḧolder’s Inequality, we have

2m−1∑
j=0

2n−1∑
i=1

k2
j (αi ) ≥ T−1

nz

(
2m−1∑
j=0

2n−1∑
i=1

kj (αi )

)2

= T−1
nz 22n(2n − 1)2. (12)

Hence there is a certainj0, 1≤ j0 ≤ 2m − 1, and a certaini0, 0≤ i0 ≤ 2n − 1, such that

〈ηj0, `i0〉4 ≥
2n+m(22n + T−1

nz 22n(2n − 1)2)− 24n

(2m − 1)2n

which implies

|〈ηj0, `i0〉| ≥
(

22n+m − 23n + T−1
nz 22n+m(2n − 1)2

2m − 1

) 1
4

.

Now applying (1) we obtain Part (i) of the theorem.
Note that sinceTnz ≤ 2m(2n − 1), we have

T−1
nz 22n+m(2n − 1)2 ≥ 22n(2n − 1).

That is, the expression under the fourth root is always positive.
Now we prove Part (ii). First assume that the equality in Part (i) holds. From the definition

of NF , as well as (1), we have

|〈ηj , `i 〉| ≤
(

22n+m − 23n + T−1
nz 22n+m(2n − 1)2

2m − 1

) 1
4

(13)

for all j = 1, . . . ,2m − 1 andi = 0,1, . . . ,2n − 1. Returning to the proof of Part (i), we
can see that (13) implies that the equality on the left hand side of (12) must hold. Namely,

2m−1∑
j=0

2n−1∑
i=1

k2
j (αi ) = T−1

nz

(
2m−1∑
j=0

2n−1∑
i=1

kj (αi )

)2

.
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Again using (11), the special form of Ḧolder’s Inequality, there exists a constantk such that
kj (αi ) = k, for all j = 0,1, . . . ,2m − 1 andi = 1, . . . ,2n − 1. From (4), the constant
k must satisfy the condition ofk = 2n−m. Note also that in this case,Tnz = 2m(2n − 1).
Thus due to Theorem 3.1 in [15], we conclude that every non-zero linear combination of
the component functions ofF is a bent function. A consequence of this conclusion is that
in this case,n must be even andm≤ 1

2n [15].
Conversely, assume that every non-zero linear combination of the component functions

of F is a bent function. Once again employing Theorem 3.1 in [15], we havekj (αi ) = 2n−m

for j = 0,1, . . . ,2m− 1 andi = 1, . . . ,2n − 1. In this case, the total number of non-zero
entries in the tableK is Tnz = 2m(2n − 1). Now the inequality in Part (i) of the theorem
becomes

NF ≤ 2n−1− 2
n
2−1. (14)

On the other hand, since every non-zero linear combination of the component functions of
F is a bent function, the equality in (14) must hold. That is, the equality in Part (i) of the
theorem holds.

We note that for a permutation onVn, results obtained in [18] imply that the expected
value ofTnz approaches(1− e−

1
2 )(2n − 1)2, whenn is large, wheree = 2.718. . .. By

using Theorem 3, the expected value ofNF for a permutation satisfies

NF ≤ 2n−1− 2
3
4 n−1

4

√
(1− e−

1
2 )(2n − 1)

Before moving on to the next topic on regular S-boxes, we would like to stress that
Theorem 3 shows a tight upper bound on the nonlinearity of a general S-box which does
not have to be regular. We also note that an S-box that achieves the upper bound in theorem
has a flat difference distribution table and hence is weak against differential cryptanalysis.

6.2. For a Regular S-box

As we mentioned earlier, most encryption algorithms employ regular S-boxes. Hence such
S-boxes play a more important role than does an irregular one. Our research results to be
described below show that the nonlinearity of a regularn×m S-box can be determined by
n, m and a third parameter that counts only the number of non-zero entries in the leftmost
column of the difference distribution table of the S-box.

We begin with examining partitions of the leftmost column of a difference distribution
table.

LEMMA 5 Let F be a mapping from Vn to Vm and K is the difference distribution table
of F. Then the leftmost column of K is determined by a2m-partition of Vn, say Vn =
Ä0 ∪ · · · ∪Ä2m−1, that satisfies the condition thatÄj ∩Äi = ∅ for all j 6= i .
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Proof. For eachβ ∈ Vm, defineÄβ = {α ∈ Vn | F(α) = β}. Note that we use an integer
in [0, . . . ,2m − 1] and a vector inVm interchangeably. Clearly

Vn = ∪β∈VmÄβ (15)

andÄβ ′ ∩Äβ ′′ = ∅ if β ′ 6= β ′′. Note thatF(x)⊕ F(x ⊕ α) = 0 if and only if bothx and
x ⊕ α belong to the same class, sayÄβ .

Now we modify the mappingF into F ′ by applying an arbitrary permutation onVm to the
output ofF . Clearly the partition in (15) remains unchanged, andF ′(x)⊕ F ′(x⊕α) = 0 if
and only if bothx andx⊕ α belong to the same class in (15). This proves that the leftmost
columns of the difference distribution tables ofF andF ′ are the same.

Armed with Lemma 5, we are ready to prove the following.

THEOREM4 Let F be a regular n× m S-box (For such an S-box n≥ m is necessary).
Denote by tnz the total number of non-zero entries (except for k0(α0)) in the leftmost column
of the difference distribution table K of F. Then the nonlinearity of F satisfies

NF ≤ 2n−1− 1

2

(
23n+2m − 24n + t−1

nz · 23n+2m(2n−m − 1)2

(2n − 1)(2m − 1)2

) 1
4

.

Proof. Left-multiplying the transposes of the two sides in (7), we have(
2m−1∑
j=0

〈ηj , `0〉2
)2

+
(

2m−1∑
j=0

〈ηj , `1〉2
)2

+ · · · +
(

2m−1∑
j=0

〈ηj , `2n−1〉2
)2

= 22m+n
2n−1∑
i=0

k2
0(αi ) (16)

Since bothη0 and`0 are an all-one sequence, we have〈η0, `0〉 = 2n. Recall thatF is
regular. By Lemma 1, each non-zero linear combination of the component functions ofF
is balanced. Thus forj = 1, . . . ,2m− 1, ηj is (1,−1) balanced and we have〈ηj , `0〉 = 0.
Also recall the definition in (3) and the fact that`j is (1,−1) balanced forj > 0, we can
see that〈η0, `j 〉 = 0 for j = 1, . . . ,2n − 1.

Note thatk0(α0) = 2n. So (16) can be transformed to(
2m−1∑
j=1

〈ηj , `1〉2
)2

+ · · · +
(

2m−1∑
j=1

〈ηj , `2n−1〉2
)2

= 22m+3n − 24n + 22m+n
2n−1∑
i=1

k2
0(αi ) (17)

By using (11)

2n−1∑
i=1

k2
0(αi ) ≥ t−1

nz

(
2n−1∑
i=1

k0(αi )

)2

.
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Note thatF is regular andk0(α0) = 2k. By using Corollary 1,
∑2n−1

i=1 k0(αi ) ≥ 22n−m−2n.
Hence

2n−1∑
i=1

k2
0(αi ) ≥ t−1

nz · (22n−m − 2m)2.

Thus there is ani0, 1≤ i0 ≤ 2n − 1, such that

2m−1∑
j=1

〈ηj , `i0〉2 ≥
(

23n+2m − 24n + t−1
nz · 2n(22n − 2n+m)2

2n − 1

) 1
2

.

Sincetnz ≤ 2n − 1, it is easy to verify that the expression under the square root is always
positive. Furthermore there is aj0, 1≤ j0 ≤ 2m − 1, such that

|〈ηj0, `i0〉| ≥
(

23n+2m − 24n + t−1
nz · 2n(22n − 2n+m)2

(2n − 1)(2m − 1)2

) 1
4

.

Now the theorem follows immediately from (1).

For a permutationF on Vn, (F must be regular), again from results obtained in [18], we
know that the expected value oftnz approaches(1− e−

1
2 )(2n− 1), while n is large enough,

wheree= 2.718. . .. This, together with Theorem 4, shows that the expected value ofNF

for regular S-boxes is bounded from above by 2n−1− 2n−1√
2n−1

. Namely,

NF ≤ 2n−1− 2n−1

√
2n − 1

.

6.3. Remarks on the Two Upper Bounds

Comparing Theorem 3 with Theorem 4, we note that while the former deals with a general
S-box which is not necessarily regular, the latter is strictly on a regular S-box. Therefore
the condition thatn ≥ m is required only in Theorem 4. In addition ton andm, both
theorems employ a third parameter in upper bounding the nonlinearity of an S-box. The
third parameterTnz used in Theorem 3 is the total number of non-zero entries in theentire
difference distribution table of the S-box (not taking into account the first entry in the
leftmost column). In contrast, the third parametertnz used in Theorem 4 is the total number
of non-zero entries in theleftmost columnin the difference distribution table of the S-box
(again not taking into account the first entry in the column).

Another difference between Theorems 3 and 4 is that while the bound in the former is tight,
it is unclear whether the same can be said with the latter. This is, however, not surprising,
given that identifying the exact upper bound on the nonlinearity of a balanced function is
one of the outstanding open problems in the study of nonlinear Boolean functions.

A direct consequence of Theorem 3 is that with anyn×mS-box withn > m, be it regular
or irregular, the larger the number of non-zero entries in the difference distribution table,
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the larger the upper bound on the nonlinearity of the S-box. To interpret the theorem in a
different way, if one wishes to design an S-box that is resistant against linear attacks, namely
highly nonlinear, then one should make sure that a large portion of entries in the difference
distribution table of the S-box is non-zero. Interestingly, as a largerTnz also means a wider
spread of non-zero entries across the entire difference distribution table, such an S-box can
potentially have a higher resilience against differential attacks.

What Theorem 4 implies is that for a regular S-box,tnz, the number of non-zero entries
in the leftmost column of its difference distribution table, effects the resistance against
linear and differential attacks in a way similar to that ofTnz. Thus, in designing a regular
S-box, one prefers both a largetnz and a largeTnz. It should be pointed out, however, that
other factors should be taken into account too. Examples of such factors include successful
attacks that exploit non-zero entries in the leftmost column of a difference distribution table
[4, 5, 21], and high order differential attacks recently developed in [10].

Before closing this section, we note that a paper by Chabaud and Vaudenay [6] is a prior
work most relevant to this research. A main result in [6] is their Theorem 4 which is
equivalent to stating that for every mapping fromVn to Vm, sayF , the nonlinearity ofF ,
NF , satisfies

NF ≤ 2n−1− 1

2

(
3 · 2n − 2− 2(2n − 1)(2n−1− 1)

2m − 1

) 1
2

. (18)

Examining the part under the square root in the expression, one can see that it is negative
if m≤ n− 2. Therefore, (18) is applicable only ton×m S-boxes withm≥ n− 1.

7. Concluding Remarks

We have introduced three tables associated with an S-box, and based on a relationship
among the three tables, we have established a number of results ranging from regular-
ity, nonexistence of certain quadratic S-boxes, to a tight lower bound on the differential
uniformity and two upper bounds on the nonlinearity of an S-box.

In light of recent progress in interpolation and high order differential cryptanalysis [10,
24], a natural topic that deserves immediate attention is to research into high order dif-
ferential distribution tables of S-boxes, together with connections to other cryptographic
properties of S-boxes.
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Appendix: The Proof of Lemma 2

There are close relationships between the Hamming distance between rows and the distri-
bution of ones in the columns in a(0,1) matrix. Such relationships have been very useful
in constructing linear error correcting codes. In this appendix we review some of the re-
lationships from the view point of Hadamard transforms. Once the relationships are clear,
the proof of Lemma 2 becomes straightforward.

Let t ≥ s, andA be ans× t (0,1) matrix with ranks. Set

A =


ξ0

ξ1
...

ξs−1

 = (ai j ) = [χ0, χ1, . . . , χt−1], (19)

whereξi ∈ Vt is thei th row vector andχj ∈ Vs is the j th column vector ofA.
We are concerned with all the linear combinations ofξ0, ξ1, . . . , ξs−1, denoted by

η0, η1, . . . , η2s−1, whereηj =
⊕s−1

u=0 cuξu, (c0, c1, . . . , cs−1) is the binary representation
of an integerj , j = 0,1 . . . ,2s − 1. Now set

B =


η0

η1
...

η2s−1

 = (bi j ) = [γ0, γ1, . . . , γt−1], (20)

whereB is a (0,1) matrix of order 2s × t andγj ∈ V2s is the j th column vector ofB.
Replace every 0 entry inB with 1, and every 1 entry inB with −1. Then denote byB∗ the
new(1,−1) matrix of order 2s × t . Write

B∗ = (b∗i j ) =


R0

R1
...

R2s−1

 = [h0, h1, . . . , ht−1], (21)

whereRi is thei th row vector andhj is the j th column vector ofB∗. One can verify that
eachhj is a linear sequence of length 2s.

Let B∗ be the matrix defined in (21),e0,e1, . . . ,e2s−1 be the row vectors, from the top to
the bottom, ofHs. Assume thatej appearskj times in the columns ofB∗. We now prove

ei B
∗B∗TeT

j =
{

kj 22s if ei = ej

0 otherwise.
(22)

Write ei B∗ = (c∗0, . . . , c∗t−1) where

c∗u =
{

2s if eT
i = hu

0 otherwise
(23)
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for all u = 0, . . . , t − 1. Similarly, writeej B∗ = (d∗0 , . . . ,d∗t−1), where

d∗u =
{

2s if eT
j = hu

0 otherwise
(24)

for all u = 0, . . . , t − 1.
If ei = ej , thenei B∗B∗TeT

j =
∑t−1

u=0 c∗uc∗u = kj 22s. On the other hand, ifei 6= ej , then

by (23) and (24),c∗u 6= 0 impliesd∗u = 0, which results inei B∗B∗TeT
j =

∑t−1
u=0 c∗ud∗u = 0.

This proves (22).
As the Sylvester-Hadamard matrixHm is symmetric, (22) can be equivalently stated as:

HsB∗B∗T Hs = 22s diag(k0, k1, . . . , k2s−1). (25)

Let Rj be a row ofB∗ defined in (21) andkj the number of times a row vectorej in Hs

appears in the columns ofB∗. From (25) we haveB∗B∗T = Hs diag(k0, k1, . . . , k2s−1)Hs.
Comparing the first rows in the two sides of the equation, we have

(〈R0, R0〉, 〈R0, R1〉, . . . , 〈R0, R2s−1〉) = (k0, k1, . . . , k2s−1)Hs. (26)

Now we are in a position to prove Lemma 2. Consider ans× t matrix A defined in
(19) with s = m andt = n. Let a rowξi in (19) be the truth table offi (x) ⊕ fi (x ⊕ α),
i = 0,1, . . . ,m−1. Correspondingly,ηi in (20) denotes the truth table ofgi (x)⊕gi (x⊕α),
andRi in (21) denotes the sequence ofgi (x)⊕ gi (x ⊕ α), i = 0,1, . . . ,2m − 1.

As g0 is the zero function,R0 is the all-one sequence. Hence〈R0, Ri 〉 is equal to the sum
of the components inRi . That is,〈R0, Ri 〉 = 1i (α). Hence Part (i) of Lemma 2 follows
from (26).

Forα = α0, α1, . . . , α2n−1, Part (i) of Lemma 2 gives 2n equations. These equations can
be written as Part (ii) of the lemma. Part (iii) of the lemma follows from (2). And finally
Parts (ii) and (iii) of the lemma together give Part (iv) of the lemma.
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