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Abstract. Due to the success of differential and linear attacks on a large number of encryption algorithms, it is
important to investigate relationships among various cryptographic, including differential and linear, characteristics
of an S-box (substitution box). After discussing a precise relationship among three tables, namely the difference,
auto-correlation and correlation immunity distribution tables, of an S-box, we develop a number of results on
various properties of S-boxes. More specifically, we show (1) close connections among three indicators of S-
boxes, (2) a tight lower bound on the sum of elements in the leftmost column of its differential distribution table,
(3) a non-trivial and tight lower bound on the differential uniformity of an S-box, and (4) two upper bounds on
the nonlinearity of S-boxes (one for a general, not necessarily regular, S-box and the other for a regular S-box).
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1. Introduction

This paper deals with x m S-boxes witim > m. Success of the notable differential crypt-
analysis on various block ciphers [3, 4] has motivated researchers to investigate properties
of the difference distribution tables of S-boxes. A core topic in this endeavor is to discover
relationships between differential distribution tables and other properties of S-boxes. In
this paper we first introduce two additional tables associated with an S-box, these being the
auto-correlation and correlation immunity distribution tables. Then we establish a precise
relationship among the three tables of an S-box (i.e., the difference, auto-correlation and
correlation immunity distribution tables). With this relationship as a basis, we show that an
S-box is regular (or balanced) if and only if the sum of the values in the leftmost column of
its difference distribution table i2™™. In a sense, this result complements a well-known
fact about the regularity of an S-box which states that an S-box is regular if and only if the
non-zero linear combinations of its component functions are all balanced.

The next issue addressed in this paper is on the lower bound on the differential uniformity
of an S-box which is defined as the largest non-zero value in the differential distribution
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table of the S-box, not taking into account the first entry in the top row. Far-am S-box,
it is easy to see that its differential uniformity is at lea%t. As another contribution of
this paper, we will show a new tight lower bound that improves the “trivial” boundof'2

The final issue addressed in this work relates more specifically the nonlinearity of an
S-box to its difference distribution table. In particular, we give two upper bounds on the
nonlinearity of the S-box, one for the case when the S-box is an arbitrary mapping and the
other when it is regular. These two bounds are expressed in terms of three parameters: the
number of input bits, the number of output bits and the number of non-zero entries in the
entire difference distribution table or in the leftmost column of the difference distribution
table of the S-box, respectively. We also compare the second new upper bound with previous
works in the same area.

The remainder of this paper is organized as follows: Section 2 introduces formal notations
and definitions used in this paper. The difference, auto-correlation and correlation immunity
distribution tables of an S-box are defined in Section 3 where a precise relationship among
the three tables is also established. An interesting connection between the regularity of an
S-box and columns of its differential distribution table is presented in Section 4. A tight
lower bound on the differential uniformity of an S-box is presented in Section 5, and then
two upper bounds on the nonlinearity of an S-box and its difference distribution table are
proved in Section 6. Section 7 closes the paper with some concluding remarks.

2. Basic Notations and Definitions

This section is intended as a summary of the minimum amount of mathematical knowledge
required in rigorously treating issues on S-boxes to be discussed in this paper.
The vector space of tuples of elements frorfs F(2) is denoted byv,. These vectors,
in ascending lexicographic order, are denotedbyery, ..., ax_1. As vectors inV, and
integers in [02" — 1] have a natural one-to-one correspondence, it allows us to switch from
a vector inV, to its corresponding integer in [@" — 1], and vice versa.
Let f be afunction fromV, to G F(2) (or simply, a function ofv,). Thesequencef f is
defined as(-1) 7@, (—1)f  (—1)f@n-0) while thetruth tableof f is defined as
(f (), f(ap),..., f(axn_1)). f is said to bebalancedif its truth table assumes an equal
number of zeros and ones. We dalk) = a1x1 ® - - - @ anXn @ ¢ anaffine functionwhere
X = (X1, ..., %) anda;, ¢ € GF(2). In particular,h will be called alinear functionif
¢ = 0. The sequence of an affine (linear) function will be calledfine (linear) sequence
The Hamming weighbf a vectorv, denoted byW (v), is the number of ones in. Let
f andg be functions orW,. Thend(f, @) = > ¢ .4 1, Where the addition is over the
reals, is called thélamming distancketweenf andg. Let g, ..., px+1_; be the affine

.....

well-known that the nonlinearity of on V, satisfiesN; < 2"~ — 2:"-1 The equality
holds if and only if f is bent (see P. 426 of [12]).

Given two sequences = (ai,...,am) andb = (b, ..., by), their component-wise
product is denoted ba x b, while the scalar product (sum of component-wise products) is
denoted bya, b).
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Definition. Let f be a function on;,. For a vectow € V,, denote by («) the sequence
of f(x @ «). Thus&(0) is the sequence of itself and&(0) = £(«) is the sequence of
f(x) & f(x ® «). Define theauto-correlationof f with a shifta by

A) = (6(0), §(a)).

The Sylvester-Hadamard matrix (or Walsh-Hadamard matokjrder 2, denoted by
H,, is generated by the recursive relation

Hho1 Haoa
H, = n=12.. Ho=1
; |:Hn—l _Hn—l] 0

Each row (column) oH, is a linear sequence of length.2

The following two formulas are well known to researchers (for a proof see for instance
[14, 23]).

Let & be the sequence of a functidnon V,,. Then the nonlinearity of, N; can be
calculated by

1
Nt =2”71—§ma><{|<5,€i>|,0§i <2"-1 1)
wherey; is theith row ofH,,i =0,1,...,2"— 1, and

(A(@o), A1), ..., Alan_1))Hn = (£, L0)%, (£, 1)%, ..., (£, €n_1)?) )

whereq; is the binary representation of an integeand ¢; is theith row of H,, i =
0,1,...,2"-1.

An n x m S-box or substitution box is a mapping fropto Vi, i.e.,F = (f1, ..., ),
wheren andm are integers witln > m > 1 and each component functidiis a function
onV,. In this paper, we use the terms of mapping and S-box interchangeably.

As can be seen from the design of many practical block ciphers, researchers are mainly
concerned witliegular S-boxes only. A mapping = (fy, ..., f) is said to be regular if
F (x) runs through each vector W,, 2"~™ times whilex runs throughv,, once.

The following lemma states a useful result on the regularity of an S-box. This result has
appeared in many different forms in the literature. Our description can be viewed as the
binary version of Corollary 7.39 of [11].

LEMMA 1 Let F= (fy,..., fy) be a mapping from Mo Vi, where n and m are integers
with n > m > 1 and each jf(x) is a function on \. Then F is regular if and only if every
non-zero linear combination of, f. .., f, is balanced.

The concept of nonlinearity can be extended to the case of an S-box [16].
Definition. The standard definition of theonlinearityof F = (fq, ..., fm)is

m
Ne =ming {Ng [ g=EP ¢ fj. ¢ e GF(2).g#0¢.
j=1
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Now we consider an S-box in terms of its usefulness in designing a block cipher secure
against differential cryptanalysis [3, 4]. The essence of a differential attack is to exploit
particular entries in the difference distribution tables of S-boxes employed by a block cipher.
The difference distribution table of anx m S-box is a 2 x 2™ matrix. The rows of the
matrix, indexed by the vectors W, represent the changes in the inputs, while the columns,
indexed by the vectors ¥y, represent the change in the output of the S-box. An entry in
the table indexed by, 8) indicates the number of input vectors which, when changed by
«a (in the sense of bit-wise XOR), result in a change in the output falso in the sense of
bit-wise XOR). It should be pointed out that while in this paper the notation of difference
is restricted to XOR differences, in general other differences are also of interest, such as
those based on modular addition and multiplication.

Note that an entry in a difference distribution table can only take an even value, the sum
of the values in a row is alway$ 2and the top row is alway®", 0, .. ., 0). As entries with
higher values in the table are particularly useful to differential cryptanalysis, a desirable
condition for an S-box not to be exploited in differential cryptanalysis would be that it
does not have large values in its differential distribution table (not taking into account the
leftmost entry in the top row).

In measuring the strength of an S-box (in terms of the security of a block cipher that em-
ploys the S-box) against differential attacks, a useful indicator commonly udiigrential
uniformitywhich is defined as follows [17].

Definition. Let F be ann x m S-box, wheren > m. Let § be the largest value in the
differential distribution table of the S-box (not taking into account the leftmost entry in the
top row), namely,

§= ae@‘niﬁom"&‘f#{x |FX)® F(X®a) =B}
ThenF is said to bdlifferentially §-uniform, and accordinglys is called the differential
uniformity of F.

An important ingredient in designing cryptographic Boolean functions is bent functions.
Below is the formal definition of bent functions.

Definition. Let f be a function orV,, and¢ denote the sequence 6f Thenf is called a
bentfunction if | (€, £;)| = 22,1 =0, 1,...,2" — 1, wheret; denotes théth row of Hy,.

Bent functions can be characterized in various ways [2, 8, 20, 23, 26]. A characterization
of particular interest can be found in [8, 20] which states that bent function, exist
only whenn is even, and that they achieve the highest possible nonlineari;,oramely,
n-t_ 251,

3. Relationships among Three Tables

Now we introduce three more notatiorig(«), Aj(x) andn;, associated with an S-box
F = (fl,..., fm).
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Definition. Let F = (fy, ..., fy) be ann x m S-box,a € V, j =0,1,...,2" — 1 and

Bi = (by, ..., by) be the vector invy, that corresponds to the binary representatiof.of
In addition, set; = Py, by f, be thejth linear combination of the component functions
of F. Then we define

1. Kj(x) as the number of timeB (x) ® F(x ® «) equalsp; € Vi, while x runs through
V,, once,

2. Aj(a) as the auto-correlation @§ with a shifte,

3. n; as the sequence ¢f.

Since bothyo and{g are the all-one sequence of lengthehd/; is (1, —1) balanced for
j > 0, we have

(mo. o) = 2", (n0.€) =0, j=1,....2"— 1. 3)

From the definition ok; (@), one can see that the sum of the entries in each ro¥ f
2", and that the first row has the form @@, 0, ..., 0). Namely,

2m-1
D k)=2"i=01..2"-1 (4)
j=0
and
ko(@o) = 2", Kj(@o) =0, j=1,...,2"—1 (5)

Using the three notations introduced above, we formally define three tables/matrices
related toF = (1, ..., fm).

Definition. For an S-boxr = (fq, ..., fy), set

Ko(awo)  Ki(ag) ... kom_1(xo)
K _ Ko(an) Ki(an) ... kom_q(o)
| Ko(on—1) Ki(aron_1) ... Kom_1(on_1)
Ap(ao) A1(ag) ... Azm_a(ao)
b Ap(ay) Ag(ar) ... Aom_g(ar)
| Aoan_1) Az(an_1) ... Agm_g(an_1)
and
(Mo, €0)> (1, L0)® -+ (mam_1, Lo)?
b_ (Mo, €1)% (1, ) -+ (nam_q, £1)?
L (0, €2n—1)? (N1, €n_1)? -+ (mam_1, €n_1)?
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wherey; is theith row of H,, i = 0,1,...,2" — 1. The three tables (or matricekK), D
and P share the same size df 2 2™. ClearlyK is the difference distribution table &f
that has already been (informally) introduced in Section 2. The other two tdblasd P,
are calledauto-correlation distribution table and correlation immunity distribution table
of the S-boxF, respectively.

In designing a strong S-box, many cryptographic criteria should be examined not only
against component functions, but also against their linear combinations. Such criteria
include those related to nonlinearity, propagation characteristics [19] and difference dis-
tribution tables. The matriX characterizes the differential characteristics of an S-box.
The matrixD indicates the auto-correlation of all linear combinations of the component
functions. While the matridP represents the inner product between the sequence of each
linear combination of the component functions and each linear sequéhisehelpful in
studying the correlation immunity, as well as the nonlinearity, of each linear combination
of the component functions (see [22]).

The following lemma shows an intimate relationship between the three tdblBsand
P defined above. The lemma can be easily shown to be correct by the use of a connection
between the Hamming distance between rows and the distribution of ones in the columns in
a(0, 1) matrix. For completeness, a full proof for the lemma is provided in the appendix. It
turns out that the lemma is very useful in examining cryptographic properties of an S-box,
and it will be used in proving many of the main results in this paper.

LEMMA 2 Let F = (fy,..., fy) be a mapping from Mo Vi, where n and m are integers
with n > m > 1 and each fis a function on {{. Set g = @um=1 ¢y fu where(cy, ..., Cn)
is the binary representation of an integer j50,1,...,2™ — 1. Then

(1) (ko(ai), Ka(exi), ..., Kom_1(ci))Hm = (Ao(ei), Ar(cti), ..., Aom_1(cti)), Whereg; is
the binary representation of an integer i,

(i) D = K Hm,
(i) P = HyD,
(V) P = HoK Hm.

Whenn = m andF is regular, a similar relation between matridésand P has been
derived in [7]. As permutations, a special type of S-boxes, are used in many cryptographic
algorithms, itis of interest is to look into how the three tables of a permutation are connected
to the three corresponding tables of the inverse of the permutation. The following result is
easy to verify.

COROLLARY 1 Let F be a permutation onVand F~! denote the inverse of F. Let
K = (ki(¢j)), D = (Ai(ej)) and P = ({ni, £)) be the difference distribution, auto-
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correlation distribution and correlation immunity distribution tables of F. Similarly,
let K¥ = (k*(¢j)), D* = (Af(¢j)) and P* = ({5, ¢;)) be the difference distribu-
tion, auto-correlation distribution and correlation immunity distribution tables of*F
Then

() K*=KT,
(i) P*=PT,

(i) D* = H 1D H,.

4. Regularity of S-boxes and Difference Distribution Tables

Using Lemma 2, we now show that the regularity of an S-box can be characterized by its
difference distribution table. This characterization nicely complements Lemma 1 which is
stated in terms of the balance of non-zero linear combinations of component functions of
an S-box.

COROLLARY 2 Let F = (fy,..., fy,) be a mapping from yto Vi, where n and m are
integers with n> m > 1 and each ffis a function on \. Then F is regular if and only
if the sum of the entries in each column in the difference distribution tal2&ig", i.e.,
Yaey, Ki(@) =22 =0,1,...,2" - 1.

Proof. Compare the first rows in both sides of the formula in Part (iv) of Lemma 2,

<Z Ko(er), D ka(@), ..., Y kzm_1<oe>) Hn

aeVy aeVy aeVy
= ({10 €0). (n1. €0)°. . ... (2n_1. £0)?). (6)

Obviously, if Y, ki(@) = 22""™, i = 0,1,...,2" — 1 then(n, £o)*> = --- =
(nam_1, £0)2 = 0. Note thatt, is the all-one sequence of length. Henceg,, ..., gom_1
are balanced, whemg, . .., g,n_; are defined in Lemma 2. By LemmaR,is regular.

Conversely, supposE is regular. By Lemma 1g;, ..., gon_1 are balanced. Hence
(n1, £0>2 == (nom_1, 30)2 = 0. Note that(no, £0>2 = 22" Rewrite (6) as

2" (Z Ko(er), D Ka(er), ..., > kzm—l(Ol)> = (22",0,...,0)Hn.
aeVy aeVy aeVy

This proves tha} ., ki (@) = 22n-m i —0,1,...,2m— 1. [}

Corollary 2 has also been obtained independently by Tapia-Recillas, Daltabuit and Vega
[25].

The following corollary shows the uniqueness of the leftmost column of the difference
distribution table of a regular mapping.
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THEOREM1 LetF = (fy,..., f) be amapping from Mo Vi, where n and m are integers
with n > m > 1and each fis a function on . Then

(i) Yaev, ko) = 2277,
(ii) the equality in (i) holds if and only if F is regular.

Proof. (i) Right-multiplying both sides of the equality in Part (iv) of Lemma 2 dy
where,e denotes the all-one sequence of lendth Blence we have
ko(eo)  Ka(ao) kom_1(a0) | [ 2" Zi—olWJ’EO)
Ko(an)  Kki(ap) Kom_1(0r1) 0 2o 771,51
n . . -
Ko(an—1) Ki(an_1) ... kom_g(@n-1) | | O ij o), €an_1)?
and hence
Ko(ero) 22&_ . (nj» £o)?
Ko(a1) o (nj. €1)?
o, | OO0 || Dt @)
Ko(orn_1) ij o (1), bon_1)? 1

Comparing the top element of the vector on the two sides of equality (7), the following is
obtained
n-1 o1
2™ ko) = Y (nj. o). ®)
i=0 j=0
Recall (3),(no, £o)? = 22". From (8), we have proved Part (i) of the theorem.
(ii) Suppose)_,y, ko(a) = 22"~™, then from (8),(n1, £o)? = - -+ = (nan_1. £o)> = 0.
Note thatt, is the all-one sequence of length Henceg;, ..., g,n_1 are balanced, where

01, ..., Qem_3 are defined in Lemma 2. By LemmaR,is regular.
Conversely, ifF is regular, then by Corollary 2, .\, ko(a) = 22"—M_The proof of the
theorem is completed. [ |

5. A Lower Bound on Differential Uniformity

We turn our attention back to the differential uniformity, denoted bgf ann x m S-box.
Recall that is defined as the largest value in the differential distribution table of the S-box
(not taking into account the leftmost entry in the top row), namely,

§= max max#{x| FX)@® Fx®a) =B}

o€V, a#0 eV
(See Definition 2). As discussed earlignis bounded by 2™ < § < 2", and generally
speaking S-boxes with a small®&are desirable in designing a block cipher secure against
differential attacks. This motivates us to improve the “trivial” lower boufid™2on the
differential uniformitys.
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The following lemma will be used in our discussions. It is identical to Lemma 2 of [27].
LEMMA 3 Let real valued sequenceg,a..,axn_jand by, ..., bx_; satisfy
(@, - -+, an_1)Hn = (bo, ..., bx_1).

For any integer pandq, - =n,1 < p,q < n—1, seto; = Ziq:f)l bj2a4s, Where
j=0,1,...,2P -1 Then

29(ag, @, ., . . ., de—12)Hp = (00, 01, . .., 020_1). (9)
Now we prove another main result of this paper.
THEOREM2 Let F = (fy,..., fy) be an nx m S-box, where n and m are integers with
n > m > 1and each fis a function on \. Set g = @, cu f, where(cy, ..., cm)
is the binary representation of an integer j,5 0,1, ...,2™ — 1. Denote byA;(«) the
auto-correlation of g with a shifte, and setAy = max,ev, a0 MaX=1, . an_1{|A;j(e)l}.

Then the differential uniformit§y of F is bounded from below B&~™ + 2-™A\,, namely,
§=2""M 4 27MA .

Proof. Let Aj («i’) = Am. By Part (i) of Lemma 2, we have
27™(Ao(eir), Ar(air), ..., Aom_1(i’)) Hm = (Ko(a), Ka(er), ..., kamn_1(e)))  (10)
Applying Lemma 3 to (10), we get
27127 (Ao(@ir), Agn-s(ei))Hy = (00, 0)
whereo; = 32" “kjm1,e, j = 0, 1. Hence
27 (Aolir) + Agni(ai) = 09
and
27 (Aolai) — Agna(ai) = 01
Thus there is §029 + 5o for 0 < 59 < 2™ ! — 1 andj, = 0 or 1, such that
Kjo2a4+so = 27" (Ao(atir) + Apm-i(ati)).
Recall thatAg(«) = 2" for all @ € V. So we have
Kip2a1, = 27M(2" 4+ Aom1(exir)).

According to Section 5.3 of [21], the differential uniformity & is invariant under a
nonsingular linear transformation on the variable$ofThus by choosing an appropriate
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nonsingular linear transformation on the variablesofve have
Kigzatso = 27" + 27" Ap
and hencé > 2""M 4 27MA . [ |

Examining the new lower bound of 2" 4+-2"™A\, on the differential uniformity, where
A is the largest value among a@l\j(e)| with j = 1,...,2" — 1, a € V, anda # 0,

a natural question would be how large and smal} can be and what could be its typical
value.

First of all, by the definition ofAy;, we have 0< Ay < 2". WhenAy = 0, every
non-zero linear combination of the componentsFofmust be a bent function. And the
converse is also true: if every non-zero linear combination of the componeltis af bent
function, then we must hava,; = 0. Note that in this case we have= 2"~™, which
indicates that the bound in Theorem 2 is tight. Also note that such S-boxes do exist [1, 15],
although they are not regular.

On the other hand, iy = 2", then there must exist a non-zero veetsuch that it is a
linear structure of a non-zero linear combination, gayf the component functions &f,
i.e.,g;(x) ® gj(x @ @) is a constant. Similarly, the converse is also true.

For other S-boxes, namely those whose non-zero linear combinations of component
functions are not all bent, and do not have non-zero linear structures Afewill be a
value between 0 and'2Although it is not quite clear as to what would be the typical value
of Ay for such S-boxes, from the bousid>~ 2"~™+2"™MA , at least one thing can be said:
if an S-box is designed to resist against differential attacks, then its differential uniformity
must be small, and hence itsyy must be small too; conversely, if an S-box has a small
Awn, we would expect that it could have a small differential uniformity too.

6. Upper Bounds on Nonlinearity of S-boxes

Afterthe discovery of differential attacks in [4], an equally notable cryptanalysis method, the
linear cryptanalytic attack, was subsequently introduced in [13]. Identifying relationships
between these two types of attacks has been an interesting research area, both from the view
point of cryptanalysis and the design of secure ciphers. We will first show a tight upper
bound on the nonlinearity of a general S-box. This will be followed by another upper bound
on the nonlinearity of a regular S-box. The usefulness of such an explicit relationship is
obvious: the nonlinearity of an S-box represents a key indicator for the strength of a block
cipher that employs the S-box. We also compare our result on the relationship with arelated
theorem in [6].

In studying am x m S-box, a possible approach would be to use the two paranmegeis
malone in determining information on the S-box. Success of this approach, however, seems
to have been limited to the caseraf> n — 1 with which an upper bound on nonlinearity
has been obtained in [6] (but see discussions in the closing paragraph of this section.)

Another approach that can be used to obtain far more detailed information on an S-
box is to take into account all thg («), Aj(x), or (nj,zi)z, forj =0,1,...,2" -1,
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i=01,...,2"—1andx € V, (see Definition 3). A potential problem with this approach

is that it would be impractical to apply it to an S-box with relatively largand/orm. In

what follows, we adopt a different approach that employs more parameters otherahdn

m, and hence can be viewed as a compromise between the above two approaches. More
specifically, we prove two theorems that relate the nonlinearity of anm S-box to three
parameters, namely, m and the number of non-zero entries in its difference distribution
tableK.

6.1. General Case

Here we considen x m S-box that is not necessarily regular. In addition, the restriction of
n > mis not imposed on the S-box. We first introducélder’'s Inequality which can be
found in [9].

LEMMA 4 Letg > Oand d > O be real numbers, where$ 1,...,s, and let p and q
satisfy< + : = 1and p> 1. Then

s Up /o 9
() (2] = 3o
j=1 j=1 j=1

where the quality holds if and only if e= vd;j, j = 1, ..., s for a constant > 0.
Wheng;, d;, p andq satisfy the condition that, > 0,d; = {é :]]: g’ - é ,andp=q =
=

%, Hdolder’s Inequality gives

S S 2
Y d=st ( cj) (11)
j=1 j=1
where the quality holds if and only iy, ..., c; are all identical. The inequality (11)

will be used in the proof of the following two theorems regarding the upper bound on the

nonlinearity of an S-box.

THEOREM3 Let F be an nx m S-box (F is not necessarily regular, and the restriction of
n > m is not imposed on it). Denote by, the total number of all non-zero entries, except
for ko(ag), in the difference distribution table K of the S-box (see Definition 3). Then

(i) the nonlinearity of F satisfies

N < il 1 22Hm _ 93 | T lpm(on _ 1y i
F= 2 m 1 ’

(i) the equality in (i) holds if and only if every non-zero linear combination of the compo-
nent functions of F is a bent function.
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Proof. We first prove Part (i) of the theorem. Using Part (iv) of Lemma 2, we have
PTP = HnKTH) HoKHmn = 2"Hn KT K H = 2™ H TK TK Hi,.

Note that the sum of entries on the diagonaPJfP is equal to the sum of entries on the
diagonal of 2tMK TK. Hence

—12"— 2120

Z Z ) =2 ) Z K (en).

From (3), (4) and (5) in Section 3, we have

2m—_12n— 2m—12n—
24n + Z Z 77]’ — on+m (22n+ Z ZkZ(al )

Now combining (4) with (11), a special form oftttler's Inequality, we have

om_gon_ om_gn_ 2
Z Z k() = T, (Z Z ki (i) ) =T 222" — 1)2, (12)
Hence there is a certaig, 1 < jo < 2™ — 1, and a certaiiy, 0 < ig < 2" — 1, such that

)4 - 2n+m(22n + Tn;122n(2n _ 1)2) _ 24n
- (2m — 1)2n

(r/jo’ gio

which implies

M _ 3 | T-lgm(on _ 1y i
| (o £ig) | = om 1 :

Now applying (1) we obtain Part (i) of the theorem.
Note that sincd,, < 2™(2" — 1), we have

Tn;122n+m(2n _ 1)2 > 22n(2n _ 1)

That is, the expression under the fourth root is always positive.
Now we prove Part (ii). Firstassume thatthe equality in Part (i) holds. From the definition
of Ng, as well as (1), we have

1
2n+m __ 93n —192n+meon _ 142\ 2
s €0} < 2 2N 4T, 2 2"-1)
2n—1

forallj =1,...,2"—1andi =0,1,...,2" — 1. Returning to the proof of Part (i), we
can see that (13) implies that the equality on the left hand side of (12) must hold. Namely,

m_gon_1 om_gon_1 2
D K =T, (Z ij<“i>> :
iz0 i=1L =0 i=1

(13)
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Again using (11), the special form ofdttler’s Inequality, there exists a const&rguch that
Ki(i) =k, forall j =0,1,...,2" —1andi = 1,...,2" — 1. From (4), the constant

k must satisfy the condition df = 2"~™. Note also that in this cas#&;,, = 2™(2" — 1).

Thus due to Theorem 3.1 in [15], we conclude that every non-zero linear combination of
the component functions & is a bent function. A consequence of this conclusion is that
in this casen must be even anah < %n [15].

Conversely, assume that every non-zero linear combination of the component functions
of F is a bent function. Once again employing Theorem 3.1in [15], we kawg) = 2"~™
forj=0,1,...,2"—1andi =1,...,2" — 1. In this case, the total number of non-zero
entries in the tabl& is T, = 2™(2" — 1). Now the inequality in Part (i) of the theorem
becomes

Ng <2n1 2371 (14)

On the other hand, since every non-zero linear combination of the component functions of
F is a bent function, the equality in (14) must hold. That is, the equality in Part (i) of the
theorem holds. u

We note that for a permutati9n on, results obtained in [18] imply that the expected
value of T,, approachegl — e 2)(2" — 1)?, whenn is large, wheree = 2.718.... By
using Theorem 3, the expected valua\f for a permutation satisfies

2%n71

Ja-ehe -1

NF < 2n71 _

Before moving on to the next topic on regular S-boxes, we would like to stress that
Theorem 3 shows a tight upper bound on the nonlinearity of a general S-box which does
not have to be regular. We also note that an S-box that achieves the upper bound in theorem
has a flat difference distribution table and hence is weak against differential cryptanalysis.

6.2. For a Regular S-box

As we mentioned earlier, most encryption algorithms employ regular S-boxes. Hence such
S-boxes play a more important role than does an irregular one. Our research results to be
described below show that the nonlinearity of a reganlarm S-box can be determined by
n, m and a third parameter that counts only the number of non-zero entries in the leftmost
column of the difference distribution table of the S-box.

We begin with examining partitions of the leftmost column of a difference distribution
table.

LEMMA 5 Let F be a mapping from Mo Vi, and K is the difference distribution table
of F. Then the leftmost column of K is determined b3 apartition of \j, say \, =
Qo U --- U Qum_y, that satisfies the condition thet; N ; = @ forall j #i.
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Proof. For eachB € Vi, defineQg = {a € V,, | F(«) = B}. Note that we use an integer
in[0, ..., 2™ — 1] and a vector inVy, interchangeably. Clearly

Vh = UﬁeVmQﬂ (15)

andQp N Qg = P if B’ # B”. Note thatF (x) & F(x @ o) = 0 if and only if bothx and
X @ o belong to the same class, s@y.

Now we modify the mapping into F’ by applying an arbitrary permutation &, to the
output of F. Clearly the partition in (15) remains unchanged, &) ® F'(x ®a) = 0 if
and only if bothx andx @ « belong to the same class in (15). This proves that the leftmost
columns of the difference distribution tables®fand F’ are the same. ]

Armed with Lemma 5, we are ready to prove the following.

THEOREM4 Let F be a regular nx m S-box (For such an S-box:a m is necessary).
Denote by, the total number of non-zero entries (except fgeds)) in the leftmost column
of the difference distribution table K of F. Then the nonlinearity of F satisfies

Ne < 2n—l B 1_ 23n+2m _ 24n + tn_zl . 23n+2m(2n—m _ 1)2 711
F= 2 (2"~ 1D(2m —1)2 '

Proof. Left-multiplying the transposes of the two sides in (7), we have

o1 2 o 2 o1 2
(ij,eo)z) + (ij,mz) +o <Z<n,»,ezn_1>2)

j=0 j=0 j=0
-1

— p2m+n Z k() (16)
i=0

Since bothyg and ¢y are an all-one sequence, we hdyg, £o) = 2". Recall thatF is
regular. By Lemma 1, each non-zero linear combination of the component functiéns of
is balanced. Thus for =1,...,2™ — 1, ; is (1, —1) balanced and we havg;, £o) = 0.
Also recall the definition in (3) and the fact thitis (1, —1) balanced forj > 0, we can
see thatno, ¢;) =0forj =1,...,2" - 1.

Note thatky(ap) = 2". So (16) can be transformed to

om_1 2 om_1 2
(ij,el)z) ot <Z<m-,ezn_1>2>

i=1

i=1

2"-1
— 22m+3n _ 24n + 22m+n Z kg(Oli) (17)
i=1

By using (11)

n_1 n_1 2
Y K =t (Z ko(ai)> .
i—1 i—1
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Note thatF is regular andk(ag) = 2¥. By using Corollary 132 1  ko(a;j) > 22— — 20,
Hence

2"—1
Z kg(ai) > trTzl A (22n7m _ 2m)2_
i=1

Thus thereis aipy, 1 <ig < 2" — 1, such that

om_q ) 23n+2m _ 24n + tn_zl . 2n(22n _ 2n+m)2 %
Z mj, €ig)* = .

£ -1

j=1

Sincet,, < 2" — 1, it is easy to verify that the expression under the square root is always
positive. Furthermore there isjg, 1 < jo < 2™ — 1, such that

23H2M _ i | 41 onpan _ 2n+m)2>%

(s i) > ( L1y

Now the theorem follows immediately from (1). ]

For a permutatior- on V,,, (F must be regular), aqain from results obtained in [18], we
know that the expected value @ approachegl — e~ 2)(2" — 1), while n is large enough,
wheree = 2.718. . .. This, together with Theorem 4, shows that the expected vali of

for regular S-boxes is bounded from above By’2— j% Namely,
n—1
Ng <2"1 - 2
n-1

6.3. Remarks on the Two Upper Bounds

Comparing Theorem 3 with Theorem 4, we note that while the former deals with a general
S-box which is not necessarily regular, the latter is strictly on a regular S-box. Therefore
the condition thah > m is required only in Theorem 4. In addition tbandm, both
theorems employ a third parameter in upper bounding the nonlinearity of an S-box. The
third parameteil,,; used in Theorem 3 is the total number of non-zero entries ielties
difference distribution table of the S-box (not taking into account the first entry in the
leftmost column). In contrast, the third parametgiused in Theorem 4 is the total number

of non-zero entries in thieftmost columrin the difference distribution table of the S-box
(again not taking into account the first entry in the column).

Another difference between Theorems 3 and 4 is that while the bound in the former is tight,
it is unclear whether the same can be said with the latter. This is, however, not surprising,
given that identifying the exact upper bound on the nonlinearity of a balanced function is
one of the outstanding open problems in the study of nonlinear Boolean functions.

A direct consequence of Theorem 3 is that with amym S-box withn > m, be it regular
or irregular, the larger the number of non-zero entries in the difference distribution table,
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the larger the upper bound on the nonlinearity of the S-box. To interpret the theorem in a
different way, if one wishes to design an S-box that is resistant against linear attacks, namely
highly nonlinear, then one should make sure that a large portion of entries in the difference
distribution table of the S-box is non-zero. Interestingly, as a lafgealso means a wider
spread of non-zero entries across the entire difference distribution table, such an S-box can
potentially have a higher resilience against differential attacks.

What Theorem 4 implies is that for a regular S-bty, the number of non-zero entries
in the leftmost column of its difference distribution table, effects the resistance against
linear and differential attacks in a way similar to thatlef. Thus, in designing a regular
S-box, one prefers both a lartyg and a largeT,,,. It should be pointed out, however, that
other factors should be taken into account too. Examples of such factors include successful
attacks that exploit non-zero entries in the leftmost column of a difference distribution table
[4, 5, 21], and high order differential attacks recently developed in [10].

Before closing this section, we note that a paper by Chabaud and Vaudenay [6] is a prior
work most relevant to this research. A main result in [6] is their Theorem 4 which is
equivalent to stating that for every mapping frafnto Vi, sayF, the nonlinearity ofF,

NE, satisfies

1
4 1 22" — 121t —1)\?
Ne <2t >(3.2"-2- : 18
- ( e (18)
Examining the part under the square root in the expression, one can see that it is negative
if m < n— 2. Therefore, (18) is applicable only tox m S-boxes wittm > n — 1.

7. Concluding Remarks

We have introduced three tables associated with an S-box, and based on a relationship
among the three tables, we have established a humber of results ranging from regular-
ity, nonexistence of certain quadratic S-boxes, to a tight lower bound on the differential
uniformity and two upper bounds on the nonlinearity of an S-box.

In light of recent progress in interpolation and high order differential cryptanalysis [10,
24], a natural topic that deserves immediate attention is to research into high order dif-
ferential distribution tables of S-boxes, together with connections to other cryptographic
properties of S-boxes.
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Appendix: The Proof of Lemma 2

There are close relationships between the Hamming distance between rows and the distri-
bution of ones in the columns in(@, 1) matrix. Such relationships have been very useful
in constructing linear error correcting codes. In this appendix we review some of the re-
lationships from the view point of Hadamard transforms. Once the relationships are clear,
the proof of Lemma 2 becomes straightforward.

Lett > s, andA be ans x t (0, 1) matrix with ranks. Set

éo
&
A = : = (alj) = [XOs Xl7 s thllv (19)
&s1
where§; € V; is theith row vector andy; € Vs is the jth column vector ofA.

We are concerned with all the linear combinationségféy, ..., & 1, denoted by
N0, M1, - - - » N2s—1, Wheren; = @f,;%) Cuéu, (Co, C1, ..., Cs_1) is the binary representation
of anintegerj, j =0,1...,25 — 1. Now set

1o
ni
B = : = (b)) =[v0, y1, - - -, Yi—1l, (20)
N2s—1

whereB is a (0, 1) matrix of order 2 x t andy; € Vs is the jth column vector ofB.
Replace every 0 entry iB with 1, and every 1 entry iB with —1. Then denote b* the
new (1, —1) matrix of order 2 x t. Write

Ro
Ry
B* = (b)) = : = [ho, hy, ..., he_q], (21)

st, 1

whereR; is theith row vector andy; is the jth column vector oB*. One can verify that
eachh; is a linear sequence of length. 2

Let B* be the matrix defined in (21§, €4, . . ., &s_; be the row vectors, from the top to
the bottom, ofHs. Assume thag; appear; times in the columns oB*. We now prove

k2 ifg =g

0 otherwise. (22)

Write  B* = (cj, ..., ¢_;) where

. [z ife =h,
“= { 0 otherwise (23)
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forallu=0,...,t — 1. Similarly, writeg; B* = (d3, ..., d* ), where
2 ifel =h,
* = 1
o = { 0 otherwise (24)

foralu=0,...,t — 1.

If & =g, theng B*B*Te| = Y | cic; = k2. On the other hand, i # e, then
by (23) and (24)¢;; # 0 impliesd;; = O, which results ire B*B*Te] = Lerds = 0.
This proves (22).

As the Sylvester-Hadamard mattik, is symmetric, (22) can be equivalently stated as:

HsB*B*T Hs = 2% diag(ko, Ki, . . . , kos_1). (25)

Let R, be a row ofB* defined in (21) and; the number of times a row vectey in Hs
appears in the columns &*. From (25) we hav8*B*T = Hsdiagko, ki, . . ., kos_1) Hs.
Comparing the first rows in the two sides of the equation, we have

(<R07 RO)! <R07 Rl)s ) <R07 R2571>) = (k01 klv ] kzs—l) HS' (26)

Now we are in a position to prove Lemma 2. Considersant matrix A defined in
(19) withs = mandt = n. Let a row¢; in (19) be the truth table of; (x) & fi(X ® «),

i =0,1,...,m—1. Correspondingly; in (20) denotes the truth table gfix) g (X ®«),
andR in (21) denotes the sequencegpfx) ® g (X D «),i =0,1,...,2M™ — 1.

As gg is the zero functionRy is the all-one sequence. Hend®), R;) is equal to the sum
of the components ifR. That is,(Ry, R) = Aj(«). Hence Part (i) of Lemma 2 follows
from (26).

Fora = ag, a1, ..., ax_1, Part (i) of Lemma 2 gives™equations. These equations can
be written as Part (ii) of the lemma. Part (iii) of the lemma follows from (2). And finally
Parts (ii) and (iii) of the lemma together give Part (iv) of the lemma.
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