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Abstract

The connections among the various nonlinearity criteria is currently an important

topic in the area of designing and analyzing cryptographic functions� In this paper we

show a quantitative relationship between propagation characteristics and nonlinearity�

two critical indicators of the cryptographic strength of a Boolean function� We also

present a tight lower bound on the nonlinearity of a cryptographic function that has

propagation characteristics�
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� Introduction

Data Encryption Standard or DES is a cryptographic algorithm most widely used by in�
dustrial� �nancial and commercial sectors all over the world �NBS���� DES is also the
root of many other data encryption algorithms proposed in the past decade� including
LOKI �BKPS���� FEAL �Miy�	� and IDEA �LM�	� LaSM�	� Lai�
�� A core component of

	



these encryption algorithms are the so�called S�boxes or substitution boxes� each essentially
a tuple of nonlinear Boolean functions� In most cases� these boxes are the only nonlinear
component in an underlying encryption algorithm� The same can be said with one�way
hashing algorithms which are commonly employed in the process of signing and authenti�
cating electronic messages �ZPS��� Riv�
� NIST���� These all indicate the vital importance
of the design and analysis of nonlinear cryptographic Boolean functions�

Encryption and authentication require cryptographic �Boolean� functions with a number
of critical properties that distinguish them from linear �or a
ne� functions� Among these
properties are high nonlinearity� high degree of propagation� few linear structures� high
algebraic degree etc� These properties are often called nonlinearity criteria� An important
topic is to investigate relationships among the various nonlinearity criteria� Progress in
this direction has been made in �SZZ��d�� where connections have been revealed among the
strict avalanche characteristic� di�erential characteristics� linear structures and nonlinearity�
of quadratic functions�

In this paper we carry on the investigation initiated in �SZZ��d� and bring together non�
linearity and propagation characteristic of a function �quadratic or non�quadratic�� These
two cryptographic criteria are seemly quite separate� in the sense that the former indicates
the minimum distance between a Boolean function and all the a
ne functions whereas the
latter forecasts the avalanche behavior of the function when some input bits to the function
are complemented�

In particular we show that if f � a function on Vn� satis�es the propagation criterion with
respect to all but a subset � of Vn� then the nonlinearity of f satis�es Nf

�
� 
n���
n�

�

�
����

where � is the maximum dimension a linear sub�space contained in f�g��Vn��� can achieve�
We also show that 
n�� is the tight lower bound on the nonlinearity of f if f satis�es

the propagation criterion with respect to at least one vector in Vn� As an immediate
consequence� the nonlinearity of a function that ful�lls the SAC or strict avalanche criterion
is at least 
n���

Two techniques are employed in the proofs of our main results� The �rst technique is
in regard to the structure of �� the set of vectors where the function f does not satisfy
the propagation criterion� By considering a linear sub�space with the maximum dimension
contained in f�g � �Vn � ��� together with its complementary sub�space� we will be able
to identify how the vectors in � are distributed� The second technique is based on a novel
idea of re�ning Parseval�s equation� a well�known relationship in the theory of orthogonal
transforms� A combination of these two techniques together with some careful analyses
proves to be a powerful tool in examining the relationship among nonlinearity criteria�

The organization of the rest of the paper is as follows� Section 
 introduces basic no�
tations and conventions� while Section � presents background information on the Walsh�
Hadamard transform� The distribution of vectors where the propagation criterion is not
satis�ed is discussed in Section �� This result is employed in Section � where a quanti�
tative relationship between nonlinearity and propagation characteristics is derived� This
relationship is further developed in Section � to identify a tight lower bound on nonlinear�
ity of functions with propagation characteristics� The paper is closed by some concluding
remarks in Section ��






� Basic De�nitions

We consider Boolean functions from Vn to GF �
� �or simply functions on Vn�� Vn is the
vector space of n tuples of elements from GF �
�� The truth table of a function f on Vn is a
��� 	��sequence de�ned by �f����� f����� � � �� f���n����� and the sequence of f is a �	��	��
sequence de�ned by ���	�f����� ��	�f����� � � �� ��	�f���n����� where �� � ��� � � � � �� ��� �� �
��� � � � � �� 	�� � � �� ��n���� � �	� � � � � 	� 	�� The matrix of f is a �	��	��matrix of order 
n

de�ned by M � ���	�f��i��j��� f is said to be balanced if its truth table contains an equal
number of ones and zeros�

An a�ne function f on Vn is a function that takes the form of f�x�� � � � � xn� � a�x� �
� � ��anxn�c� where aj� c � GF �
�� j � 	� 
� � � � � n� Furthermore f is called a linear function
if c � ��

De�nition � The Hamming weight of a ��� 	��sequence s� denoted by W �s�� is the number

of ones in the sequence� Given two functions f and g on Vn� the Hamming distance d�f� g�
between them is de�ned as the Hamming weight of the truth table of f�x� � g�x�� where
x � �x�� � � � � xn�� The nonlinearity of f � denoted by Nf � is the minimal Hamming distance

between f and all a�ne functions on Vn� i�e�� Nf � mini����������n�� d�f� �i� where ��� ���
� � �� ��n�� are all the a�ne functions on Vn�

Note that the maximum nonlinearity of functions on Vn coincides with the covering
radius of the �rst order binary Reed�Muller code RM�	� n� of length 
n� which is bounded

from above by 
n��� 

�

�
n�� �see for instance �CKHFMS����� Hence Nf

�
� 
n��� 


�

�
n�� for

any function on Vn� Next we introduce the de�nition of propagation criterion�

De�nition � Let f be a function on Vn� We say that f satis�es

�� the propagation criterion with respect to � if f�x�� f�x� �� is a balanced function�

where x � �x�� � � � � xn� and � is a vector in Vn�

�� the propagation criterion of degree k if it satis�es the propagation criterion with respect

to all � � Vn with 	 ��W ��� �� k�

f�x� � f�x � �� is also called the directional derivative of f in the direction �� The
above de�nition for propagation criterion is from �PLL��	�� Further work on the topic
can be found in �PGV�	�� Note that the strict avalanche criterion �SAC� introduced by
Webster and Tavares �Web��� WT��� is equivalent to the propagation criterion of degree
	 and that the perfect nonlinearity studied by Meier and Sta�elbach �MS��� is equivalent
to the propagation criterion of degree n where n is the number of the coordinates of the
function�

While the propagation characteristic measures the avalanche e�ect of a function� the
linear structure is a concept that in a sense complements the former� namely� it indicates
the straightness of a function�

De�nition � Let f be a function on Vn� A vector � � Vn is called a linear structure of f
if f�x�� f�x� �� is a constant�

By de�nition� the zero vector in Vn is a linear structure of all functions on Vn� It is
not hard to see that the linear structures of a function f form a linear sub�space of Vn�
The dimension of the sub�space is called the linearity dimension of f � We note that it was

�



Evertse who �rst introduced the notion of linear structure �in a sense broader than ours�
and studied its implication on the security of encryption algorithms �Eve����

A �	��	��matrix H of order m is called a Hadamard matrix if HHt � mIm� where H
t

is the transpose of H and Im is the identity matrix of order m� A Sylvester�Hadamard
matrix of order 
n� denoted by Hn� is generated by the following recursive relation

H� � 	� Hn �

�
Hn�� Hn��

Hn�� �Hn��

�
� n � 	� 
� � � � � �	�

Let �i� � �� i �� 
n � 	� be the i row of Hn� By Lemma 
 of �SZZ��a�� �i is the sequence
of a linear function �i�x� de�ned by the scalar product �i�x� � h�i� xi� where �i is the ith
vector in Vn according to the ascending order�

De�nition � Let f be a function on Vn� The Walsh�Hadamard transform of f is de�ned

as
�f��� � 
�

n
�

X
x�Vn

��	�f�x��h��xi

where � � �a�� � � � � an� � Vn� x � �x�� � � � � xn�� h�� xi is the scalar product of � and x�

namely� h�� xi �
Ln

i�� aixi� and f�x�� h�� xi is regarded as a real�valued function�

The Walsh�Hadamard transform� also called the discrete Fourier transform� has numer�
ous applications in areas ranging from physical science to communications engineering� It
appears in several slightly di�erent forms �Rot��� MS��� Dil�
�� The above de�nition follows
the line in �Rot���� It can be equivalently written as

� �f����� �f����� � � � � �f���n���� � 
�
n
� �Hn

where �i is the ith vector in Vn according to the ascending order� � is the sequence of f
and Hn is the Sylvester�Hadamard matrix of order 
n�

De�nition � A function f on Vn is called a bent function if its Walsh�Hadamard transform

satis�es
�f��� � �	

for all � � Vn�

Bent functions can be characterized in various ways �AT��� Dil�
� SZZ��a� YH���� In
particular the following four statements are equivalent�

�i� f is bent�

�ii� h�� �i � �

�

�
n for any a
ne sequence � of length 
n� where � is the sequence of f �

�iii� f satis�es the propagation criterion with respect to all non�zero vectors in Vn�

�iv� M � the matrix of f � is a Hadamard matrix�

Bent functions on Vn exist only when n is even �Rot���� Another important property of

bent functions is that they achieve the highest possible nonlinearity 
n�� � 

�

�
n���

�



� More on Walsh�Hadamard transform and Nonlinearity

As the Walsh�Hadamard transform plays a key role in the proofs of main results to be
described in the following sections� this section provides some background knowledge on
the transform� More information regarding the transform can be found in �MS��� Dil�
��
In addition� Beauchamp�s book �Bea��� is a good source of information on other related
orthogonal transforms with their applications�

Given two sequences a � �a�� � � � � am� and b � �b�� � � � � bm�� their component�wise prod�
uct is de�ned by a � b � �a�b�� � � � � ambm�� Let f be a function on Vn� For a vector � � Vn�
denote by ���� the sequence of f�x���� Thus ���� is the sequence of f itself and ���������
is the sequence of f�x�� f�x� ���

Set
���� � h����� ����i�

the scalar product of ���� and ����� ���� is also called the auto�correlation of f with a
shift �� Obviously� ���� � � if and only if f�x� � f�x � �� is balanced� i�e�� f satis�es
the propagation criterion with respect to �� On the other hand� if j����j � 
n� then
f�x�� f�x� �� is a constant and hence � is a linear structure of f �

Let M � ���	�f��i��j�� be the matrix of f and � be the sequence of f � Due to a very
pretty result by R� L� McFarland �cf� Theorem ��� of �Dil�
��� M can be decomposed into

M � 
�nHn diag�h�� ��i� � � � � h�� ��n��i�Hn �
�

where �i is the ith row of Hn� a Sylvester�Hadamard matrix of order 
n�
Clearly

MMT � 
�nHn diag�h�� ��i
�� � � � � h�� ��n��i

��Hn� ���

On the other hand� we always have

MMT � ����i � �j���

where i� j � �� 	� � � � � 
n � 	�
Comparing the two sides of ���� we have

������������� � � � �����n���� � 
�n�h�� ��i
�� � � � � h�� ��n��i

��Hn�

Equivalently we write

������������� � � � �����n����Hn � �h�� ��i
�� � � � � h�� ��n��i

��� ���

In engineering� ��� is better known as �a special form of� the Wiener�Khintchine Theo�
rem �Bea���� A closely related result is Parseval�s equation �Corollary �� p� �	� of �MS����

�n��X
j��

h�� �ji
� � 
�n

which also holds for any function f on Vn�
Let S be a set of vectors in Vn� The rank of S is the maximum number of linearly

independent vectors in S� Note that when S forms a linear sub�space of Vn� its rank
coincides with its dimension�

The distance between two functions f� and f� on Vn can be expressed as d�f�� f�� �

n�� � �

�h��� ��i� where �� and �� are the sequences of f� and f� respectively� �For a proof
see for instance Lemma � of �SZZ��a��� Immediately we have�

�



Lemma � The nonlinearity of a function f on Vn can be calculated by

Nf � 
n�� �
	



maxfjh�� �iij� � �� i �� 
n � 	g

where � is the sequence of f and ��� � � �� ��n�� are the rows of Hn� namely� the sequences

of the linear functions on Vn�

The next lemma regarding splitting the power of 
 can be found in �SZZ��d�

Lemma � Let n �
� 
 be a positive integer and p�� q� � 
n where both p �� � and q �� � are

integers� Then p � 

�

�
n and q � � when n is even� and p � q � 


�

�
�n��� when n is odd�

In the next section we examine the distribution of the vectors in ��

� Distribution of �

Let f be a function on Vn� Assume that f satis�es the propagation criterion with respect
to all but a subset � of Vn� Note that � always contains the zero vector �� Write � �
f�� 	�� � � � � 	sg� Thus j�j � s� 	�

Set �c � Vn ��� Then f satis�es the propagation criterion with respect to all vectors
in �c�

Consider the set of vectors f�g � �c� Then f�g is a linear sub�space contained in
f�g � �c� When jf�g � �cj � 	� f�� 	g is a linear sub�space for any nonzero vector in �c�
We are particularly interested in linear sub�spaces with the maximum dimension contained
in f�g � �c� For convenience� denote by � the maximum dimension and by W a linear
sub�space in f�g � �c that achieves the maximum dimension�

Obviously� f is bent if and only if � � n� and f does not satisfy the propagation criterion
with respect to any vector if and only if � � �� The case when 	 �� � �� n� 	 is especially
interesting�

Now let U be a complementary sub�space of W � namely U �W � Vn� Then each vector
	 � Vn can be uniquely expressed as 	 � ��
� where � �W and 
 � U � As the dimension
of W is �� the dimension of U is equal to n� �� Write U � f�� 
�� � � � � 
�n����g�

Proposition � � �W � f�g and � � �W � 
j� 	� �� where W � 
j � f� � 
j j� � Wg�
j � 	� � � � � 
n�� � 	�

Proof� � �W � f�g follows from the fact that W is a sub�space of f�g � �c� Next we
consider � � �W � 
j��

Clearly�
Vn �W � �W � 
�� � � � � � �W � 
�n������

In addition�
W � �W � 
j� � �

for j � 	� � � � � 
n�� � 	� and
�W � 
j� � �W � 
i� � �

for any j 	� i� Assume for contradiction that ���W�
j�� � � for some j�� 	 �� j� �� 
n���	�
Then we have W � 
j� 
 �c� In this case W � �W � 
j�� must form a sub�space of Vn�

�



This contradicts the de�nition that W is a linear sub�space with the maximum dimension
in f�g � �c� This completes the proof� ut

The next corollary follows directly from the above proposition�

Corollary � The size of � satis�es j�j �� 
n�� and hence the rank of � is at least n� ��

where � is the maximum dimension a linear sub�space in f�g � �c can achieve�

� Relating Nonlinearity to Propagation Characteristics

We proceed to the discussion of the nonlinearity of f � The main di
culty lies in �nding a
good approximation of h�� �ii for each i � �� � � � � 
n � 	� where � is the sequence of f and �i
is a row of Hn�

First we assume that

W � f	j	 � �a�� � � � � a�� �� � � � � ��� ai � GF �
�g ���

U � f	j	 � ��� � � � � �� a���� � � � � an�� ai � GF �
�g ���

where W is a linear sub�space in f�g � �c that achieves the maximum dimension � and U

is a complementary sub�space of W � The more general case where ��� or ��� is not satis�ed
can be dealt with after employing a nonsingular transform on the input of f � This will be
discussed in the later part of this section�

Recall that � � f�� 	�� � � � � 	sg and ���� � h����� ����i� where ���� is the sequence of
f�x� ��� Since ��	� 	� � for each 	 � � while ��	� � � for each 	 � �c � Vn � �� ��� is
specialized as

��������	��� � � � ���	s��Q � �h�� ��i
�� � � � � h�� ��n��i

��� ���

where � is the sequence of f � �i is the ith row of Hn and Q comprises the �th� 	�th� � � ��
	sth rows of Hn� Note that Q is an �s� 	�� 
n matrix�

Let � be the 	th row of Hn� where 	 � �� Note that 	 can be uniquely expressed as
	 � � � 
� where � � W and 
 � U � Let �� be the �th row of H� and ��� be the 
th row
of Hn��� As Hn � H� �Hn��� � can be represented by � � �� � ���� where � denotes the
Kronecker product�

From the construction of Hn��� we can see that the 
th row of Hn�� is an all�one
sequence of length 
n�� if 
 � �� and a balanced �	��	��sequence of length 
n�� if 
 	� ��

Recall that � �W � f�g �see also Proposition 	�� There are two cases associated with
	 � � � 
 � �� 	 � � and 	 	� �� In the �rst case� � � �� � ��� is the all�one sequence
of length 
n� while in the second case� we have 
 	� � which implies that ��� is a balanced
�	��	��sequence of length 
n�� and hence � � �� � ��� is a concatenation of 
� balanced
�	��	��sequences of length 
n���

Therefore we can write Q � �Q�� Q�� � � � � Q������ where each Qi is a �	��	��matrix of
order �s � 	� � 
n��� It is important to note that the top row of each Qi is the all�one
sequence� while the rest are balanced �	��	��sequences of length 
n���

With Q�� we have

��������	��� � � � ���	s��Q� � �h�� ��i
�� � � � � h�� ��n����i

���

Let �� be the all�one sequence of length 
n��� Then

��������	��� � � � ���	s��Q��
T
� � �h�� ��i

�� � � � � h�� ��n����i
���T� �

�



This causes

��������	��� � � � ���	s��

�
�����

n��

�
���
�

�
����� �

�n����X
j��

h�� �ji
�

and
�n����X
j��

h�� �ji
� � 
n������ � 
n���n � 
�n���

Similarly� with Qi� i � 	� � � � � 
� � 	� we have

�n����X
j��

h�� �j�i�n��i
� � 
�n���

Thus we have the following result�

Lemma � Assume that f � a function on Vn� satis�es the propagation criterion with respect

to all but a subset � of vectors in Vn� Set �c � Vn � � and let W be a linear sub�space

with the maximum dimension �� in f�g � �c� and U be a complementary sub�space of W �
Assume that W and U satisfy ��	 and �
	 respectively� Then

�n����X
j��

h�� �j�i�n��i
� � 
�n��

for all i � �� 	� � � � � 
� � 	� where � is the sequence of f and each �k is a row of Hn�

Lemma � can be viewed as a re�nement of Parseval�s equation
P�n��

j�� h�� �ji
� � 
�n� It

implies that jh�� �jij �� 
n�
�

�
� for all j � �� � � � � 
n � 	� Therefore by Lemma 	 we have

Nf
�
� 
n�� � 
n�

�

�
����

So far we have assumed that W and U satisfy ��� and ��� respectively� When this is not
the case� we can always �nd a nonsingular n � n matrix A whose entries are from GF �
�
such that the sub�spacesW � and U � associated with f ��x� � f�xA� have the required forms�
f � and f have the same algebraic degree and nonlinearity �see Lemma 	� of �SZZ��b��� This
shows that the following theorem is true�

Theorem � For any function on Vn� the nonlinearity of f satis�es Nf
�
� 
n�� � 
n�

�

�
����

where � is the maximum dimension of the linear sub�spaces in f�g � �c�

Theorem 	 indicates that the nonlinearity of a function is determined by the maximum
dimension that a linear sub�spaces in f�g � �c can achieve� but not by the size of �c�

In �SZZ��e�� we have proved that Nf
�
� 
n�� � 


�

�
�n�t���� where t is the rank of �� By

Corollary 	� we have t �� n � �� This implies that 
n�� � 
n�
�

�
��� �

� 
n�� � 

�

�
�n�t����

Thus Theorem 	 is an improvement to the result in �SZZ��e�� This improvement can be
demonstrated by a concrete example� In �SZZ��e�� the following function on V�

f��x�� x�� x�� x	� x�� � �	� x���	� x��x� � �	� x��x�x	 �

x��	� x���x� � x	�� x�x��x	 � x��

�



has been shown to satisfy the propagation criterion with respect to all but the following
�ves vectors in V��

� � f��� �� �� �� ��� ��� �� �� �� 	�� ��� �� �� 	� ��� ��� �� 	� �� ��� ��� �� 	� 	� 	�g�

The rank t of � is equal to �� By using the result of �SZZ��e�� Nf�
�
� 
����


�

�
������� � 
	�


� � �� On the other hand� we can setW � f�a�� a�� a�� a	� a��jai � GF �
�� a��a��a� � �g�
W is a four�dimensional sub�space in f�g � �c� Using Theorem 	 with � � �� we have

Nf�
�
� 
��� � 
��

�

�
��� � 
	 � 
� � 	
 � �� �Note that according to �CKHFMS���� the

maximum nonlinearity a function on V� can achieve is 	
� Hence we have Nf� � 	
��

� A Tight Lower Bound on Nonlinearity of Functions with

Propagation Characteristics

By Theorem 	� Nf
�
� 
n�� � 
n�

�

� if f � a function on Vn� satis�es the propagation criterion
with respect to at least one vector in Vn� This section shows that this lower bound can be
signi�cantly improved� Indeed we prove that Nf

�
� 
n�� and also show that it is tight�

Theorem � If f � a function on Vn� satis�es the propagation criterion with respect to one

or more vectors in Vn� then the nonlinearity of f satis�es Nf
�
� 
n���

Proof� As in the previous sections� we denote by � the set of vectors in Vn with respect to
which the propagation criterion is not satis�ed by f � We also let �c � Vn � �� and W be
a linear sub�space in f�g � �c that achieves the maximum dimension ��

By Theorem 	� the theorem is trivially true when � � 	� Next we consider the case
when � � 	� We prove this part by further re�ning the Parseval�s equation�

As in the proof of Lemma �� without loss of generality� we can assume that

W � f	j	 � �a�� �� � � � � ��� a� � GF �
�g ���

U � f	j	 � ��� a�� � � � � an�� ai � GF �
�g ���

Similarly to Lemma �� we have

�n����X
j��

h�� �
j�i��n��

i� � 
�n��� i � �� 	� �	��

where � is the sequence of f and �k is a row of Hn�
Comparing the �rst row of �
�� we have

�a�� a�� � � � � a�n��� � 
�n�h�� ��i� � � � � h�� ��n��i�Hn

or equivalently�


n�a�� a�� � � � � a�n��� � �h�� ��i� � � � � h�� ��n��i�Hn �		�

where each aj � �	 and �a�� a�� � � � � a�n��� is the �rst row of the matrix M described in
�
��

�



Rewrite �i� the ith row of Hn� as ���i�� where �i is the binary representation of an
integer i in the ascending alphabetical order� Set

N � �h�� ���i � �j�i�� � �� i� j �� 
n � 	�

N is a symmetric matrix of order 
n with integer entries� In �Rot���� Rothaus has shown
that NN � NNT � 
�nI�n � We can split N into four sub�matrices of equal size� namely

N �

�
N� N�

N� N�

�

where each Nj is a matrix of order 
n��� As NN � 
�nI�n � we have N�N� � ��
Let �c����� c����� � � � � c���n������ be an arbitrary linear sequence of length 
n��� Then

�c����� c����� � � � � c���n������ c����� c����� � � � � c���n������

is a linear sequence of length 
n� and hence a row of Hn� Thus from �		�� we have

�n����X
j��

c��j�h�� ���j�i�
�n����X
j��

c��j�h�� ���j � 
n���i � �
n�

Hence

�
�n����X
j��

c��j�h�� ���j�i�
�n����X
j��

c��j�h�� ���j � ��n���i�
� � 
�n� �	
�

Rewrite the left hand side of �	
� as

�
�n����X
j��

c��j�h�� ���j�i�
� � �

�n����X
j��

c��j�h�� ���j � ��n���i�
�

� 
�
�n����X
j��

c��j�h�� ���j�i��
�n����X
j��

c��j�h�� ���j � ��n���i�

where

�
�n����X
j��

c��j�h�� ���j�i��
�n����X
j��

c��j�h�� ���j � ��n���i�

�
�n����X
t��

�n����X
j��

c��j�h�� ���j�ic��j � �t�h�� ���j � �t � ��n���i� �	��

As �c����� c����� � � � � c���n������ is a linear sequence� c��j�c��j � �t� � c��t�� Hence
�	�� can be written as

�n����X
t��

c��t�
�n����X
j��

h�� ���j�ih�� ���j � �t � ��n���i�

Since N�N� � ��
�n����X
j��

h�� ���j�ih�� ���j � �t � ��n���i � ��

	�



This proves that �	�� is equal to zero and hence

�
�n����X
j��

c��j�h�� ���j�i�
� � �

�n����X
j��

c��j�h�� ���j � ��n���i�
� � 
�n�

By Lemma 
�

�n����X
j��

c��j�h�� ���j�i � � or �
n� �	��

Since �c����� c����� � � � � c���n������ is an arbitrary linear sequence of length 
n�� and
each linear sequence of length 
n�� is a column of Hn��� from �	�� we have

�h�� ��i� � � � � h�� ��n��i�Hn�� � 
n�b�� � � � � b�n����� �	��

where bj � � or �	� Therefore

�h�� ��i� � � � � h�� ��n��i�

�

�
���n�Hn�� � 


�

�
�n����b�� � � � � b�n������

Recall that a matrix A of order s is said to be orthogonal if AAT � Is� It is easy to verify
that 


�

�
���n�Hn�� is an orthogonal matrix� Thus

�n��X
j��

h�� ��j i
� � 
n��

�n����X
j��

b�j �

On the other hand� by �	�� we have

�n��X
j��

h�� ��j i
� � 
�n���

Hence
�n����X
j��

b�j �
�n����X
j��

jbj j � 
n���

Now let ���i� denote the ith row of Hn��� where �i � Vn�� is the binary representation
of i� i � �� 	� � � � � 
n�� � 	� From �	���

�h�� ��i� � � � � h�� ��n��i�Hn�����i�
T � 
n�b�� � � � � b�n��������i�

T � �	��

Note that

h���i�� ���j�i �

�

n�� if j � i

� if j 	� i

Thus

Hn�����i�
T �

�
������������

�
���
�


n��

�
���
�

�
������������

�	��

		



where 
n�� is on the ith position of the column vector�
Write ���i� � �d�� d�� � � � � d�n������ Then

�b�� � � � � b�n��������i�
T �

�n����X
j��

djbj �

As dj � �	� we have

j
�n����X
j��

djbj j ��

�n����X
j��

jbjj � 
n��� �	��

From �	��� �	�� and �	��


n��jh�� �iij �� 
n
�n����X
j��

jbj j � 
�n��

and hence
jh�� �iij �� 
n��

where i is an arbitrary integer in ��� � � � � 
n�� � 	�� Similarly�

jh�� �iij �� 
n��

holds for all i � 
n��� 
n�� � 	� � � � � 
n � 	� By Lemma 	� the nonlinearity of f satis�es

Nf
�
� 
n�� � 
n�� � 
n���

This completes the proof� ut

As an immediate consequence� we have

Corollary � Let f be a function on Vn� Then the following statements hold�

�� if the nonlinearity of f satis�es Nf � 
n��� then f does not satisfy the propagation

criterion with respect to any vector in Vn�

�� if f satis�es the SAC� then the nonlinearity of f satis�es Nf
�
� 
n���

Finally we show that the lower bound 
n�� is tight� We achieve the goal by demon�
strating a function on Vn whose nonlinearity is equal to 
n��� Let g�x�� x�� � x�x� be a
function on V�� Then the nonlinearity of g is Ng � 	� Now let f�x�� � � � � xn� � x�x� be
a function on Vn� Then the nonlinearity of f is Nf � 
n��Ng � 
n�� �see for instance
Lemma � of �SZZ��c��� f satis�es the propagation criterion with respect to all vectors in
Vn whose �rst two bits are nonzero� which count for three quarters of the vectors in Vn� It
is not hard to verify that

f��� �� �� � � � � ��� �	� �� �� � � � � ��� ��� 	� �� � � � � ��� �	� 	� �� � � � � ��g

is the linear sub�space that achieves the maximum dimension � � 
�
Thus we have a result described as follows�

Lemma � The lower bound 
n�� as stated in Theorem � is tight�

	




� Conclusion

We have shown quantitative relationships between nonlinearity� propagation characteristics
and the SAC� A tight lower bound on the nonlinearity of a function with propagation
characteristics is also presented�

This research has also introduced a number of interesting problems yet to be resolved�
One of the problems is regarding the size and distribution of �c� the set of vectors where
the propagation criterion is satis�ed by a function on Vn� For all the functions we know of�
�c is either an empty set or a set with at least 
n�� vectors� We believe that any further
understanding of this problem will contribute to the research into the design and analysis
of cryptographically strong nonlinear functions�
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