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Abstract. Secure and authenticated message delivery/storage is one of
the major aims of computer and communication security research. The
current standard method to achieve this aim is “(digital) signature fol-
lowed by encryption”. In this paper, we address a question on the cost
of secure and authenticated message delivery/storage, namely, whether
it is possible to transport/store messages of varying length in a secure
and authenticated way with an expense less than that required by “signa-
ture followed by encryption”. This question seems to have never been
addressed in the literature since the invention of public key cryptogra-
phy. We then present a positive answer to the question. In particular, we
discover a new cryptographic primitive termed as “signcryption” which
simultaneously fulfills both the functions of digital signature and public
key encryption in a logically single step, and with a cost significantly
lower than that required by “signature followed by encryption”. For typ-
ical security parameters for high level security applications (size of public
moduli = 1536 bits), signcryption costs 50% (31%, respectively) less in
computation time and 85% (91%, respectively) less in message expan-
sion than does “signature followed by encryption” based on the discrete
logarithm problem (factorization problem, respectively).
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1 Introduction

To avoid forgery and ensure confidentiality of the contents of a letter, for cen-
turies it has been a common practice for the originator of the letter to sign
his/her name on it and then seal it in an envelope, before handing it over to a
deliverer.
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Public key cryptography discovered nearly two decades ago [7] has revolution-
ized the way for people to conduct secure and authenticated communications. It
is now possible for people who have never met before to communicate with one
another in a secure and authenticated way over an open and insecure network
such as Internet. In doing so the same two-step approach has been followed.
Namely before a message is sent out, the sender of the message would sign it
using a digital signature scheme, and then encrypt the message (and the signa-
ture) using a private key encryption algorithm under a randomly chosen message
encryption key. The random message encryption key would then be encrypted
using the recipient’s public key. We call this two-step approach signature-then-
encryption.

Signature generation and encryption consume machine cycles, and also intro-
duce “expanded” bits to an original message. Hence the cost of a cryptographic
operation on a message is typically measured in the message expansion rate and
the computational time invested by both the sender and the recipient. With the
current standard signature-then-encryption, the cost for delivering a message
in a secure and authenticated way is essentially the sum of the cost for digital
signature and that for encryption.

In this paper, we address a question on the cost of secure and authenticated
message delivery, namely, whether it is possible to transfer a message of arbitrary
length in a secure and authenticated way with an expense less than that required
by signature-then-encryption. This question seems to have never been addressed
in the literature since the invention of public key cryptography. We then present
a positive answer to the question. In particular, we discover a new cryptographic
primitive termed as “signcryption” which simultaneously fulfills both the func-
tions of digital signature and public key encryption in a logically single step, and
with a cost significantly smaller than that required by signature-then-encryption.
The saving in cost grows proportionally to the size of security parameters. Hence
it will be more significant in the future when larger parameters are required to
compensate theoretical and technological advances in cryptanalysis.

2 The Traditional Signature-Then-Encryption Approach

As we mentioned earlier, public key cryptography invented by Diffie and Hell-
man [7] makes it a reality for one (1) to digitally sign a message, and (2) to
send a message securely to another person with whom no common encryption
key has been shared. Currently, the standard approach for a user, say Alice,
to send a secure and authenticated message to another user Bob is signature-
then-encryption. The best example that follows the two-step approach is PEM,
a standard for secure e-mail on Internet [15].

To compare the efficiency of two different methods for secure and authen-
ticated message delivery, we examine two types of “cost” involved: (1) compu-
tational cost, and (2) communication overhead (or storage overhead for stored
messages). The computational cost indicates how much computational effort has
to be invested both by the sender and the recipient of a message. We estimate



the computational cost by counting the number of dominant operations involved.
Typically these operations include private key encryption and decryption, hash-
ing, modulo addition, multiplication, division (inversion), and more importantly,
exponentiation. In addition to computational cost, digital signature and encryp-
tion based on public key cryptography also require extra bits to be appended
to a message. We call these extra “redundant” bits the communication over-
head involved. We say that a message delivery method is superior to another if
(the aggregated value of) the computational cost and communication overhead
required by the former is less than that by the latter.

The first part of Table 2 indicates the computational cost and communi-
cation overhead of “Schnorr signature-then-ElGamal encryption” against that
of “DSS-then-ElGamal encryption” and “RSA signature-then-RSA encryption”.
Note that, although not shown in the table, other combinations such as “Schnorr
signature-then-RSA encryption” and “RSA signature-then-ElGamal encryption”
may also be used in practice. As discussed in [21], with the current state of the
art, computing discrete logarithm on GF (p) and factoring a composite n of the
same size are equally difficult. This simplifies our comparison of the efficiency of
a cryptographic scheme based on RSA against that based on discrete logarithm,
as we can assume that the moduli n and p are of the same size.

We close this section by examining the increasingly disproportionate cost for
secure and authenticated message delivery in the currently standard signature-
then-encryption approach, with an example text of 10000 bits (which corre-
sponds roughly to a 15-line email message). For current and low security level
applications, when RSA is used, the computational cost is centered around the
execution of four (4) exponentiations modulo 512-bit integers, and the commu-
nication overhead is 1024 bits. When Schnorr signature and ElGamal encryption
are used, the computational cost consists mainly of six (6) exponentiations mod-
ulo 512-bit integers, and the communication overhead is about 750 bits.

However, if the contents of the text are highly sensitive, or a text of the
same length will be transmitted in 2010, then very large moduli, say of 5120
bits, might have to be employed. In such a situation, if RSA is used, four (4)
exponentiations modulo (very large!) 5120-bit integers have to be invested in
computation 2, and the communication overhead is 10240 bits, which is now
longer than the original 10000-bit text ! If, instead, Schnorr signature and ElGa-
mal encryption is used, then the computational cost is six (6) exponentiations
modulo (again very large!) 5120-bit integers, and the communication overhead
of about 5560 bits is more than half of the length of the original message. From
this example, one can see that in the signature-then-encryption approach, the
cost, especially communication overhead, for secure and authenticated message
delivery, is becoming disproportionately large for future, or current but high-
level security, applications. This observation serves as further justification on
the necessity of inventing a new and more economical method for secure and
authenticated message delivery.

2 The number of bit operations required by exponentiation modulo an integer is a
cubic function of the size of the modulo.



3 Digital Signcryption — A More Economical Approach

Over the past two decades since public key cryptography was invented, signature-
then-encryption has been a standard method for one to deliver a secure and
authenticated message of arbitrary length, and no one seems to have ever ques-
tioned whether it is absolutely necessary for one to use the sum of the cost for
signature and the cost for encryption to achieve both contents confidentiality
and origin authenticity.

Having posed a question that is of fundamental importance both from a the-
oretical and a practical point of view, we now proceed to tackle it. We will show
how the question can be answered positively by the use of a new cryptographic
primitive called “signcryption” whose definition follows.

Intuitively, a digital signcryption scheme is a cryptographic method that
fulfills both the functions of secure encryption and digital signature, but with a
cost smaller than that required by signature-then-encryption. Using the (informal)
terminology in cryptography, it consists of a pair of (polynomial time) algorithms
(S, U), where S is called the signcryption algorithm, while U the unsigncryption
algorithm. S in general is probabilistic, but U is most likely to be deterministic.
(S, U) satisfy the following conditions:

1. Unique unsigncryptability — Given a message m, the algorithm S signcrypts
m and outputs a signcrypted text c. On input c, the algorithm U unsigncrypts
c and recovers the original message un-ambiguously.

2. Security — (S,U) fulfill, simultaneously, the properties of a secure encryption
scheme and those of a secure digital signature scheme. These properties
mainly include: confidentiality of message contents, unforgeability, and non-
repudiation.

3. Efficiency — The computational cost, which includes the computational time
involved both in signcryption and unsigncryption, and the communication
overhead or added redundant bits, of the scheme is smaller than that re-
quired by the best currently known signature-then-encryption scheme with
comparable parameters.

A direct consequence of having to satisfy both the second and third require-
ments is that “signcryption 6= signature-then-encryption”. These two require-
ments also justify our decision to introduce the new word signcryption which
clearly indicates the ability for the new approach to achieve both the functions
of digital signature and secure encryption in a logically single operation.

The rest of this section is devoted to seeking for concrete implementations of
signcryption. We first identify two (types of) efficient ElGamal-based signature
schemes. Then we show how to use a common property of these schemes to
construct signcryption schemes.

3.1 Shortening ElGamal-Based Signatures

ElGamal digital signature scheme [9] involves two parameters public to all users:
(1) p — a large prime, and (2) g — an integer in [1, . . . , p − 1] with order



p − 1 modulo p. User Alice’s secret key is an integer xa chosen randomly from
[1, . . . , p− 1] with xa 6 | (p− 1) (i.e., xa does not divide p− 1), and her public key
is ya = gxa mod p.

Alice’s signature on a message m is composed of two numbers r and s:

r = gx mod p

s = (hash(m)− xa · r)/xmod (p− 1)

where hash is a one-way hash function, and x is chosen independently at random
from [1, . . . , p− 1] with x6 | (p− 1) every time a message is to be signed by Alice.
Given (m, r, s), one can verify whether (r, s) is Alice’s signature on m by checking
whether ghash(m) = yr

a · rs mod p is satisfied.
Since its publication in 1985, ElGamal signature has received extensive scrutiny

by the research community. In addition, it has been generalized and adapted to
numerous different forms (see for instance [23, 4, 18, 20] and especially [11]
where an exhaustive survey of some 13000 ElGamal based signatures has been
carried out.) Two notable variants of ElGamal signature are Schnorr signa-
ture [23] and DSS or Digital Signature Standard [18]. With DSS, g is an integer
in [1, . . . , p− 1] with order q modulo p, where q is a large prime factor of p− 1.
Alice’s signature on a message m is composed of two numbers r and s which are
defined as

r = (gx mod p)mod q

s = (hash(m) + xa · r)/xmod q

where x is a random number chosen from [1, . . . , q − 1]. Given (m, r, s), one
accepts (r, s) as Alice’s valid signature on m if (ghash(m)/s ·yr/s

a mod p)mod q = r
is satisfied.

For most ElGamal based schemes, the size of the signature (r, s) on a message
is 2|p|, |q|+ |p| or 2|q|, where p is a large prime and q is a prime factor of p− 1.
The size of an ElGamal based signature, however, can be reduced by using a
modified “seventh generalization” method discussed in [11]. In particular, we
can change the calculations of r and s as follows:

1. Calculation of r — Set r = hash(k, m), where k = gx mod q (k = gx mod
(p− 1) if the original r is calculated modulo (p− 1)), x is a random number
from [1, . . . , q] (or from [1, . . . , p−1] with x6 | (p−1)), and hash is a one-way
hash function such as Secure Hash Standard or SHS [19].

2. Calculation of s — For an efficient ElGamal based signature scheme, the
calculation of (the original) s from xa, x, r and optionally, hash(m) involves
only simple arithmetic operations, including modulo addition, subtraction,
multiplication and division. Here we assume that xa is the secret key of Alice
the message originator. Her matching public key is ya = gxa mod p. We can
modify the calculation of s in the following way:
(a) If hash(m) is involved in the original s, we replace hash(m) with a

number 1, but leave r intact. The other way may also be used, namely
we change r to 1 and then replace hash(m) with r.



(b) If s has the form of s = (· · ·)/x, then changing it to s = x/(· · ·) does
not add additional computational cost to signature generation, but may
reduce the cost for signature verification.

To verify whether (r, s) is Alice’s signature on m, we recover k = gx mod p
from r, s, g, p and ya and then check whether hash(k, m) is identical to r.

To illustrate how to shorten ElGamal based signatures, now we consider DSS.
It should be stressed that many other ElGamal based signature schemes, in par-
ticular those defined on a sub-group of order q (see for example [11, 20]), can be
shortened in the same way and are all equally good candidates for signcryption.
Table 1 shows two shortened versions of DSS, which are denoted by SDSS1 and
SDSS2 respectively. Here are a few remarks on the table: (1) the first letter “S”
in the name of a scheme stands for “shortened”, (2) the parameters p, q and g
are the same as those for DSS, (3) x is a random number from [1, . . . , q], xa is
Alice’s secret key and ya = gxa mod p is her matching public key, (4) |t| denotes
the size or length (in bits) of t, (5) the schemes have the same signature size
of |hash(·)| + |q|, (6) SDSS1 is slightly more efficient than SDSS2 in signature
generation, as the latter involves an extra modulo multiplication.

Recently Pointcheval and Stern [22] have proven that Schnorr signature is
unforgeable by any adaptive attacker who is allowed to query Alice’s signature
generation algorithm with messages of his choice [10], in a model where the
one-way hash function used in the signature scheme is assumed to behave like
a random function (the random oracle model). The core idea behind the un-
forgeability proof by Pointcheval and Stern is based on an observation that the
signature has been converted from a 3-move zero-knowledge protocol (for proof
of knowledge) with respect to a honest verifier. With such a signature scheme,
unforgeability against a non-adaptive attacker who is not allowed to possess valid
message-signature pairs follows from the soundness of the original protocol. Fur-
thermore, as the protocol is zero-knowledge with respect to a honest verifier, the
signature scheme converted from it can be efficiently simulated in the random
oracle model. This implies that an adaptive attacker is not more powerful than
a non-adaptive attacker in the random oracle model.

Turning our attention to SDSS1 and SDSS2, both can be viewed as being
converted from a 3-move zero-knowledge protocol (for proof of knowledge) with
respect to a honest verifier. Thus Pointcheval and Stern’s technique is applicable
also to SDSS1 and SDSS2. Summarizing the above discussions, both SDSS1
and SDSS2 are unforgeable by adaptive attackers, under the assumptions that
discrete logarithm is hard and that the one-way hash function behaves like a
random function.

3.2 Implementing Signcryption with Shortened Signature

An interesting characteristic of a shortened ElGamal based signature scheme ob-
tained in the method described above is that although gx mod p is not explicitly
contained in a signature (r, s), it can be recovered from r, s and other pub-
lic parameters. This motivates us to construct a signcryption from a shortened
signature scheme.



Shortened Signature (r, s) Recovery of Length of
schemes on a message m k = gx mod p signature

SDSS1 r = hash(gx mod p, m)
s = x/(r + xa)mod q k = (ya · gr)s mod p |hash(·)|+ |q|

SDSS2 r = hash(gx mod p, m)
s = x/(1 + xa · r)mod q k = (g · yr

a)s mod p |hash(·)|+ |q|
p: a large prime (public to all),
q: a large prime factor of p− 1 (public to all),
g: a (random) integer in [1, . . . , p− 1] with order q modulo p (public to all),
hash: a one-way hash function (public to all),
xa: Alice’s secret key,
ya: Alice’s public key (ya = gxa mod p).

Table 1. Examples of Shortened and Efficient Signature Schemes

We exemplify our construction method using the two shortened signatures
in Table 1. The same construction method is applicable to other shortened sig-
nature schemes based on ElGamal. As a side note, Schnorr’s signature scheme,
without being further shortened, can be used to construct a signcryption scheme
which is slightly more advantageous in computation than other signcryption
schemes from the view point of a message originator.

In describing our method, we will use E and D to denote the encryption and
decryption algorithms of a private key cipher such as DES [17] and SPEED [25].
Encrypting a message m with a key k, typically in the cipher block chaining or
CBC mode, is indicated by Ek(m), while decrypting a ciphertext c with k is
denoted by Dk(c). In addition we use KHk(m) to denote hashing a message m
with a key-ed hash algorithm KH under a key k. An important property of a
key-ed hash function is that, just like a one-way hash function, it is computa-
tionally infeasible to find a pair of messages that are hashed to the same value
(or collide with each other). This implies a weaker property that is sufficient
for signcryption: given a message m1, it is computationally intractable to find
another message m2 that collides with m1. In [2] two methods for constructing a
cryptographically strong key-ed hash algorithm from a one-way hash algorithm
have been demonstrated. For most practical applications, it suffices to define
KHk(m) = hash(k, m), where hash is a one-way hash algorithm.

Assume that Alice also has chosen a secret key xa from [1, . . . , q], and made
public her matching public key ya = gxa mod p. Similarly, Bob’s secret key is xb

and his matching public key is yb = gxb mod p.

The signcryption and unsigncryption algorithms constructed from a short-
ened signature are remarkably simple. For Alice to signcrypt a message m for
Bob, she carries out the following:



Signcryption by Alice the Sender

1. Pick x randomly from [1, . . . , q], and let k = yx
b mod p. Split k into k1 and

k2 of appropriate length. (Note: one-way hashing, or even simple folding,
may be applied to k prior splitting, if k1 or k2 is too long to fit in E or
KH, or one wishes k1 and k2 to be dependent on all bits in k. )

2. r = KHk2(m).
3. s = x/(r + xa)mod q if SDSS1 is used, or

s = x/(1 + xa · r)mod q if SDSS2 is used instead.
4. c = Ek1(m).
5. Send to Bob the signcrypted text (c, r, s).

The unsigncryption algorithm works by taking advantages of the property
that gx mod p can be recovered from r, s, g, p and ya by Bob. On receiving
(c, r, s) from Alice, Bob unsigncrypts it as follows:

Unsigncryption by Bob the Recipient

1. Recover k from r, s, g, p, ya and xb:
k = (ya · gr)s·xb mod p if SDSS1 is used, or
k = (g · yr

a)s·xb mod p if SDSS2 is used.
2. Split k into k1 and k2.
3. m = Dk1(c).
4. accept m as a valid message originated from Alice only if KHk2(m) is iden-

tical to r.

In the following, the two examples of signcryption schemes will be denoted
by SCS1 and SCS2 respectively. For the purpose of a detailed comparison, the
cost of these signcryption schemes has been analyzed and listed, along with other
signature-then encryption schemes, in Table 2.

Finally two remarks follow: (1) signcryption schemes can also be derived from
shortened signature schemes based on the discrete logarithm problem on elliptic
curves [13]. (2) the functions, especially non-repudiation and unforgeability, of
signcryption may not be fully implemented by the use of a shared key between
Alice and Bob, such as gxa·xb mod p or a key obtained via a Key Pre-distribution
Scheme [16], unless tamper-resistant devices and/or trusted third parties are
involved.

3.3 Working with Signature-Only and Encryption-Only Modes

Not all messages require both confidentiality and integrity. Some messages may
need to be signed only, while others may need to be encrypted only. For the
two digital signcryption schemes SCS1 and SCS2, when a message is sent in
clear, they degenerate to signature schemes with verifiability by the recipient



only. As will be argued in Section 6, limiting verifiability to the recipient only
still preserves non-repudiation, and may represent an advantage for some appli-
cations where the mere fact that a message is originated from Alice needs to be
kept secret. Furthermore, if Alice uses g instead of Bob’s public key yb in the
calculation of k, the schemes becomes corresponding shortened ElGamal based
signature schemes with universal verifiability.

To work with the encryption-only mode, one may simply switch to the El-
Gamal encryption, or any other public key encryption scheme.

Various Computational Communication
schemes cost overhead (in bits)

signature-then-encryption EXP=2, HASH=1, ENC=1 |na|+ |nb|
based on RSA [EXP=2, HASH=1, DEC=1]

signature-then-encryption EXP=3, MUL=1, DIV=1 2|q|+ |p|
based on ADD=1, HASH=1, ENC=1
DSS + [EXP=3, MUL=1, DIV=2
ElGamal encryption ADD=0, HASH=1, DEC=1]

signature-then-encryption EXP=3, MUL=1, DIV=0 |KH·(·)|+ |q|+ |p|
based on ADD=1, HASH=1, ENC=1
Schnorr signature + [EXP=3, MUL=1, DIV=0
ElGamal encryption ADD=0, HASH=1, DEC=1]

signcryption EXP=1, MUL=0, DIV=1 |KH·(·)|+ |q|
SCS1 ADD=1, HASH=1, ENC=1

[EXP=2, MUL=2, DIV=0
ADD=0, HASH=1, DEC=1]

signcryption EXP=1, MUL=1, DIV=1 |KH·(·)|+ |q|
SCS2 ADD=1, HASH=1, ENC=1

[EXP=2, MUL=2, DIV=0
ADD=0, HASH=1, DEC=1]

where
EXP = the number of modulo exponentiations,
MUL = the number of modulo multiplications,
DIV = the number of modulo division (inversion),
ADD = the number of modulo addition or subtraction,
HASH = the number of one-way or key-ed hash operations,
ENC = the number of encryptions using a private key cipher,
DEC = the number of decryptions using a private key cipher,
Parameters in the brackets indicate the number of operations involved in
“decryption-then-verification” or “unsigncryption”.

Table 2. Cost of Signature-Then-Encryption v.s. Cost of Signcryption



4 Cost of Signcryption v.s. Cost of Signature-Then-
Encryption

The most significant advantage of signcryption over signature-then-encryption
lies in the dramatic reduction of computational cost and communication over-
head which can be symbolized by the following inequality:

Cost(signcryption) < Cost(signature) + Cost(encryption).

With SCS1 and SCS2, this advantage is shown in Tables 3 and 4.
Note that when comparing with RSA based signature-then-encryption, we

have assumed that a relatively small public exponent e is employed for en-
cryption or signature verification, although cautions should be taken in light
of recent progress in cryptanalysis against RSA with an small exponent (see for
example [6]). Therefore the main computational cost for RSA based signature-
then-encryption is in decryption or signature generation which generally involves
a modulo exponentiation with a full size exponent d. We have further assumed
that the Chinese Remainder Theorem is used, so that the computational expense
for RSA decryption can be reduced, theoretically, to a quarter of the expense
with a full size exponent.

security parameters saving in saving in
|p|, |q|, |KH·(·)|(= |hash(·)|) comp. cost comm. overhead

768, 152, 80 50% 76.8%

1024, 160, 80 50% 81.0%

2048, 192, 96 50% 87.7%

4096, 256, 128 50% 91.0%

8192, 320, 160 50% 94.0%

10240, 320, 160 50% 96.0%

saving in comp. cost = 3 modulo exponentiations
6 modulo exponentiations

= 50%

saving in comm. cost = |hash(·)|+|q|+|p|−(|KH·(·)|+|q|)
|hash(·)|+|q|+|p|

Table 3. Saving of Signcryption over Signature-Then-Encryption Using Schnorr Sig-
nature and ElGamal Encryption

4.1 How the Parameters are Chosen

Advances in fast computers help an attacker in increasing his capability to break
a cryptosystem. To compensate this, larger security parameters, including |na|,
|nb|, |p|, |q| and |KH·(·)| must be used in the future. From an analysis by
Odlyzko [21] on the hardness of discrete logarithm, one can see that unless there
is an algorithmic breakthrough in solving the factorization or discrete logarithm



security parameters advantage in advantage in
|p|(= |na| = |nb|), |q|, |KH·(·)| comp. cost comm. overhead

768, 152, 80 0% 84.9%

1024, 160, 80 6.25% 88.3%

2048, 192, 96 43.8% 93.0%

4096, 256, 128 62.0% 95.0%

8192, 320, 160 77.0% 97.0%

10240, 320, 160 81.0% 98.0%

advantage in comp. cost = 0.375(|na|+|nb|)−4.5|q|
0.375(|na|+|nb|)

advantage in comm. cost = |na|+|nb|−(|KH·(·)|+|q|)
|na|+|nb|

Table 4. Advantage of Signcryption over RSA based Signature-Then-Encryption with
Small Public Exponents

problem, |q| and |KH·(·)| can be increased at a smaller pace than can |na|, |nb|
and |p|. Thus, as shown in Tables 3 and 4, the saving or advantage in computa-
tional cost and communication overhead by signcryption will be more significant
in the future when larger parameters must be used.

The selection of security parameters |p|, |q|, |na| and |na| in Tables 3 and 4,
has been partially based on recommendations made in [21]. The parameter values
in the tables, however, are indicative only, and can be determined flexibly in
practice. We also note that choosing |KH·(·)| ≈ |q|/2 is due to the fact that
using Shank’s baby-step-giant-step or Pollard’s rho method, the complexity of
computing discrete logarithms in a sub-group of order q is O(

√
q) (see [14]).

Hence choosing |KH·(·)| ≈ |q|/2 will minimize the communication overhead
of the signcryption schemes SCS1 and SCS2. Alternatively, one may decide to
choose KH·(·) ∈ [1, . . . , q] which can be achieved by setting |KH·(·)| = |q| − 1.
This will not affect the computational advantage of the signcryption schemes,
but slightly increase their communication overhead.

5 Applications of Signcryption

As discussed in the introduction, a major motivation of this work is to search for
a more economical method for secure and authenticated transactions/message
delivery. If digital signcryptions are applied in this area, the resulting benefits
are potentially significant: for every single secure and authenticated electronic
transaction, we may save 50% in computational cost and 85% in communication
overhead.

The proposed signcryption schemes are compact and particularly suitable
for smart card based applications. We envisage that they will find innovative
applications in many areas including digital cash payment systems, EDI and
personal heath cards. Of particular importance is the fact that signcryption



may be used to design more efficient digital cash transaction protocols that are
often required to provide with both the functionality of digital signature and
encryption.

In the full paper we also show how to adapt a signcryption scheme into one for
broadcast communication which involves multiple recipients. Such an adapted
scheme shares a comparable computational cost with a broadcast scheme pro-
posed in RFC1421. The communication overhead required by the scheme based
on signcryption, however, is multiple times lower than that required the scheme
in RFC1421.

Another surprising property of the proposed signcryption schemes is that
it enables us to carry out fast, secure, unforgeable and non-repudiatable key
transport in a single block whose size is smaller than |p|. In particular, using
either of the two signcryption schemes, we can transport highly secure and au-
thenticated keys in a single ATM cell (48 byte payload + 5 byte header). A
possible combination of parameters is |p| ≥ 512, |q| = 160, and |KH·(·)| = 80,
which would allow the transport of an unforgeable and non-repudiatable key of
up to 144 bits. Advantages of such a key transport scheme over interactive key
exchange protocols such as those proposed in [8] are obvious, both in terms of
computational efficiency and compactness of messages. Compared with previous
attempts for secure, but un-authenticated, key transport based on RSA (see for
example [1, 12]), our key transport scheme has a further advantage in that it of-
fers both unforgeability and non-repudiation. In a similar way, a multi-recipient
signcryption scheme can be used as a very economical method for generating
conference keys among a group of users.

6 Unforgeability, Non-repudiation and Confidentiality of
Signcryption

Like any cryptosystem, security of signcryption in general has to address two
aspects: (1) to protect what, and (2) against whom. With the first aspect, we
wish to prevent the contents of a signcrypted message from being disclosed to
a third party other than Alice, the sender, and Bob, the recipient. At the same
time, we also wish to prevent Alice, the sender, from being masquerade by other
parties, including Bob. With the second aspect, we consider the most powerful
attackers one would be able to imagine in practice, namely adaptive attackers
who are allowed to have access to Alice’s signcryption algorithm and Bob’s
unsigncryption algorithm.

We say that a signcryption scheme is secure if the following conditions are
satisfied:

1. Unforgeability — it is computationally infeasible for an adaptive attacker
(who may be a dishonest Bob) to masquerade Alice in creating a signcrypted
text.

2. Non-repudiation — it is computationally feasible for a third party to settle a
dispute between Alice and Bob in an event where Alice denies the fact that
she is the originator of a signcrypted text with Bob as its recipient.



3. Confidentiality — it is computationally infeasible for an adaptive attacker
(who may be any party other than Alice and Bob) to gain any partial infor-
mation on the contents of a signcrypted text.

A detailed description of the proofs/arguments of the security of the sign-
cryption schemes SCS1 and SCS2 can be found in the full paper. Here are the
key ideas used in the proofs/arguments:

1. Unforgeability — this can be done using the technique of Pointcheval and
Stern [22].

2. Non-repudiation — A dispute between Alice and Bob can be settled by
a trusted third party (say a judge), by the use of a zero-knowledge proof
protocol between the judge and Bob. In particular, they can use a very simple
4-move zero-knowledge interactive proof protocol proposed by Chaum in [5].

3. Confidentiality — We achieve our goal by reduction: we will reduce the con-
fidentiality of another encryption scheme called Ckh, whose confidentiality
is relatively well-understood, to the confidentiality of a signcryption scheme
(say SCS1). With the encryption scheme Ckh, the ciphertext of a message
m is defined as ( u = gx mod p, c = Ek1(m), r = KHk2(m) ) where k1 and
k2 are defined in the same way as in SCS1. Ckh is a slightly modified version
of a scheme that has received special attention in [24, 3] (see also earlier
work [26].)
Now assume that there is an attacker for SCS1. Call this attacker ASCS1.
We show how ASCS1 can be translated into one for Ckh, called ACkh

. Note
that for a message m, the input to ASCS1 includes q, p, g, ya = gxa mod p,
yb = gxb mod p, u = gx mod p, c = Ek1(m), r = KHk2(m). With the attacker
ACkh

for Ckh, however, its input includes: q, p, g, yb = gxb mod p, u =
gx mod p, c = Ek1(m), and r = KHk2(m). One immediately identifies that
two numbers that correspond to ya and s which are needed by ASCS1 as
part of its input are currently missing from the input to ACkh

. Thus, in
order for ACkh

to “call” the attacker ASCS1 “as a sub-routine”, ACkh
has to

create two numbers corresponding to ya and s in the input to ASCS1. Call
these two yet-to-be-created numbers y′a and s′. y′a and s′ have to have the
right form so that ACkh

can “fool” ASCS1. It turns out that such y′a and s′

can be easily created by ACkh
as follows: (1) pick a random number s′ from

[1, . . . , q]. (2) let y′a = u1/s′ · g−r mod p.

A final note on signcryption follows. Unlike signature-then-encryption, the
verifiability of a signcryption is in normal situations limited to Bob the recipient,
as his secret key is required for unsigncryption. At the first sight, the limited
verifiability of a signcryption, namely the direct verifiability by the sender only
(and indirect verifiability by a judge with the cooperation of Bob), may be seen
as a drawback of signcryption. Here we argue that the limited direct verifiability
will not pose any problem in practice and hence should not be an obstacle to
practical applications of signcryption. In the real life, a message sent to Bob in
a secure and authenticated way is meant to be readable by Bob only. Thus if
there is no dispute between Alice and Bob, direct verifiability by Bob only is



precisely what the two users want. In other words, in normal situations where
no disputes between Alice and Bob occur, the full power of universal verifiability
provided by digital signature is never needed. (For a similar reason, traditionally
one uses signature-then-encryption, rather than encryption-then-signature !) In
a situation where repudiation does occur, interactions between Bob and a judge
would follow. This is very similar to a dispute on repudiation in the real world,
say between a complainant (Bob) and a defendant (Alice), where the process
for a judge to resolve the dispute requires in general interactions between the
judge and the complainant, and furthermore between the judge and an expert
in hand-written signature identification, as the former may rely on advice from
the latter in correctly deciding the origin of a message.

7 Conclusion

We have introduced a new cryptographic primitive called signcryption for secure
and authenticated message delivery, which fulfills all the functions of digital sig-
nature and encryption, but with a far smaller cost than that required by the cur-
rent standard signature-then-encryption methods. Security of the signcryption
schemes has been proven, and extensions of the schemes to multiple recipients
has been carried out. We believe that the new primitive will open up a number
of avenues for future research into more efficient security solutions.

The signcryption schemes proposed in this paper have been based on ElGa-
mal signature and encryption. We have not been successful in searching for a
signcryption scheme employing RSA or other public key cryptosystems. There-
fore it remains a challenging open problem to design signcryption schemes based
factorization or other computationally hard problems.
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