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Abstract

We study the following two kinds of one-way hash functions: universal one-
way hash functions (UOHs) and collision intractable hash functions (CIHs).
The main property of the former is that given an initial-string x, it is com-
putationally difficult to find a different string y that collides with x. And the
main property of the latter is that it is computationally difficult to find a pair
x 6= y of strings such that x collides with y. Our main results are as follows.
First we prove that UOHs with respect to initial-strings chosen arbitrarily exist
if and only if UOHs with respect to initial-strings chosen uniformly at random
exist. Then, as an application of the result, we show that UOHs with respect to
initial-strings chosen arbitrarily can be constructed under a weaker assumption,
the existence of one-way quasi-injections. Finally, we investigate relationships
among various versions of one-way hash functions. We prove that some versions
of one-way hash functions are strictly included in others by explicitly construct-
ing hash functions that are one-way in the sense of the former but not in the
sense of the latter.

1 Introduction

One-way hash functions are a principal primitive in cryptography. There are roughly

two kinds of one-way hash functions: universal one-way hash functions (UOHs) and

collision intractable hash functions (CIHs). The main property of the former is that

given an initial-string x, it is computationally difficult to find a different string y



that collides with x. And the main property of the latter is that it is computation-

ally difficult to find a pair x 6= y of strings such that x collides with y. Naor and

Yung constructed UOHs under the assumption of the existence of one-way injections

(i.e., one-way one-to-one functions) [NY89], and Damg̊ard constructed CIHs under

a stronger assumption, the existence of claw-free pairs of permutations [Dam89]. In

[NY89], Naor and Yung also presented a general method for transforming any UOH

into a secure digital signature scheme. We are interested both in constructing UOHs

under weaker assumptions and in relationships among various versions of one-way

hash functions. Our main results are summarized as follows.

First, we prove that UOHs with respect to initial-strings chosen uniformly at ran-

dom can be transformed into UOHs with respect to initial-strings chosen arbitrarily .

Thus UOHs with respect to initial-strings chosen arbitrarily exist if and only if UOHs

with respect to initial-strings chosen uniformly at random exist. The proof is con-

structive, and may significantly simplify the construction of UOHs with respect to

initial-strings chosen arbitrarily, under the assumption of the existence of one-way

functions. Then, as an application of the transformation result, we prove that UOHs

with respect to initial-strings chosen arbitrarily can be constructed under a weaker as-

sumption, the existence of one-way quasi-injections (whose definition is to be given in

Section 5). Next, we investigate relationships among various versions of one-way hash

functions. We show that some versions of one-way hash functions are strictly included

in others by explicitly constructing hash functions that are one-way in the sense of

the former but not in the sense of the latter. A simple method, which appears in

[ZMI90], for constructing UOHs from one-way permutations whose (simultaneously)

hard bits have been identified is described in Appendix.

2 Notation and Definitions

The set of all positive integers is denoted by N. Let Σ = {0, 1} be the alphabet we

consider. For n ∈ N, denote by Σn the set of all strings over Σ with length n, by Σ∗

that of all finite length strings including the empty string, denoted by λ, over Σ, and

by Σ+ the set Σ∗−{λ}. The concatenation of two strings x, y is denoted by x ¦ y, or

simply by xy if no confusion arises. The length of a string x is denoted by |x|, and

the number of elements in a set S is denoted by ]S.

Let ` be a monotone increasing function from N to N, and f a (total) function

from D to R, where D =
⋃

n Dn, Dn ⊆ Σn, and R =
⋃

n Rn, Rn ⊆ Σ`(n). D is called

the domain, and R the range of f . For simplicity of presentation, in this paper we

always assume that Dn = Σn and Rn = Σ`(n). Denote by fn the restriction of f on Σn.

We are concerned only with the case when the range of fn is Σ`(n), i.e., fn is a function

from Σn to Σ`(n). f is an injection if each fn is a one-to-one function, and is a permu-

tation if each fn is a one-to-one and onto function. f is (deterministic/probabilistic)



polynomial time computable if there is a (deterministic/probabilistic) polynomial (in

|x|) time algorithm (Turing machine) computing f(x) for all x ∈ D. The composition

of two functions f and g is defined as f ◦ g(x) = f(g(x)). In particular, the i-fold

composition of f is denoted by f (i).

A (probability) ensemble E with length `(n) is a family of probability distributions

{En|En : Σ`(n) → [0, 1], n ∈ N}. The uniform ensemble U with length `(n) is the

family of uniform probability distributions Un, where each Un is defined as Un(x) =

1/2`(n) for all x ∈ Σ`(n). By x ∈E Σ`(n) we mean that x is randomly chosen from Σ`(n)

according to En, and in particular, by x∈RS we mean that x is chosen from the set

S uniformly at random. E is samplable if there is a (probabilistic) algorithm M that

on input n outputs an x ∈E Σ`(n), and polynomially samplable if furthermore, the

running time of M is polynomially bounded.

Now we introduce the notion for one-way functions , a topic that has received

extensive research (see for examples [Yao82] [Wa88] [ILL89]).

Definition 1 Let f : D → R, where D =
⋃

n Σn and R =
⋃

n Σ`(n), be a polynomial

time computable function, and let E be an ensemble with length n. (1) f is one-way

with respect to E if for each probabilistic polynomial time algorithm M , for each

polynomial Q and for all sufficiently large n, Pr{fn(x) = fn(M(fn(x)))} < 1/Q(n),

when x ∈E Σn. (2) f is one-way if it is one-way with respect to the uniform ensemble

U with length n.

There are two basic computation models: Turing machines and combinational

circuits (see for examples [Pip79] [KL82] [BDG88]). The above definition for one-way

functions is with respect to the Turing machine model. A stronger version of one-

way functions that is with respect to the circuit model can be obtained by changing

algorithms M in the above definition to families M = {Mn | n ∈ N} of polynomial

size circuits.

3 Universal One-Way Hash Functions

The central concept treated in this paper is one-way hash functions. Two kinds of

one-way hash functions have been considered in the literature: universal one-way

hash functions and collision-intractable hash functions (or shortly UOHs and CIHs,

respectively). In [Mer89] the former is called weakly and the latter strongly , one-way

hash functions respectively. Naor and Yung gave a formal definition for UOH [NY89],

and Damg̊ard gave for CIH [Dam89]. In this section, a formal definition for UOH

that is more general than that of [NY89] is given. We feel our formulation more

reasonable. This will be explained after the formulation is introduced. CIH will be

treated in later sections.



Let ` be a polynomial with `(n) > n, H be a family of functions defined by

H =
⋃

n Hn where Hn is a (possibly multi-)set of functions from Σ`(n) to Σn. Call H

a hash function compressing `(n)-bit input into n-bit output strings. For two strings

x, y ∈ Σ`(n) with x 6= y, we say that x and y collide with each other under h ∈ Hn, or

(x, y) is a collision pair for h, if h(x) = h(y).

H is polynomial time computable if there is a polynomial (in n) time algorithm

computing all h ∈ H, and accessible if there is a probabilistic polynomial time algo-

rithm that on input n ∈ N outputs uniformly at random a description of h ∈ Hn. It

is assumed that all hash functions considered in this paper are both polynomial time

computable and accessible.

Let H be a hash function compressing `(n)-bit input into n-bit output strings,

and E an ensemble with length `(n). The definition for UOH is best described as

a three-party game. The three parties are S (an initial-string supplier), G (a hash

function instance generator) and F (a collision-string finder). S is an oracle whose

power is un-limited, and both G and F are probabilistic polynomial time algorithms.

The first move is taken by S, who outputs an initial-string x ∈E Σ`(n) and sends it

to both G and F . The second move is taken by G, who chooses, independently of

x, an h∈RHn and sends it to F . The third and also final (null) move is taken by F ,

who on input x ∈ Σ`(n) and h ∈ Hn outputs either “?” (I don’t know) or a string

y ∈ Σ`(n) such that x 6= y and h(x) = h(y). F wins a game iff his/her output is not

equal to “?”. Informally, H is a universal one-way hash function with respect to E

if for any collision-string finder F , the probability that F wins a game is negligible.

More precisely:

Definition 2 Let H be a hash function compressing `(n)-bit input into n-bit output

strings, P a collection of ensembles with length `(n), and F a collision-string finder.

H is a universal one-way hash function with respect to P , denoted by UOH/P , if

for each E ∈ P , for each F , for each polynomial Q, and for all sufficiently large n,

Pr{F (x, h) 6=?} < 1/Q(n), where x and h are independently chosen from Σ`(n) and

Hn according to En and to the uniform distribution over Hn respectively, and the

probability Pr{F (x, h) 6=?} is computed over Σ`(n), Hn and the sample space of all

finite strings of coin flips that F could have tossed.

If P consists of a single ensemble E (i.e., P = {E}), UOH/E is synonymous with

UOH/P . Of particular interest are the following versions of UOH: (1) UOH/EN [`],

where EN [`] is the collection of all ensembles with length `(n). (2) UOH/PSE[`],

where PSE[`] is the collection of all polynomially samplable ensembles with length

`(n). (3) UOH/U , where U is the uniform ensemble with length `(n).

In [NY89], Naor and Yung gave a definition for UOH. They did not separate

initial-string ensembles from collision-string finders. Instead, they introduced a prob-

abilistic polynomial time algorithm A(·, ·), called a collision adversary that works



in two stages: At the first stage, the algorithm A, on input (λ, λ) where λ de-

notes the empty string, outputs an initial value (corresponding to our initial-string)

x = A(λ, λ) ∈ Σ`(n). At the second stage, it, when given an h ∈ Hn, attempts to find

a string y = A(x, h) ∈ Σ`(n) such that x 6= y and h(x) = h(y).

Thus Naor and Yung defined, in our terms, universal one-way hash function with

respect to polynomially samplable ensembles with length `(n), i.e., UOH/PSE[`]. Naor

and Yung constructed one-way hash functions in the sense of UOH/PSE[`] under the

assumption of the existence of one-way injections [NY89]. Note that they actually

obtained a construction for one-way hash functions in the sense of UOH/EN [`]. In

[ZMI90] we construct, in a different approach, one-way hash functions in the sense

of UOH/EN [`] under the assumption of the existence of one-way permutations. See

Appendix for the description of the construction.

Separating initial-string ensembles from collision-string finders is conceptually

much clearer, and enables us to reduce the problem of constructing one-way hash

functions in the sense of UOH/EN [`] (the “strongest” UOHs) to that of constructing

one-way hash functions in the sense of UOH/U (the “weakest” UOHs). This topic is

treated in Section 4.

The above definition for UOH is with respect to the Turing machine model. As

a natural counterpart of UOH/P , where P is a set of ensembles with length `(n),

we have UOHC/P , whose definition is obtained simply by changing probabilistic

polynomial time algorithms F in Definition 2 to families F = {Fn | n ∈ N} of

polynomial size circuits.

The definition for UOH can also be generalized in another direction: In addition

to x ∈ Σ`(n) and h ∈ Hn, a collision-string finder F is allowed to receive an extra

advice string a. As before, the output of F is either “?” or a string y ∈ Σ`(n) such

that x 6= y and h(x) = h(y).

Definition 3 Let H be a hash function compressing `(n)-bit input into n-bit output

strings. H is a universal one-way hash function with respect to polynomial length

advice, denoted by UOH/EN [poly], if for each pair (Q1, Q2) of polynomials with

Q1(n) ≥ `(n), for each ensemble E with length Q1(n), for each collision-string finder

F , and for all sufficiently large n, Pr{F (x, a, h) 6=?} < 1/Q2(n), where x ∈ Σ`(n),

a ∈ ΣQ1(n)−`(n), x ¦ a and h are independently chosen from ΣQ1(n) and Hn accord-

ing to En and to the uniform distribution over Hn respectively, and the probability

Pr{F (x, a, h) 6=?} is computed over ΣQ1(n), Hn and the sample space of all finite

strings of coin flips that F could have tossed.

Notice the difference between Turing machines taking advice discussed in [Pip79]

[KL82] and collision-string finders in our Definition 3. In the former case, advice

strings are uniquely determined for each n ∈ N. While in the latter case, they are

generated probabilistically. In Section 7, we will discuss relationships among various



versions of one-way hash functions including UOH/U , UOH/PSE[`], UOH/EN [`],

UOHC/EN [`], and UOH/EN [poly].

4 Transforming UOH/U into UOH/EN [`]

Let P1, P2 be collections of ensembles with length `(n). We say that UOH/P1 is trans-

formable into UOH/P2 iff given a one-way hash function H in the sense of UOH/P1,

we can construct from H a one-way hash function H ′ in the sense of UOH/P2. The

main result of this section is Theorem 1 to be proved below, which states that UOH/U

is transformable into UOH/EN [`]. Thus constructing one-way hash functions in the

sense of UOH/EN [`] under certain assumptions can be fulfilled in two steps: At the

first step, we construct one-way hash functions in the sense of UOH/U . This would be

easier, since a uniform ensemble would be easier to handle than arbitrary ones. Then

at the second step, we apply the proof technique for Theorem 1 to obtain one-way

hash functions in the sense of UOH/EN [`].

To prove Theorem 1, we require a function family called an invertible uniformizer .

Let Tn be a set of permutations over Σ`(n), and let T =
⋃

n Tn. T is a uniformizer with

length `(n) if it has the following properties 1, 2 and 3. Furthermore, F is invertible

if it also has the following property 4.

1. For each n, for each pair of strings x, y ∈ Σ`(n), there are exactly ]Tn/2`(n)

permutations in Tn that map x to y.

2. There is a probabilistic polynomial time algorithm that on input n outputs a

t∈RTn.

3. There is a polynomial time algorithm that computes all t ∈ T .

4. There is a polynomial time algorithm that computes t−1 for all t ∈ T .

The first property implies that for any n ∈ N and any x ∈ Σ`(n), when t is chosen

randomly and uniformly from Tn, the probability that t(x) coincides with a particular

y ∈ Σ`(n) is (]Tn/2`(n))/]Tn = 1/2`(n), i.e., t(x) is distributed randomly and uniformly

over Σ`(n).

Now we give a concrete invertible uniformizer with length `(n). Note that there is a

natural one-to-one correspondence between strings of Σ`(n) and elements of GF (2`(n)).

So we will not distinguish GF (2`(n)) from Σ`(n). Let a and b be elements of GF (2`(n))

with a 6= 0. Then the affine transformation t defined by t(x) = a · x + b is a permu-

tation over GF (2`(n)), where · and + are multiplication and addition over GF (2`(n))

respectively. Denote by Tn the set of all the affine transformations on GF (2`(n)) de-

fined as above. Clearly, ]Tn = 2`(n)(2`(n) − 1), and for any elements x, y ∈ GF (2`(n)),

there are exactly (2`(n) − 1) = ]Tn/2
`(n) affine transformations in Tn that map x to



y. In addition, generating t∈RTn is easy, and for all t ∈ T , computing t and t−1 are

simple tasks. Thus T =
⋃

n Tn is an invertible uniformizer with length `(n). In sec-

tion 5, T will once again play a crucial role in constructing one-way hash functions in

the sense of UOH/EN [`] from one-way quasi-injections. Now we are ready to prove

the following:

Theorem 1 UOH/U is transformable into UOH/EN [`]. 1

Proof : Assume that H is a one-way hash function in the sense of UOH/U , where

U is the uniform ensemble with length `(n). We show how to construct from H a

hash function H ′ that is one-way in the sense of UOH/EN [`].

Let T =
⋃

n Tn be an invertible uniformizer with length `(n). Given H and

T =
⋃

n Tn, we construct H ′ as follows: H ′ =
⋃

n H ′
n, where H ′

n = {h′ | h′ = h ◦ t, h ∈
Hn, t ∈ Tn}. We claim that H ′ is one-way in the sense of UOH/EN [`].

Assume for contradiction that H ′ is not one-way in the sense of UOH/EN [`]. Then

there are a polynomial Q, an infinite subset N′ ⊆ N, an ensemble E ′ with length

`(n) and a probabilistic polynomial time algorithm F ′ such that for all n ∈ N′, the

algorithm F ′, on input x′ ∈E′ Σ`(n) and h′∈RH ′
n, finds with probability 1/Q(n) a

string y′ ∈ Σ`(n) with x′ 6= y′ and h′(x′) = h′(y′). Now we show how to derive from

F ′ a collision-string finder F that for all n ∈ N′, on input x∈RΣ`(n) and h∈RHn

where x is produced in a particular way to be described below, outputs with the

same probability 1/Q(n) a string y ∈ Σ`(n) with x 6= y and h(x) = h(y).

Let M be a probabilistic Turing machine with an oracle O that on input n outputs

an x′ ∈E′ Σ`(n). M produces x∈RΣ`(n) in the following particular way:

1. Query the oracle O with n. Denote by x′ the string answered by O. (Note that

the oracle O is indispensable, as E ′ may be not samplable.)

2. Generate an s∈RTn using its random tape.

3. Output x = s(x′).

From the first property of the uniformizer T =
⋃

n Tn, we know that the ensemble EM

defined by the output of M is the uniform ensemble with length `(n).

Let F be a probabilistic Turing machine. F uses the same random tape as M ’s

and its read-only head for the random tape is in the same position as M ’s at the

outset. On input x ∈EM
Σ`(n) and h∈RHn, (important note: since EM is the uniform

ensemble with length `(n), x ∈EM
Σ`(n) is equivalent to x∈RΣ`(n)), F works as follows:

1. Generate a t∈RTn using the random tape and in the same way as M does. Since

M shares the random tape with F , we have t = s.

1De Santis and Yung obtained, independently, this theorem too [DY90].



2. Calculate z = t−1(x). Since t = s, we have z = x′ ∈E′ Σ`(n).

3. Call F ′ with input (z, h′), where h′ = h ◦ t. Note that h′∈RH ′
n, since h∈RHn

and t∈RTn.

4. Let y′ = F ′(z, h′). Output y = y′ whenever y′ =?, and y = t(y′) otherwise.

Since F ′ is polynomial time bounded, F is also polynomial time bounded. Further-

more, since t is a permutation over Σ`(n), we have y 6=? (i.e. x 6= y and h(x) = h(y))

iff y′ 6=? (i.e. x′ 6= y′ and h′(x′) = h′(y′)). Thus for all n ∈ N′, F outputs, with the

same probability 1/Q(n), a string y such that x 6= y and h(x) = h(y), which implies

that H is not a one-way hash function in the sense of UOH/U , a contradiction.

From the above discussions we know that H ′ is indeed a one-way hash function

in the sense of UOH/EN [`]. This completes the proof. 2

A significant corollary of Theorem 1 is:

Corollary 1 One-way hash functions in the sense of UOH/EN [`] exist iff those in

the sense of UOH/U exist.

5 UOHs Based on a Weakened Assumption

As an application of Theorem 1, in this section we construct one-way hash functions

in the sense of UOH/EN [`] under a weaker assumption — the existence of one-way

quasi-injections. Main ingredients of our construction include (1) one-way quasi-

injections, (2) universal hash functions with the collision accessibility property, (3)

pair-wise independent uniformizers and, (4) invertible uniformizers. Our construction

is partially inspired by [NY89].

5.1 Preliminaries

Assume that f is a one-way function from
⋃

n Σn to
⋃

n Σ`(n). A string x ∈ Σn is said

to have a brother if there is a string y ∈ Σn such that fn(x) = fn(y).

Definition 4 A one-way function f is a one-way quasi-injection iff for any poly-

nomial Q and for all sufficiently large n ∈ N, ]Bn/2n < 1/Q(n) where Bn is the

collection of all strings in Σn that have brothers.

Let ` be a polynomial with `(n) > n, S =
⋃

n Sn be a hash function compressing

`(n)-bit input into n-bit output strings. S is a strongly universal2 hash function

[CW79] [WC81] if for each n, for each pairs (x1, x2) and (y1, y2) with x1 6= x2, x1, x2 ∈
Σ`(n) and y1, y2 ∈ Σn, there are ]Sn/(]Σ

n)2 functions in Sn that map x1 to y1 and

x2 to y2. S is said to have the collision accessibility property [NY89] if given a pair



(x, y) of strings in Σ`(n) with x 6= y and a requirement that s(x) = s(y), it is possible

to generate in polynomial time a function s ∈ Sn such that s(x) = s(y) with equal

probability over all functions in Sn which obey the requirement. Note that strongly

universal2 hash functions with collision accessibility property are available without

any assumption [NY89].

Let Vn be a set of permutations over Σ`(n), and V =
⋃

n Vn. V is a pair-wise

independent uniformizer with length `(n) if it has the following three properties.

1. For each n, for any pairs of strings (x1, x2) and (y1, y2), there are exactly

]Vn/[2
`(n)(2`(n) − 1)] permutations in Vn that map x1 to y1 and x2 to y2, where

x1, x2, y1, y2 ∈ Σ`(n), x1 6= x2, y1 6= y2, and 2`(n)(2`(n)− 1) is the total number of

ordered pairs (x, y) with x 6= y and x, y ∈ Σ`(n).

2. There is a probabilistic polynomial time algorithm that on input n outputs a

v∈RVn.

3. There is a polynomial time algorithm that computes all v ∈ V .

Similar to uniformizers defined in Section 4, the first property implies that for any

n ∈ N and any (x1, x2) with x1 6= x2 and x1, x2 ∈ Σ`(n), when v is chosen randomly

and uniformly from Vn, (v(x1), v(x2)) is distributed randomly and uniformly over all

ordered pairs (y1, y2) with y1 6= y2 and y1, y2 ∈ Σ`(n).

Recall the invertible uniformizer T =
⋃

n Tn constructed in Section 4. For any

x1, x2, y1, y2 ∈ Σ`(n) with x1 6= x2 and y1 6= y2, there is exactly one permutation in

Tn that maps x1 to y1 and x2 to y2. Note that 1 = 2`(n)(2`(n) − 1)/2`(n)(2`(n) − 1) =

]Tn/[2
`(n)(2`(n) − 1)], which implies that T is a pair-wise independent uniformizer.

5.2 UOHs from One-Way Quasi-Injections

Assume that we are given a one-way quasi-injection f from D to R where D =
⋃

n Σn,

R =
⋃

n Σm(n) and m is a polynomial with m(n) ≥ n. Let V =
⋃

n Vn be a pair-wise

independent uniformizer with length m(n), and S =
⋃

n Sn be a strongly universal2
hash function that compresses m(n)-bit input into (n− 1)-bit output strings and has

the collision accessibility property.

Lemma 1 let Hn = {h | h = s◦ v ◦ fn+1, s ∈ Sn+1, v ∈ Vn+1}, and H =
⋃

n Hn. Then

H is a one-way hash function in the sense of UOH/U compressing (n + 1)-bit input

into n-bit output strings, under the assumption that f is a one-way quasi-injection.

Proof : Assume for contradiction that H is not one-way in the sense of UOH/U .

Then there are a polynomial Q1, an infinite subset N′ ⊆ N and a collision-string finder

F such that for all n ∈ N′, the finder F , on input x∈RΣn+1 and h∈RHn, outputs

with probability at least 1/Q1(n) a string y ∈ Σn+1 with x 6= y and h(x) = h(y). We



show that F can be used to construct an algorithm M that for all sufficiently large

n ∈ N′, inverts fn+1 with probability greater than 1/2Q1(n).

Assume that w∈RΣn+1 and z = fn+1(w). On input z, the algorithm M runs as

follows in trying to compute a y such that z = fn+1(y):

Algorithm M :

1. Generate an x∈RΣn+1. If z = fn+1(x) then output y = x and halt. Otherwise

execute the following steps.

2. Generate a v∈RVn+1.

3. Let u1 = v ◦ fn+1(x) and u2 = v(z). Choose a random s ∈ Sn+1 such that

s(u1) = s(u2). This is possible according to the collision accessibility property

of S.

4. Let h = s ◦ v ◦ fn+1. Call F with input h and x, and output y = F (x, h).

First we show that h produced by M is a random element in Hn. At Step 2,

a v∈RVn+1 is generated. Since fn+1(x) 6= z, from the first property of V we know

that (v ◦ fn+1(x), v(z)) is distributed randomly and uniformly over all pairs (x1, x2)

with x1 6= x2 and x1, x2 ∈ Σm(n+1). At Step 3, s is chosen uniformly at random from

all those functions in Sn+1 that map u1 and u2 to the same string. Consequently,

h = s ◦ v ◦ fn+1 is a random element in Hn.

The running time of M is clearly polynomial in n. Next we estimate the probability

that M outputs y such that z = fn+1(y). Denote by Inv(z) the set {e | z = fn+1(e), e ∈
Σn+1}. Then M halts at Step 1 iff x ∈ Inv(z).

First we note that

Pr{z = fn+1(y)} ≥ Pr{x ∈ Σn+1 − Inv(z), x has no brother, z = fn+1(y)},
where Pr{z = fn+1(y)} is computed over Σn+1, Σn+1, Vn+1, Sn+1 and the sample space

of all finite strings of coin flips that F could have tossed. Note that the two compound

events “ x ∈ Σn+1 − Inv(z), x has no brother, z = fn+1(y)” and “ x ∈ Σn+1 − Inv(z),

x has no brother, y 6=?” are in fact the same. So the probability Pr{z = fn+1(y)} can

be estimated via the probability Pr{x ∈ Σn+1− Inv(z), x has no brother, y 6=?}. Now

we focus on the latter. By assumption, we have Pr{y 6=?} ≥ 1/Q1(n) for all n ∈ N′,
where Pr{y 6=?} is computed over Σn+1, Vn+1, Sn+1 and the sample space of all finite

strings of coin flips that F could have tossed. On the other hand,

Pr{y 6=?} = Pr{x ∈ Inv(z), y 6=?}+ Pr{x ∈ Σn+1 − Inv(z), y 6=?}
= Pr{x ∈ Inv(z), y 6=?}+

Pr{x ∈ Σn+1 − Inv(z), x has a brother, y 6=?}+

Pr{x ∈ Σn+1 − Inv(z), x has no brother, y 6=?}.



Recall that f is one-way. So for all sufficiently large n ∈ N, we have

Pr{x ∈ Inv(z), y 6=?} ≤ Pr{x ∈ Inv(z)} < 1/4Q1(n).

Furthermore, for all sufficiently n we have

Pr{x ∈ Σn+1 − Inv(z), x has a brother, y 6=?} ≤ Pr{x has a brother} < 1/4Q1(n),

since f is a one-way quasi-injection. Thus for all sufficiently large n ∈ N′,

Pr{z = fn+1(y)} ≥ Pr{x ∈ Σn+1 − Inv(z), x has no brother, z = fn+1(y)}
= Pr{x ∈ Σn+1 − Inv(z), x has no brother, y 6=?}
≥ 1/Q1(n)− [Pr{x ∈ Inv(z), y 6=?}+

Pr{x ∈ Σn+1 − Inv(z), x has a brother, y 6=?}]
≥ 1/Q1(n)− [1/4Q1(n) + 1/4Q1(n)]

≥ 1/2Q1(n).

This contradicts our assumption that f is a one-way quasi-injection, and hence the

theorem follows. 2

Combining Theorem 1 and Lemma 1, we have the following result: A one-way

hash function H ′ in the sense of UOH/EN [`′], where `′ is defined by `′(n) = n + 1,

can be constructed under the assumption that f is a one-way quasi-injection. By an

argument analogous to that of Theorem 3.1 of [Dam89], it can be proved that for any

polynomial `, we can construct from H ′ a one-way hash function H ′′ in the sense of

UOH/EN [`]. Thus:

Theorem 2 One-way hash functions in the sense of UOH/EN [`] can be constructed

assuming the existence of one-way quasi-injections.

Similarly, we can construct one-way hash functions in the sense of UOHC/EN [`]

assuming the existence of one-way quasi-injections with respect to the circuit model.

6 Collision Intractable Hash Functions

This section gives formal definitions for collision intractable hash functions. Let

H =
⋃

n Hn be a hash function compressing `(n)-bit input into n-bit output strings.

Let A, a collision-pair finder , be a probabilistic polynomial time algorithm that on

input h ∈ Hn outputs either “?” or a pair of strings x, y ∈ Σ`(n) with x 6= y and

h(x) = h(y).

Definition 5 H is called a collision-intractable hash function (CIH) if for each A,

for each polynomial Q, and for all sufficiently large n, Pr{A(h) 6=?} < 1/Q(n), where

h∈RHn, and the probability Pr{A(h) 6=?} is computed over Hn and the sample space

of all finite strings of coin flips that A could have tossed.



In [Dam89] (see also [Dam87]) CIH is called collision free function family . Damg̊ard

obtained CIHs under the assumption of the existence of claw-free pairs of permuta-

tions. In [ZMI90], we show that CIHs can be constructed from distinction-intractable

permutations . We also propose practical CIHs, the fastest of which compress nearly

2n-bit long input into n-bit long output strings by applying only twice a one-way

function.

CIH defined above are with respect to the Turing machine model. So as in the

case for UOH, we have CIHC with respect to the circuit model. The definition for

CIHC is similar to Definition 5, except that probabilistic polynomial time algorithms

A are replaced by families A = {An | n ∈ N} of polynomial size circuits.

In addition, analogous to Definition 3, we have the following generalization for

CIH. Let H =
⋃

n Hn be a hash function compressing `(n)-bit input into n-bit output

strings, Q1 a polynomial, and a ∈ ΣQ1(n). a is called an advice string of length Q1(n).

Let A, a collision-pair finder, be a probabilistic polynomial time algorithm that on

input a ∈ ΣQ1(n) and h ∈ Hn outputs either “?” or a pair of strings x, y ∈ Σ`(n) with

x 6= y and h(x) = h(y).

Definition 6 H is called a collision intractable hash function with respect to poly-

nomial length advice, denoted by CIH/EN [poly], if for each pair (Q1, Q2) of poly-

nomials, for each ensemble E with length Q1(n), for each A, and for all sufficiently

large n, Pr{A(a, h) 6=?} < 1/Q2(n), where a and h are independently chosen from

ΣQ1(n) and Hn according to En and to the uniform distribution over Hn respectively,

and the probability Pr{A(a, h) 6=?} is computed over ΣQ1(n), Hn and the sample space

of all finite strings of coin flips that A could have tossed.

7 A Hierarchy of One-Way Hash Functions

In this section, we discuss relationships among various versions of one-way hash func-

tions: UOH/U , UOH/PSE[`], UOH/EN [`], UOHC/EN [`], UOH/EN [poly], CIH,

CIHC and CIH/EN [poly].

First we define a relation between two versions, V er1 and V er2, of one-way hash

functions. We say that

1. V er1 is included in V er2, denoted by V er1 ⊆ V er2, if all one-way hash functions

in the sense of V er1 are also one-way hash functions in the sense of V er2.

2. V er1 is strictly included in V er2, denoted by V er1 ⊂ V er2, if V er1 ⊆ V er2 and

there is a one-way hash function in the sense of V er2 but not in the sense of

V er1.

3. V er1 and V er2 are equivalent , denoted by V er1 = V er2, if V er1 ⊆ V er2 and

V er2 ⊆ V er1.



Lemma 2 The following statements hold:

(1) CIHC = CIH/EN [poly].

(2) UOHC/EN [`] = UOH/EN [poly].

(3) UOH/EN [poly] ⊆ UOH/EN [`] ⊆ UOH/PSE[`] ⊆ UOH/U .

(4) CIH/EN [poly] ⊆ CIH.

(5) CIH ⊆ UOH/PSE[`].

(6) CIH/EN [poly] ⊆ UOH/EN [poly].

Proof : Proofs for (1) and (2) are analogous to that for “polynomial size circuits vs.

P/poly” [Pip79]. (3),(4), (5) and (6) are obvious. Here we give a detailed description

for the proof of (1). Proof for (2) is similar, and is omitted.

The “⊆” part: Assume that H is a one-way hash function in the sense of CIHC . If

H is not one-way in the sense of CIH/EN [poly], then there are polynomials Q1 and

Q2, an infinite subset N′ ⊆ N, an ensemble E with length Q2(n), and a collision-pair

finder F , such that for all n ∈ N′, the finder F , on input z ∈E ΣQ2(n) and h∈RHn,

outputs a collision-pair with probability 1/Q1(n). Note that for each n ∈ N and

h∈RHn, the probability that F successfully outputs a collision-pair is computed over

ΣQ2(n) and the sample space of all finite strings of coin flips that F could have tossed.

Let zmax be the first string according to the lexicographic order in ΣQ2(n) such that for

h∈RHn, F outputs a collision-pair with the maximum probability, which is certainly

at least 1/Q1(n). F can be converted into a family A = {An | n ∈ N} of probabilistic

polynomial size circuits with zmax being “embedded in” An. Thus for each n ∈ N′,
An on input h∈RHn outputs a collision-pair with probability at least 1/Q1(n). In

other words, H is not one-way in the sense of CIHC , which is a contradiction.

The “⊇” part: Assume that H is a one-way hash function in the sense of CIH/EN [poly].

If H is not one-way in the sense of CIHC , then there are a polynomial Q1, an infinite

subset N′ ⊆ N, and a collision-pair finder A = {An | n ∈ N}, such that for all

n ∈ N′, An outputs a collision-pair with probability 1/Q1(n). Since the size of A

is polynomially bounded, there is a polynomial Q2 such that the description of An

is not longer than Q2(n) for all n ∈ N. Without loss of generality, assume that the

description of An is exactly Q2(n) bits long. Let E be the ensemble with length Q2(n)

defined by En(x) = 1 whenever x is the description of An, and En(x) = 0 otherwise.

Note that E may be not samplable.

Recall that the (probabilistic) circuit value problem is (probabilistic) polynomial

time computable (see [BDG88], p.110). So there is a (probabilistic) polynomial time

algorithm F that on input z ∈E ΣQ2(n) and h∈RHn, (Note: By the definition of E,

we have z=the description of An), output a collision-pair with probability 1/Q(n).



This implies that H is not one-way in the sense of CIH/EN [poly], which contradicts

our assumption. 2

Theorem 3 The following statements hold:

(1) UOH/PSE[`] ⊂ UOH/U .

(2) There are one-way hash functions in the sense of UOH/EN [poly] but not in the

sense of CIH.

(3) CIH ⊂ UOH/PSE[`].

(4) CIH/EN [poly] ⊂ UOH/EN [poly].

Proof : (1) We show that given a one-way hash function H in the sense of UOH/U ,

we can construct from H a hash function H ′ that is still one-way in the sense of

UOH/U but not in the sense of UOH/PSE[`].

H ′ is constructed as follows: Denote by 0`(n) (1`(n), respectively) the all-0 (all-1,

respectively) string of length `(n). For each h ∈ Hn, define a function h′ : Σ`(n) → Σn

by h′(x) = h(0`(n)) whenever x = 1`(n) and h′(x) = h(x) otherwise. Thus the only

difference between h and h′ is the images of 1`(n). Let H ′
n be the collection of all h′,

and let H ′ =
⋃

n H ′
n. We claim that H ′ is still one-way in the sense of UOH/U but

not in the sense of UOH/PSE[`].

Let M be a polynomial time algorithm that on input n outputs 1`(n). By definition,

the ensemble E defined by the output of M is polynomially samplable. Let F be a

collision-string finder that on input x and h′ outputs the string 0`(n) whenever x = 1`(n)

and “?” otherwise. Clearly, for all n, x ∈E Σ`(n) and h′ ∈ H ′
n, F always finds a string

y that collides with x. Therefore H ′ is not one-way in the sense of UOH/PSE[`].

Now we prove that H ′ is one-way in the sense of UOH/U . Assume for contradiction

that H ′ is not one-way in the sense of UOH/U . Then there are an infinite subset

N′ ⊆ N and a collision-string finder F such that for some polynomial Q and for all

n ∈ N′, Pr{F (x, h′) 6=?} ≥ 1/Q(n), when x∈RΣ`(n) and h′∈RH ′
n.

Note that

Pr{F (x, h′) 6=?}
= Pr{F (x, h′) 6=? | h′(x) = h′(0`(n))} · Pr{h′(x) = h′(0`(n))}+

Pr{F (x, h′) 6=? | h′(x) 6= h′(0`(n))} · Pr{h′(x) 6= h′(0`(n))}
≥ 1/Q(n),



and that

Pr{F (x, h′) 6=? | h′(x) = h′(0`(n))} · Pr{h′(x) = h′(0`(n))}
≤ Pr{h′(x) = h′(0`(n))}
≤ Pr{h(x) = h(0`(n))}+ 1/2`(n)

≤ 2 Pr{h(x) = h(0`(n))}.

Since H is one-way in the sense of UOH/U , we have Pr{h(x) = h(0`(n))} < 1/4Q(n)

for all sufficiently large n. Thus for all sufficiently large n ∈ N′,

Pr{F (x, h′) 6=? | h′(x) 6= h′(0`(n))}
≥ Pr{F (x, h′) 6=? | h′(x) 6= h′(0`(n))} · Pr{h′(x) 6= h′(0`(n))}
≥ 1/Q(n)− Pr{F (x, h′) 6=? | h′(x) = h′(0`(n))} · Pr{h′(x) = h′(0`(n))}
> 1/2Q(n).

By definition, when h′(x) 6= h′(0`(n)), a string y ∈ Σ`(n) with x 6= y collides with

x under h′ iff it does under h. Consequently, the collision-string finder F can be

used to “break” H, this implies that H is not one-way in the sense of UOH/U , a

contradiction.

(2) The proof is very similar to that for (1). Given H, a one-way hash function

in the sense of UOH/EN [poly], we construct a hash function H ′ that is still one-way

in the sense of UOH/EN [poly] but not in the sense of CIH.

Without loss of generality, assume that the length of the description of h ∈ Hn is

greater than n/2, and for any distinct h1, h2 ∈ Hn the first n/2 bits of h1 is different

from that of h2. For each h ∈ Hn, we associate with it a particular `(n)-bit string xh

that is obtained by repeatedly concatenating the first n/2 bits of the description of

h until the length of the resulting string becomes `(n).

For each h ∈ Hn, define a function h′ : Σ`(n) → Σn by h′(x) = h(xh) whenever

x = xh and h′(x) = h(x) otherwise, where xh is the complement of xh. Thus the only

difference between h and h′ is the images of xh. Let H ′
n be the collection of all h′, and

let H ′ =
⋃

n H ′
n. By analyses similar to (1), one can verify that H ′ is still one-way in

the sense of UOH/EN [poly] but not in the sense of CIH.

(3) follows from (2) and CIH ⊆ UOH/PSE[`]. (4) follows from (2) and the facts

that CIH/EN [poly] ⊆ CIH and that CIH/EN [poly] ⊆ UOH/EN [poly]. 2

From Lemma 2 and Theorem 3, we have the following hierarchical structure for

one-way hash functions (see Figure 1.)



UOH/U⋃

CIH ⊂ UOH/PSE[`]
|⋃

|⋃ UOH/EN [`]
|⋃

CIH/EN [poly] ⊂ UOH/EN [poly]
|| ||

CIHC UOHC/EN [`]

Figure 1. Hierarchical Structure of One-Way Hash Functions

By Theorem 3, there are one-way hash functions in the sense of UOH/EN [poly]

but not in the sense of CIH. However, it is not clear whether or not CIH ⊆ UOH/EN [poly].

So it is worth while examining such problems as whether or not CIH is strictly in-

cluded in UOH/EN [poly].

8 Conclusions

We have proved that UOHs with respect to initial-strings chosen uniformly at random

can be transformed into UOHs with respect to initial-strings chosen arbitrarily, and

that UOHs with respect to initial-strings chosen arbitrarily can be constructed under

a weaker assumption, the existence of one-way quasi-injections. We have also investi-

gated relationships among various versions of one-way hash functions. In particular,

we have shown that UOH/PSE[`], CIH and CIH/EN [poly] are strictly included in

UOH/U , UOH/PSE[`] and UOH/EN [poly] respectively, and that there are one-way

hash functions in the sense of UOH/EN [poly] but not in the sense of CIH.

Recently, substantial progress on the construction of UOHs has been made by

De Santis and Yung [DY90], and especially, by Rompel [Rom90] who finally solved

the problem of constructing UOHs under the sole assumption of the existence of

one-way functions.
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A Appendix — UOHs from One-Way Permuta-

tions

In this appendix we sketch a simple method, which appears in [ZMI90], for con-

structing UOHs from one-way permutations whose (simutaneously) hard bits have

been identified. An interesting feature of our construction is that it does not apply

universal hash functions, and hence is extremely compact, in comparison with most

of the currently known constructions.

Assume that f is a one-way permutation on D =
⋃

n Σn, and that i has been

proved to be a hard bit of f . For b ∈ Σ, x ∈ Σn−1 and y ∈ Σn, define ins(x, b) =

xn−1xi−2 · · · xibxi−1 · · · x2x1, and denote by drop(y) a function dropping the i-th bit

of y. Then we have the following theorem.

Theorem 4 Let ` be a polynomial with `(n) > n, α ∈ Σn−1 and x = x`(n) · · · x2x1

where xi ∈ Σ for each 1 ≤ i ≤ `(n). Let hα be the function from Σ`(n) to Σn defined

by:

y0 = α,

y1 = drop(fn(ins(y0, x`(n)))),

· · ·
yj = drop(fn(ins(yj−1, x`(n)−j+1))),

· · ·
hα(x) = fn(ins(y`(n)−1, x1)).

Let Hn = {hα | α ∈ Σn−1} and H =
⋃

n Hn. Then under the assumption that f

is a one-way permutation, H is a UOH/EN [`] compressing `(n)-bit input into n-bit

output strings.

The efficiency of the above constructed UOHs can be improved by a factor of β,

for any β = O(log n), if β simultaneously hard bits of f have been identified.


