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Abstract One of the ultimate goals of cryptography researchers is to construct
a (secrete-key) block cipher which has the following ideal properties: (1) The cipher
is provably secure, (2) Security of the cipher does not depend on any unproved
hypotheses, (3) The cipher can be easily implemented with current technology, and
(4) All design criteria for the cipher are made public. It is currently unclear whether
or not there really exists such an ideal block cipher. So to meet the requirements
of practical applications, the best thing we can do is to construct a block cipher
such that it approximates the ideal one as closely as possible. In this paper, we
make a significant step in this direction. In particular, we construct several block
ciphers each of which has the above mentioned properties (2), (3) and (4) as well as
the following one: (1′) Security of the cipher is supported by convincing evidence.
Our construction builds upon profound mathematical bases for information security
recently established in a series of excellent papers.

1. Motivations and Summary of Results

Data Encryption Standard (DES) designed by IBM about fifteen years ago
is the first modern (secrete-key) block cipher whose algorithm is publicly available
[NBS]. It is a kind of product ciphers with Lucifer as its direct predecessor [FNS] [K].
A little more specifically, both DES and Lucifer consist of 16 rounds of Feistel-type
transformations (FTT’s) which are invented by and named (by us) after Feistel.
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From the beginning of DES, however, there had a lot of controversy about its
security, and especially, about its design criteria [K] which have been classified by
NSA and its designer IBM. Many computer scientists and cryptography experts
were concerned about the possibilities that DES may possess weaknesses only NSA
and IBM are aware of, and that trap-doors may have been inserted into the S-boxes
of DES which would give a cryptoanalytic advantage to a knowledgeable party. For
these reasons, a great amount of effort has been invested in attempting to break
the cipher, or to find its weaknesses. And many researchers have tried revealing the
myths around the design criteria.

In their nice paper [LR], Luby and Rackoff showed that DES would be provably
secure if its f -functions were secure pseudorandom ones. Unfortunately, the f -
functions of DES cannot be secure in any reasonable sense. In the same paper,
Luby and Rackoff proved also a result about FTT’s: A function consisting of three
rounds of randomly and independently chosen FTT’s, which is in fact a permutation,
cannot be efficiently distinguished from a truly random one. This result is very
appealing, since it relies on no unproved hypotheses, and more importantly, it
suggests that there is an extremely simple constructive method for designing a
theoretically secure block cipher which does not rely on any unproved hypotheses.
However, it is practically impossible to construct such a cipher, simply because it
takes a huge amount of memory to implement the cipher.

Therefore both practical needs and theoretical interest encourage us to seek for
an ideal block cipher having the following properties:

(1) The cipher is provably secure,
(2) Security of the cipher does not depend on any unproved hypotheses,
(3) The cipher can be easily implemented with current technology, and
(4) All design criteria for the cipher are made public.

It is still an open problem whether or not there really exists such a block cipher.
The best thing we can do currently is to construct a block cipher such that it
approximates the ideal one as closely as possible.

In this paper, we make a significant step in this direction. In particular, we
propose a kind of transformations — Generalized Type-2 transformations, and show
that it is an excellent building block for cryptosystems. Utilizing this type of
transformations, we construct several concrete block ciphers which have the above
mentioned properties (2), (3) and (4) as well as the following one:

(1′) Security of the cipher is supported by convincing evidence.
Our results build upon profound mathematical bases for information security
recently established in a series of excellent papers such as [BM],[Y],[L],[GGM],[S] 1

and especially [LR].

1 The main result of [S] had been found to be false [O] [R] [ZMI]. But here the
correct version of the result is used.
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The remaining part of the paper is organized as follows: Section 2 defines
terminology used later, reviews one of the main design rules for DES — FTT’s,
and introduces the result of Luby and Rackoff on the rule. Section 3 proposes
various types of transformations and shows that all these transformations can be
used to construct permutations not efficiently distinguishable from a truly random
one. Among the transformations, Generalized Type-2 ones are proved to be most
preferable. Section 4 constructs a theoretically provably secure block cipher (PSBC)
by the use of Generalized Type-2 transformations. Section 5 presents a variant of
PSBC. Section 6 proposes four concrete block ciphers based on theoretical results
of Sections 2 – 5. We leave detailed and lengthy proofs to Appendices A, B, C and
D.

2. Preliminaries

This section defines the notions of pseudorandom number generators and
pseudorandom function generators, and introduces the result of Luby and Rackoff
on FTT’s. Readers who are not interested in the definitions can jump over Section
2.1.

2.1 Pseudorandom Number/Function Generators

For purposes which will become clear later, our notions introduced below
are slight generalizations of those given in [Y], [GGM] and [LR], mainly in the
following aspect: In contrast to those in [Y], [GGM] and [LR], we will not
impose polynomial bound upon the running time of an algorithm realizing a
pseudorandom number/function generator or on the size of a (local) statistical test
for strings/functions.

2.1.1 Pseudorandom Number Generators

The set of positive integers is denoted by N. By a string we mean a binary
string over the alphabet {0, 1}. For each n ∈ N, denote by In the set of all 2n

strings of length n. For s1, s2 ∈ In, let s1 ⊕ s2 denote the bit-wise XOR of the two
strings. Denote by Hn the set of all 2n2n

functions and by Symn the set of all 2n!
permutations on In. The composition of two functions f and g in Hn, denoted by
f ◦ g, is defined by f ◦ g(x) = f(g(x)) for all x ∈ In. By x∈R X we mean that x

is drawn randomly and uniformly from a finite set X, and by a function in n (or t

etc.) we mean, unless otherwise specified, a function from N to N.
Let P be a function in n with P (n) > n. A pseudorandom number generator

(PNG) is a collection of functions S = {Sn | n ∈ N}, where each function Sn maps
an n-bit string seed into a P (n)-bit string Sn(seed) and it can be computed by
some deterministic algorithm.

Security (or strength) of PNG’s is defined in terms of local statistical tests for
strings.
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[Definition 1] Let Θ and L be sets of functions in n, and Υ a set of functions
from N to [0, 1]. Let P be a function in n with P (n) > n, and let θ ∈ Θ and L ∈ L
with 0 < L(n) ≤ P (n). A family of circuits T s = {T s

n | n ∈ N} is called a local
(θ, L) statistical test for strings if each T s

n is of size θ(n), 2 and on input an L(n)-bit
fixed portion of a P (n)-bit string x, outputs a single bit T s

n[x]. Call θ the size of
T s. Now let S = {Sn | n ∈ N} be a PNG where Sn maps an n-bit string into a
P (n)-bit one. We say that
(1) S locally ε-passes the test T s if for all sufficiently large n, |Pr{T s

n[r] =
1} − Pr{T s

n[Sn(t)] = 1}| < ε(n), where r∈R IP (n), t∈R In and ε ∈ Υ;
(2) S is locally (θ, L, ε)-secure if it locally ε-passes all (θ, L) tests;
(3) S is locally (Θ,L, Υ)-secure if it is locally (θ, L, ε)-secure for any ε ∈ Υ and

any (θ, L) ∈ Θ× L with 0 < L(n) ≤ P (n).
Especially, a locally (Θ,L, Υ)-secure PNG S is said
(4) locally (∞,L,Υ)-secure if Θ is the set of all functions in n, and
(5) strong if, furthermore, L is the infinite set of all polynomials in n and Υ that

of all inverse polynomials in n. (An inverse polynomial in n is a function like
1/Q(n) where Q is a polynomial.)

Finally, assume that S = {Sn | n ∈ N} is a PNG where Sn can be computed in
deterministic polynomial time in n. Then
(6) S is called locally polynomially secure if it is locally (Θ,L, Υ)-secure where both

Θ and L are the infinite set of all polynomials in n, and Υ that of all inverse
polynomials in n.

Note that Yao’s definition for polynomial size statistical tests for strings [Y]
[GGM] is obtained from ours by letting P , θ and L be polynomials in n with
P = L. Now assume, as at the end of Definition 1, that S = {Sn | n ∈ N}
is a PNG where Sn can be computed in deterministic polynomial time in n. For
such a PNG S, Yao defined that it passes a polynomial size statistical test for
strings T s = {T s

n | n ∈ N} if for any polynomial P1 and for all sufficiently large
n, |Pr{T s

n[r] = 1} − Pr{T s
n[Sn(t)] = 1}| < 1/P1(n), where r∈R IP (n) and t∈R In,

and that S is polynomially secure if it passes all polynomial size statistical tests for
strings.

[Fact] Assume that S = {Sn | n ∈ N} is a PNG where Sn can be computed in
deterministic polynomial time in n. Then S is polynomially secure iff it is locally
polynomially secure.

Proof: It is an immediate consequence of Yao’s famous theorem on statistical
tests [Y] [GGM]. Here we give a direct proof for it. Let P be a polynomial,
and suppose that Sn maps an n-bit string into a P (n)-bit one. The “if ” part
is clearly true. To prove the “only if ” part, it suffices to show that if S passes all

2 The size of a circuit is the total number of connections in the circuit.
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polynomial size statistical tests for strings then for any polynomials L, P3 and P4

with 0 < L(n) < P (n), it also locally 1/P4-passes all local (P3, L) statistical test
for strings. Assume for contradiction that S does not 1/P4-passes a local (P3, L)
statistical test T s for strings. Then one can easily construct from T s a polynomial
size statistical test for strings Us = {Us

n | n ∈ N} such that the size of Us is at most
P · P3 and that S does not pass it.

2.1.2 Pseudorandom Function Generators

Let P be an increasing function in n. A pseudorandom function generator
(PFG) is a collection of functions F = {Fn | n ∈ N}, where Fn specifies for each
P (n)-bit string key, (the description of) a function Fn(key) ∈ Hn that can be
computed by some deterministic algorithm.

Security of a PFG is defined in terms of statistical tests for functions, and
the latter uses the concept of oracle circuits which are counterparts of often used
oracle Turing machines. An oracle circuit Cn is an acyclic circuit which contains,
in addition to ordinary AND, OR, NOT and constant gates, also a particular kind
of gates — oracle gates. Each oracle gate has an n-bit input and an n-bit output,
and it is evaluated using some function from Hn. The output of Cn, a single bit, is
denoted by Cn[f ] when a function f ∈ Hn is used to evaluate the oracle gates.

[Definition 2] Let Θ and Q be sets of functions in n, and Υ a set of functions
from N to [0, 1]. Let θ ∈ Θ and Q ∈ Q be two functions with 0 ≤ Q(n) < θ(n). A
family of circuits T f = {T f

n | n ∈ N} is called a (θ,Q) statistical test for functions
where T f

n is an oracle circuit which is of size θ(n) and has Q(n) oracle gates. Let
P be an increasing function in n, and F = {Fn | n ∈ N} a PFG where Fn specifies
for each P (n)-bit string key a function Fn(key) ∈ Hn. We say that
(1) F ε-passes the test T f if for all sufficiently large n, |Pr{T f

n [r] = 1} −
Pr{T f

n [Fn(g)] = 1}| < ε(n) where r∈R Hn, g∈R IP (n) and ε ∈ Υ.
(2) F is (θ, Q, ε)-secure if it ε-passes all (θ, Q) tests.
(3) F is (Θ,Q, Υ)-secure if it is (θ,Q, ε)-secure for any ε ∈ Υ and any (θ,Q) ∈ Θ×Q

with 0 ≤ Q(n) < θ(n).
Especially,
(4) a (Θ,Q, Υ)-secure PFG F is said (∞,Q, Υ)-secure when Θ is the set of all

functions in n.
Finally assume that for each n and for each key ∈ IP (n), the function Fn(key)
can be computed in deterministic polynomial time in n. (This implies that P is a
polynomial in n.) Then
(5) F is called polynomially secure when it is (Θ,Q, Υ)-secure for Θ and Q being

the infinite set of all polynomials in n and Υ being the infinite set of all inverse
polynomials in n.

5



We are mainly interested in a special kind of PFG’s — pseudorandom
permutation generators which are invertible. Let P be an increasing function in
n. A pseudorandom permutation generator is a pseudorandom function generator
F = {Fn | n ∈ N}, where Fn specifies for each P (n)-bit string key a permutation
Fn(key) ∈ Symn that can be computed by some deterministic algorithm. A
pseudorandom permutation generator F = {Fn | n ∈ N} is called invertible if there
is a pseudorandom permutation generator F̃ = {F̃n | n ∈ N} such that for each
P (n)-bit string key, F̃n specifies the inverse of Fn(key). Security of (invertible)
pseudorandom permutation generators is defined in exactly the same way as for
pseudorandom function generators.

2.2 Feistel-Type Transformation (FTT)

For a function fi ∈ Hn, we associate with it a function gi ∈ H2n defined by

gi(B1, B2) = (B2 ⊕ fi(B1), B1)

where B1, B2 ∈ In. Note that gi is obtained from fi by applying one of the main
design rules for DES, and it corresponds roughly to a layer of DES (Figure 1). Since
the design rule was due to Feistel, we call gi a Feistel-type transformation (FTT).

For f1, f2, . . . , fs ∈ Hn, let ψ(fs, . . . , f2, f1) = gs ◦ · · · ◦ g2 ◦ g1. We say that
ψ(fs, . . . , f2, f1) consists of s rounds of FTT’s. Obviously, gi is an invertible
permutation, and hence so is ψ(fs, . . . , f2, f1).

Luby and Rackoff proved the following result which was called Main Lemma
in [LR] but is called FTT Lemma in this paper: For independent random functions
f1, f2, f3 ∈ Hn, it is infeasible to distinguish ψ(f3, f2, f1) from a function drawn
randomly and uniformly from H2n. (See Figure 2.)

[FTT Lemma] (Version 1, [LR]) Let Q be a polynomial in n and C2n be
an oracle circuit with Q(n) < 2n oracle gates. Then |Pr{C2n[r] = 1} −
Pr{C2n[ψ(f3, f2, f1)] = 1}| ≤ Q(n)2

2n , where r∈R H2n and f1, f2, f3∈R Hn.

FTT Lemma is surprising in the sense that it does not depend on any unproved
hypotheses. It implies that we can construct as follows a block cipher which does not
relying on any assumption and is provably secure against chosen-plaintext attack:
Let the length of a plaintext be 2n. Choose randomly and uniformly from Hn three
functions f1, f2 and f3, and let the enciphering algorithm be ψ(f3, f2, f1) and the
deciphering algorithm be the inverse of ψ(f3, f2, f1).

However one soon finds that such an approach is impractical: To make the
cipher secure against some trivial attacks such as exhaustive search, 2n must be
sufficiently large, say ≥ 64, i.e., n ≥ 32. When n = 32, specifying ψ(f3, f2, f1)
takes at least 3 · 32 · 232 ≈ 4 · 1011 bits, which is infeasible currently and even in
the foreseeable future. In other words, there is still a big gap between practically
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constructing a provably secure block cipher and the nice theory initiated by
Luby and Rackoff. In the following sections we will examine various types of
transformations, and fill the gap greatly.

3. Cryptographically Useful Transformations

This section introduces various types of transformations, and generalizes FTT
Lemma in many directions. First we introduce two operations on strings in Ikn —
the ρ-position left rotation and the ρ-position right rotation. These two operations
are denoted by L(ρ)

rot and R(ρ)
rot , and defined as

L(ρ)
rot(B1, B2, . . . , Bk) =(Bρ+1, . . . , Bk, B1, B2, . . . , Bρ),

R(ρ)
rot(B1, B2, · · · , Bk) =(Bk−ρ+1, . . . , Bk, B1, B2, . . . , Bk−ρ)

respectively, where 1 ≤ ρ < k and Bj ∈ In. Note that both L(ρ)
rot and R(ρ)

rot are
permutations on Ikn, and that L(ρ)

rot is the inverse of R(ρ)
rot and vice versa.

3.1 Various Transformations

3.1.1 Type-1 Transformations

Following [FNS, pp.1547-1549] and [S], we associate with an fi ∈ Hn a function
g1,i ∈ Hkn defined by

g1,i(B1, B2, . . . , Bk) = (B2 ⊕ fi(B1), B3, . . . , Bk, B1),

where Bj ∈ In. Functions obtained in such a way are called Type-1 transformations.
Note that g1,i can be decomposed into g1,i = L(1)

rot ◦ π1,i where π1,i is defined
by π1,i(B1, B2, . . . , Bk) = (B1, B2 ⊕ fi(B1), B3, . . . , Bk). (See Figure 3.) It is easy
to check that π1,i ◦π1,i is the identity transformation on Ikn, i.e., π1,i is the inverse
of itself. Such a function is usually called an involution [K]. Now we see that g1,i

is an invertible permutation on Ikn, and its inverse, denoted by g̃1,i, is given by
g̃1,i = π1,i ◦ R(1)

rot .

For f1, f2, . . . , fs ∈ Hn, define ψ1(fs, . . . , f2, f1) = g1,s ◦ · · · ◦ g1,2 ◦ g1,1.

ψ1(fs, . . . , f2, f1) is also an invertible permutation on Ikn, and by definition, its
inverse is ψ̃1(fs, . . . , f2, f1) = π1,1 ◦ R(1)

rot ◦ · · · ◦ π1,s−1 ◦ R(1)
rot ◦ π1,s ◦ R(1)

rot .

3.1.2 Type-2 Transformations

Let k = 2`, where ` ∈ N. Associate with a function-tuple hi =
(fi,1, fi,3, . . . , fi,2`−1), where fi,j ∈ Hn, a function g2,i ∈ Hkn defined by

g2,i(B1, B2, . . . , Bk) =(B2 ⊕ fi,1(B1), B3, B4 ⊕ fi,3(B3), . . . ,

Bk−1, Bk ⊕ fi,k−1(Bk−1), B1).
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g2,i is called a Type-2 transformation, and can be decomposed into
g2,i = L(1)

rot ◦ π2,i where π2,i is defined by π2,i(B1, B2, . . . , Bk) = (B1, B2 ⊕
fi,1(B1), B3, . . . , Bk−1, Bk ⊕ fi,k−1(Bk−1)). (See Figure 4.) Obviously, π2,i is an
involution.

For s function-tuples h1, h2, . . . , hs, define ψ2(hs, . . . , h2, h1) = g2,s ◦ · · · ◦ g2,2 ◦
g2,1. The inverse of ψ2(hs, . . . , h2, h1) is ψ̃1(hs, . . . , h2, h1) = g̃2,1 ◦ · · · ◦ g̃2,s−1 ◦ g̃2,s,
where g̃2,i = π2,i ◦ R(ρ)

rot .

3.1.3 Type-3 Transformations

Associate with a function-tuple hi = (fi,1, fi,2, . . . , fi,k−1), where fi,j ∈ Hn, a
function g3,i ∈ Hkn defined by

g3,i(B1, B2, . . . , Bk) = (B2 ⊕ fi,1(B1), B3 ⊕ fi,2(B2), . . . , Bk ⊕ fi,k−1(Bk−1), B1).

Call g3,i a Type-3 transformation. We decompose g3,i into g3,i = L(1)
rot ◦ π3,i where

π3,i is defined by π3,i(B1, B2, . . . , Bk) = (B1, B2 ⊕ fi,1(B1), B3 ⊕ fi,2(B2), . . . , Bk ⊕
fi,k−1(Bk−1)). See Figure 5. π3,i is a permutation and its inverse is given by
π̃3,i(C1, C2, · · · , Ck) = (B1, B2, · · · , Bk), where B1 = C1 and Bj = Cj⊕fi,j−1(Bj−1)
for each 2 ≤ j ≤ k. One can soon find that π3,i is not an involution (Figure 6).

For s function-tuples h1, h2, . . . , hs, define ψ3(hs, . . . , h2, h1) = g3,s ◦ · · · ◦
g3,2 ◦ g3,1. Since both π3,i and L(1)

rot are permutations, hence so are g3,i and
ψ3(hs, . . . , h2, h1). The inverse of ψ3(hs, . . . , h2, h1) is ψ̃3(hs, . . . , h2, h1) = π̃3,1 ◦
R(1)

rot ◦ · · · ◦ π̃3,s−1 ◦ R(1)
rot ◦ π̃3,s ◦ R(1)

rot .

3.1.4 Generalized Transformations

From its definition, we see that π1,i can be obtained from π3,i by dropping
functions fi,j in hi = (fi,1, fi,2, . . . , fi,k−1) for all 2 ≤ j ≤ k − 1. Similarly,
when k is even, π2,i can also be obtained from π3,i by dropping functions fi,j

in hi = (fi,1, fi,2, . . . , fi,k−1) for all even 1 < j < k − 1.
Denote by πτ,i a permutation obtained from π3,i, by dropping certain functions

fi,j in hi = (fi,1, fi,2, . . . , fi,k−1). (Note: πτ,i = π3,i when dropping no function.)
Define g

(ρ)
τ,i = L(ρ)

rot ◦ πτ,i, where ρ is an integer with 1 ≤ ρ ≤ k − 1. Call
transformations so obtained Generalized Type-τ transformations. Likewise, for s

functions/function-tuples h1, h2, . . . , hs, define ψ
(ρ)
τ (hs, . . . , h2, h1) = g

(ρ)
τ,s ◦· · ·◦g(ρ)

τ,2◦
g
(ρ)
τ,1.

3.2 Theorems on the Transformations

Let E be a permutation consisting of 2k− 1 rounds of Type-1, or k + 1 rounds
of Type-2, or k + 1 rounds of Type-3 transformations, each of which is chosen
randomly and independently. The following Theorems 1-3 say that no oracle circuit
with polynomially many oracle gates can distinguish between E and a truly random
function.
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[Theorem 1] Let Q be a polynomial in n and Ckn be an oracle circuit with
Q(n) < 2n oracle gates. Then |Pr{Ckn[r] = 1} − Pr{Ckn[ψ1(f2k−1, . . . , f2, f1)] =
1}| ≤ (k−1)Q(n)2

2n , where r∈R Hkn and f1, f2, . . . , f2k−1∈R Hn.

[Theorem 2] Let Q be a polynomial in n and Ckn be an oracle circuit
with Q(n) < 2n oracle gates where k = 2`. Then |Pr{Ckn[r] = 1} −
Pr{Ckn[ψ2(hk+1, . . . , h2, h1)] = 1}| ≤ `2Q(n)2

2n , where r∈R Hkn and hi =
(fi,1, fi,3, . . . , fi,k−1) with fi,j∈R Hn.

[Theorem 3] Let Q be a polynomial in n and Ckn be an oracle circuit with
Q(n) < 2n oracle gates. Then |Pr{Ckn[r] = 1} − Pr{Ckn[ψ3(hk+1, . . . , h2, h1)] =
1}| ≤ k(k−1)Q(n)2

2n+1 , where r∈R Hkn and hi = (fi,1, fi,2, . . . , fi,k−1) with fi,j∈R Hn.

Theorem 2 can be proved by essentially the same technique developed in [LR]
for proving FTT Lemma. For details see Appendix A. Proofs for Theorems 1 and
3 can be derived from the proof for Theorem 2.

For Generalized Type-2 transformations, we have the following theorem, which
is crucial to our construction of block ciphers described in Sections 4–6, and
can be proved by modifying the proof for Theorem 2. For the other types of
generalized transformations we have no results similar to Theorem 2-G. For reasons
see Appendix B where many other results are presented.

[Theorem 2-G] (Version 1) Let k = 2`, where ` ∈ N, and let ρ be an odd integer in
[1, k]. Let Q be a polynomial in n and Ckn be an oracle circuit with Q(n) < 2n oracle
gates. Then |Pr{Ckn[r] = 1} − Pr{Ckn[ψ(ρ)

2 (hk+1, . . . , h2, h1)] = 1}| ≤ `2Q(n)2

2n ,

where r∈R Hkn and hi = (fi,1, fi,3, . . . , fi,k−1) with fi,j∈R Hn.

3.3 Optimal Transformations

Let E be a permutation consisting of s rounds of randomly chosen Generalized
Type-τ transformations. From Theorem B5 in Appendix B we see that s ≥
k + 1 is a necessary condition for E being indistinguishable from a truly random
function by all oracle circuits with polynomially many oracle gates. Call a type of
transformations optimal if

(1) a permutation E consisting of k + 1 rounds of randomly chosen
transformations is indistinguishable from a truly random function by all
oracle circuits with polynomially many oracle gates, and

(2) the inverse of E can be computed in the same parallel time as E.
For a rigorous definition of optimality, see Appendix C. The following theorem

is proved in the same appendix.

[Theorem C1] Among all types of transformations discussed in this paper,
Generalized Type-2 transformations g

(ρ)
2,i = L(ρ)

rot ◦ π
(ρ)
2,i with even k and odd ρ, are

the only optimal ones.
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4. PSBC — A Provably Secure Block Cipher

Applying the only optimal Generalized Type-2 Transformations we construct
a provably secure block cipher (PSBC) in this section.

4.1 A Few Observations

As pointed out in [S], FTT Lemma remains true even if the number of oracle
gates is replaced by Q(n) ≤ 2o(n) [S]. Here Q(n) ≤ 2o(n) means that Q(n) ≤ 2f(n)

for some f(n), which satisfies lim
n→∞

cf(n)
n = 0 for every positive constant c, i.e.,

f(n) = o(n).

[FTT Lemma] (Version 2, [S]) Let C2n be an oracle circuit with Q(n) ≤ 2o(n)

oracle gates. Then |Pr{C2n[r] = 1} − Pr{C2n[ψ(f3, f2, f1)] = 1}| ≤ Q(n)2

2n , where
r∈R H2n and f1, f2, f3∈R Hn.

Schnorr’s observation also applies to our Theorem 2-G (Version 1) stated in
Section 3.

[Theorem 2-G] (Version 2) Let k = 2`, where ` ∈ N, and let ρ be an odd
integer in [1, k]. Let Ckn be an oracle circuit with Q(n) ≤ 2o(n) oracle gates. Then
|Pr{Ckn[r] = 1} − Pr{Ckn[ψ(ρ)

2 (hk+1, . . . , h2, h1)] = 1}| ≤ `2Q(n)2

2n , where r∈R Hkn

and hi = (fi,1, fi,3, . . . , fi,k−1) with fi,j∈R Hn.

Next we make a few more observations. Let t ∈ N and n = d(log t)1+εe for
some ε ∈ (0, 1], where the logarithm is taken to the base 2. Then for any constants
c and ε′ with c > 0 and 0 ≤ ε′ < ε, we have

c log t ≤ c(log t)1+ε′ = o(d(log t)1+εe) = o(n),

and
tc = 2c log t ≤ 2c(log t)1+ε′

= 2o(n).

Thus we obtain from Theorem 2-G (Version 2) the following one.

[Theorem 2-G] (Version 3) Let k = 2`, where ` ∈ N, and let ρ be an
odd integer in [1, k]. Assume that t ∈ N, ε ∈ (0, 1], n = d(log t)1+εe and
Q(t) ≤ 2o(n) is a polynomial in t. (Notice that 2n = 2d(log t)1+εe is quasi-
polynomial in t.) 3 Let C2n be an oracle circuit with Q(t) oracle gates. Then
|Pr{Ckn[r] = 1} − Pr{Ckn[ψ(ρ)

2 (hk+1, . . . , h2, h1)] = 1}| ≤ `2Q(t)2

2n , where r∈R Hkn

and hi = (fi,1, fi,3, . . . , fi,k−1) with fi,j∈R Hn.

3 We call a function f quasi-polynomial in t if for any polynomial P , for any
constant c > 0 and for all sufficiently large t, we have P (t) < f(t) < 2tc

.
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4.2 Enciphering/Deciphering Algorithms for PSBC

Theorem 2-G (Version 3) says that theoretically, if one is quasi-polynomially
powerful, then one can construct a block cipher secure against any polynomially
powerful adversary.

Let n = d(log t)1+εe, where t ∈ N and ε ∈ (0, 1]. Let ` ∈ N, k = 2` and ρ be
an odd integer in [1, k]. Assume that the plaintext and ciphertext spaces are Ikn.
Denote by B = (B1, B2, . . . , Bk) a plaintext in Ikn and by C = (C1, C2, . . . , Ck) the
ciphertext of B, where Bi, Ci ∈ In.

PSBC consists principally of s rounds of Generalized Type-2 transformations
where s ≥ k+2. The reason for choosing s ≥ k+2 is as follows: When s = k+1, our
block cipher PSBC is secure against chosen plaintext attack, but not secure against
chosen plaintext/ciphertext attack. When s ≥ k+2, PSBC is secure against chosen
plaintext/ciphertext attack. See Appendix D and [LR].

The enciphering algorithm E for PSBC can be concisely expressed as

E = π2,s ◦ L(ρ)
rot ◦ · · · ◦ L(ρ)

rot ◦ π2,2 ◦ L(ρ)
rot ◦ π2,1.

See Figure 7. The inverse of E is π2,1 ◦ R(ρ)
rot ◦ · · · ◦ R(ρ)

rot ◦π2,s−1 ◦ R(ρ)
rot ◦π2,s. So the

deciphering algorithm D for PSBC is obtained from E by
(1) interchanging hi with hs+1−i for each 1 ≤ i ≤ b s

2c, and
(2) changing the mapping (or wiring) representing L(ρ)

rot to the mapping (or
wiring) representing R(ρ)

rot .
Notice that when ` is odd and ρ = `, there is no need for changing the mapping

(or wiring), since L(ρ)
rot = R(ρ)

rot in this case.

5. A Variant of PSBC

The block cipher PSBC described in Section 4 requires quasi-polynomially
many memory cells for both enciphering and deciphering procedures. Thus it is
practically impossible to realize the cipher.

This section presents a variant of PSBC, in order to pave the way to practically
realizable ciphers. The variant is obtained by adding to PSBC a key-expanding part.
The key-expanding part stretches a short string into a long one, i.e., is a PNG. The
PNG we use is a strong one (see Definition 1), and it is essentially due to Ohnishi
and Schnorr [O] [S]. Recently, interesting PNG’s have been proposed by Maurer
and Massey [MM], and as suggested by the two authors, these PNG’s may serve for
our key-expanding purpose.

5.1 A Strong Pseudorandom Number Generator

Ohnishi observed that FTT Lemma remains valid even when two independent
random functions are available [O].

11



[FTT Lemma] (Version 3, [O]) Let Q be a polynomial in n, and let C2n

be an oracle circuit with Q(n) ≤ 2o(n) oracle gates. Then |Pr{C2n[r] =
1} − Pr{C2n[ψ(f2, f1, f1)] = 1}| ≤ 2(Q(n)+1)2

2n , and |Pr{C2n[r] = 1} −
Pr{C2n[ψ(f2, f2, f1)] = 1}| ≤ 2(Q(n)+1)2

2n , where r∈R H2n, f1, f2∈R Hn.

Schnorr [S] showed that FTT Lemma implies that we can explicitly construct
a PNG without any hypotheses. Putting together observations made in [O] and [S],
we have the following PNG.

First we note that there is a natural one-one correspondence between functions
in Hn and strings in In2n , i.e., a bijection Φn from Hn to In2n . The bijection maps
a function f ∈ Hn into the concatenation of

∐
x∈In

f(x), where x ranges over all

strings x ∈ In in a predetermined (such as lexicographical) order, and
∐

is the
concatenation operation on more than two strings.

By this bijection, ψ(f2, f2, f1) constructed from f1, f2 ∈ Hn via FTT’s yields a
function S2n2n : I2n2n → I2n22n . S2n2n maps a string x = x1x2 where x1, x2 ∈ In2n ,
into a string y ∈ I2n22n in the follow way:

S2n2n(x) = Φ2n(ψ(Φ−1
n (x2), Φ−1

n (x2), Φ−1
n (x1))).

Now we describe concretely an algorithm Gn computing the function S2n2n .
The algorithm follows a similar one in [S]. (The reader is referred to Figure 8 before
going into the details.) We write a string x ∈ I2n2n as the concatenation of two
strings x1, x2 ∈ In2n , each of which is written as the concatenation of 2n strings
in In, i.e., x = x1x2 =

∐
i∈In

x1,i

∐
i∈In

x2,i, where x1,i, x2,i ∈ In. Likewise, we write a

string y ∈ I2n22n as the concatenation of 22n strings in I2n, i.e., y =
∐

i∈I2n

yi, where

yi ∈ I2n. For a string y ∈ I2n, let B1(y) and B2(y) be the left and right half strings
in In.

Algorithm Gn(x)
/∗ This algorithm outputs a 2n22n-bit string y

on input a 2n2n-bit string x = x1x2 =
∐

i∈In

x1,i

∐
i∈In

x2,i. ∗/
(1) For all i ∈ I2n, let y0

i := i;
(2) For all i ∈ I2n do

{ w := y0
i ; u := x1,B1(w);

y1
i := (B2(w)⊕ u,B1(w)) };

(3) For j = 1, 2 do
For all i ∈ I2n do
{ w := yj

i ; u := x2,B1(w);
yj+1

i := (B2(w)⊕ u,B1(w)) };
(4) Output y =

∐
i∈I2n

y3
i .
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Let S = {Se(n)|e(n) = 2n2n, n ∈ N}. From [S] we know that the PNG S

passes all statistical tests for strings which receive at most 2o(n) bits as input. In
our terms, this can be formally stated as follows.

[Theorem 4] (Version 1) The PNG S = {Se(n)|e(n) = 2n2n, n ∈ N} is locally
(∞,L, Υ)-secure where L is the infinite set of functions L in n with L(n) ≤ 2o(n)

and Υ that of all inverse polynomials in n.

Proof: A local statistical test for strings T s = {T s
n | n ∈ N}, where T s

n

has a Q(n)(≤ 2o(n))-bit input, can be viewed as a statistical test for functions
T f = {T f

n | n ∈ N}, where T f
n has at most Q(n) ≤ 2o(n) oracle gates that are

evaluated using a function from H2n. Thus the theorem is true by FTT Lemma
(Version 2) in Section 4.1.

Applying our observation made in Section 4, this theorem can be translated
into the following theorem.

[Theorem 4] (Version 2) Let n = d(log t)1+εe, where t ∈ N and ε ∈ (0, 1]. Then
the PNG S = {Sē(t)|ē(t) = e(n) = 2n2n, n = d(log t)1+εe, t ∈ N} where Sē(t)

maps an ē(t) = e(n) = 2n2n-bit string into a 2n22n-bit one, is locally (∞,L, Υ)-
secure where L is the infinite set of all polynomials in t, and Υ that of all inverse
polynomials in t. That is to say, S is a strong PNG.

5.2 PSBC with Key-Expanding

Let n = d(log t)1+εe, where t ∈ N and ε ∈ (0, 1]. Let Ikn be the
plaintext/ciphertext spaces where k = 2`, ` ∈ N, and let ρ be an odd integer
in [1, k], s an integer with s ≥ k + 2.

The enciphering algorithm consists of two parts: the enciphering part and the
key-expanding part (Figure 9). The enciphering part, as PSBC, consists essentially
of s rounds of Generalized Type-2 transformations. The key-expanding part is an
algorithm Gm that computes a function Sê(t) from a strong PNG

S = {Sê(t)|ê(t) = 2m2m,m = ndlog ne, n = d(log t)1+εe, t ∈ N}

and it can expand a 2m2m-bit input string into a 2m22m-bit output string.
The deciphering algorithm is obtained by
(1) reversing the portion, which is used by the enciphering part, of the output

of the key-expanding part and
(2) changing the mapping (or wiring) representing L(ρ)

rot to the mapping (or
wiring) representing R(ρ)

rot .
The following theorem implies that the block cipher PSBC with key-expanding

is secure against any polynomial size adversary. It can be proved by making some
obvious modifications on the proof for Theorem 1 of [LR].

13



[Theorem 5] Let k = 2` where ` ∈ N, and ρ be an odd integer in [1, k].
Also let t ∈ N, ε ∈ (0, 1], n = d(log t)1+εe and S = {Sm(t)|ê(t) = 2m2m,m =
ndlog ne, n = d(log t)1+εe, t ∈ N} be the above constructed strong PNG. Assume
that P and Q are polynomials in t and that C2n is an oracle circuit with
Q(t) oracle gates. Then for any r∈R Hkn, for any x∈R Iê(t), and for any
h1, h2, . . . , hk+1 where hi = (fi,1, fi,3, . . . , fi,k−1) and each fi,j corresponds to a
distinct n2n(= 2o(m))-bit portion of the output of Sê(t)(x), we have |Pr{Ckn[r] =
1} − Pr{Ckn[ψ(ρ)

2 (hk+1, . . . , h2, h1)] = 1}| < 1/P (t).

6. Practical Block Ciphers

PSBC with key-expanding requires still quasi-polynomial amount of mem-
ory to specify an enciphering/deciphering algorithm. In addition, the encipher-
ing/deciphering part uses only an extremely small portion of the output of the
key-expanding part.

Experience tells us that concatenating a number of transformations, each of
which may not be so cryptographically strong, can produce a very strong one [M].
This folklore has recently been proved to be correct by Luby and Rackoff. See
Theorem 2 in the preliminary version of [LR].

Along this guideline, we consider how to modify PSBC with key-expanding so
that it is practically secure and can be implemented with current technology. We
focus on the following three aspects: the size of a key, the sizes of n and k, and the
rounds of transformations.

1. A key should be relatively short to make the cipher easy to be implemented.
However to beat back the exhaustive search attack, the key should not be
too short.

2. n should not be too large since it takes n2n bits to specify a random
function from Hn. However, kn and hence k should be sufficiently large,
otherwise the cipher is insecure even against the trivial exhaustive search
attack.

3. When a relatively short key and a small n are chosen, the strength of the
cipher will be significantly reduced. An effective method of resolving the
problem is increasing the number of rounds of transformations.

The remaining part of this section proposes four example ciphers which we
hope are secure enough for practical applications. Main parameters of the ciphers
are collected in Table 1. For completeness, the definitions of the parameters are
summarized below the table.

These parameters are chosen according to the preceding three aspects. In
addition, n = 4 and n = 8 are chosen for easier implementation by software
and/or hardware. The key-expanding part of each example cipher is realized by
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the algorithm Gm expanding a key of length 2m2m bits into a long string of length
2m22m bits. All output bits of Gm are used by the enciphering part.

Notice that in Examples 2 and 3, the output of Gm is only half of the bits
required by the enciphering part. We take two 2m2m-bit strings, and use Gm to
stretch them into 2m22m-bit ones. Then we combine the 2m22m-bit strings into
a 4m22m-bit one. A recommended method for combining strings is concatenating
them in bit/bits unit.

Table 1 Four Example Ciphers

Parameters Example 1 Example 2 Example 3 Example 4
Length of
Plaintext/ 64 96 112 128

Ciphertext (bits)
Length of

Key 768 1536 3584 4096
(bits) (= 2 · 768)* (= 2 · 1792)*
Size of

Enciphering Part 6 12 56 128
(kilo-bytes)
s (rounds) 96 128 32 64
n (bits) 4 4 8 8

k 16 24 14 16
m 6 6 7 8

* (Gm is used twice)

Definitions of Parameters

• Length of Plaintext/Ciphertext = n · k (bits).
• Length of Key = t · 2 ·m · 2m (bits), where t is the number of times Gm is

applied.
• Size of Enciphering Part = ` · s ·n · 2n (bits) = ` · s ·n · 2n/213 (kilo-bytes).
• s — the number of rounds of Generalized Type-2 transformations applied

in the enciphering/deciphering part.
• n — the length of a substring Bi (or Ci).
• k — (= 2`) the number of substrings Bi’s (or Ci’s).
• m — specifying the length, 2m2m, of an input to Gm.

7. Conclusion

We have investigated various types of transformations, and showed that among
them Generalized Type-2 transformations are the most preferable. Two provably
secure block ciphers, PSBC and PSBC with key-expanding, have been constructed
by the use of Generalized Type-2 transformations. And finally, based on PSBC
with key-expanding, practically implementable block ciphers have been presented.
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Appendix A — Proof for Theorem 2

[Theorem 2] Let Q be a polynomial in n and Ckn be an oracle circuit
with Q(n) < 2n oracle gates where k = 2`. Then |Pr{Ckn[r] = 1} −
Pr{Ckn[ψ2(hk+1, . . . , h2, h1)] = 1}| ≤ `2Q(n)2

2n , where r∈R Hkn and hi =
(fi,1, fi,3, . . . , fi,k−1) with fi,j∈R Hn.

Proof: Suppose that the Q oracle gates of Ckn are numbered by 1, 2, . . . , Q. Also
suppose that inputs to the oracle gates are all different; otherwise we can construct
an oracle circuit C ′kn such that (1) C ′kn is functionally equivalent to Ckn, (2) the
number of oracle gates of C ′kn is Q and inputs to the oracle gates of C ′kn are mutually
different, and (3) the size of C ′kn is at most as large as the cube of that of Ckn (See
[LR]).

The proof technique used here is essentially the same as that developed in [LR]
for proving FTT Lemma (called Main Lemma there).

Note that k = 2` and that ψ2(hk+1, . . . , h2, h1) consists of k + 1 Type-2
transformations, each of which has ` independent random functions from Hn.

Let Ω be the probability space with sample space IQ(2`+1)`n and the uniform
probability distribution. For ω ∈ Ω, write it as ω = ω1ω2 · · ·ωQ(2`+1)`n.

For each 1 ≤ i ≤ Q, 1 ≤ j ≤ 2`+1 and odd t with 1 ≤ t ≤ 2`, define a function
Xi,j,t : Ω → In as follows : Xi,j,t(ω) = ωb+1 · · ·ωb+n where b = [(j−1)`+ t−1

2 ]Qn+
(i− 1)n. There are totally Q(2` + 1)` such functions. For each 1 ≤ j ≤ 2` + 1 and
odd t with 1 ≤ t ≤ 2`, let Xj,t(ω) = X1,j,t(ω)X2,j,t(ω) · · ·XQ,j,t(ω).

Let ω ∈ Ω be a sample point. For each 1 ≤ i ≤ Q, replace the ith oracle
gate by the following gate Pi. Note that the structure of Pi is similar to that of
ψ2(h2`+1, . . . , h2, h1) depicted in Figure 4.

Gate Pi:
The input is (Bi,1(ω), Bi,2(ω), . . . , Bi,2`(ω)). Rename it as

(αi
0,1, α

i
0,2, . . . , α

i
0,2`).

1.1 : For each odd 1 ≤ t ≤ 2`, compute u(i, 1, t) = min{d|1 ≤ d ≤
i, αd

0,t = αi
0,t}, and let αi

1,t = αi
0,t+1 ⊕Xu(i,1,t),1,t(ω).

1.2 : Let αi
1,2` = αi

0,1, and for each even 1 < t < 2`, let αi
1,t =

αi
0,t+1.

2.1 : For each odd 1 ≤ t ≤ 2`, compute u(i, 2, t) = min{d|1 ≤ d ≤
i, αd

1,t = αi
1,t}, and let {αi

2,t = αi
1,t+1 ⊕Xu(i,2,t),2,t(ω)}.

2.2 : Let αi
2,2` = αi

1,1, and for each even 1 < t < 2`, let αi
2,t =

αi
1,t+1.

...
j.1 : For each odd 1 ≤ t ≤ 2`, compute u(i, j, t) = min{d|1 ≤ d ≤

i, αd
j−1,t = αi

j−1,t} and let {αi
j,t = αi

j−1,t+1 ⊕Xu(i,j,t),j,t(ω)},
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j.2 : Let αi
j,2` = αi

j−1,1, and for each even 1 < t < 2`, let
αi

j,t = αi
j−1,t+1.

...
(2` + 1).1 : For each odd 1 ≤ t ≤ 2`, compute u(i, 2` + 1, t) =

min{d|1 ≤ d ≤ i, αd
2`,t = αi

2`,t} and let {αi
2`+1,t = αi

2`,t+1 ⊕
Xu(i,2`+1,t),2`+1,t(ω)},

(2` + 1).2 : Let αi
2`+1,2` = αi

2`,1, and for each even 1 < t < 2`, let
αi

2`+1,t = αi
2`,t+1.

The output is (αi
2`+1,1α

i
2`+1,2 · · ·αi

2`+1,2`).

Let B(ω) be the output of the circuit Ckn when the oracle gates are computed
as the above introduced gates Pi, and let E(B) be the expectation of B(ω). Note
that the value of E(B) is equal to the probability that B(ω) = 1. Thus, we have
E(B) = Pr{Ckn[ψ2(hk+1, . . . , h2, h1)] = 1}.

Now we introduce another kind of gates — P ′i . Each P ′i is obtained by replacing
the “and let {· · ·}” parts of steps 2.1, . . . , j.1, . . . , (2` + 1).1 in the description of Pi

by the following ones respectively:

and let {X ′
i,2,t(ω) = αi

1,t+1 ⊕ Xi,2,t(ω), αi
2,t = αi

1,t+1 ⊕
X ′

u(i,2,t),2,t(ω)}.
...

and let {X ′
i,j,t(ω) = αi

j−1,t+1 ⊕ Xi,j,t(ω), αi
j,t = αi

j−1,t+1 ⊕
Xu(i,j,t),j,t(ω)}.

...
and let {X ′

i,2`+1,t(ω) = αi
2`,t+1⊕Xi,2`+1,t(ω), αi

2`+1,t = αi
2`,t+1⊕

X ′
u(i,2`+1,t),2`+1,t(ω)}.

Let B′(ω) be the output bit of the circuit Ckn when the oracle gates are
computed as the gates P ′i , and let E(B′) be the expectation of B′(ω).

Now we show that E(B) = E(B′). Note that Xi,j,t(ω) is identically and
uniformly distributed, and that αi

j−1,t+1 does not depend on Xi,j,t(ω), Thus
X ′

i,j,t(ω) = αi
j−1,t+1 ⊕Xi,j,t(ω) is an identically and randomly chosen string from

In. Consequently, E(B) and E(B′) are identical.
Let Ri be a gate obtained in the following way: Ri is the same as P ′i except

that the output is (Xi,2`+1,1(ω), Xi,2`,3(ω), Xi,2`+1,3(ω), Xi,2`,5(ω), Xi,2`+1,5(ω), · · · ,
Xi,2`+1,2`−1(ω), Xi,2`,1(ω)). Let A(ω) be the output bit of the circuit Ckn when the
oracle gates are computed as the gates Ri, and let E(A) be the expectation of
A(ω). Like E(B), the value of E(A) is equal to the probability that A(ω) = 1.
Thus, E(A) = Pr{Ckn[r] = 1}.
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From above discussions, it follows that

|Pr{Ckn[r] = 1} − Pr{Ckn[ψ2(hk+1, . . . , h2, h1)] = 1}| = |E(A)− E(B′)|.

On the other hand,

|E(A)− E(B′)| =
∑

ω∈Ω

|A(ω)−B′(ω)|/2Q(2`+1)`n.

Thus we need only to prove that

∑

ω∈Ω

|A(ω)−B′(ω)|/2Q(2`+1)`n ≤ `2Q2/2n.

Consider the case where the oracle gates of Ckn are computed as the gates Ri.
For ω ∈ Ω and for odd t with 1 ≤ t ≤ 2`, call X1,t(ω) bad if there are pairs (d, i)
with 1 ≤ d < i ≤ Q such that αd

1,t = αi
1,t. By the same argument as for the claim

in the bottom of [LR,p.383], we get

Pr{X1,t(ω) bad} ≤ Q2/2n+1.

Similarly, for ω ∈ Ω, 2 ≤ j ≤ 2` and odd t with 1 ≤ t ≤ 2`, call Xj,t(ω) bad if there
are pairs (d, i) with 1 ≤ d < i ≤ Q such that Xd,j,t(ω) = Xi,j,t(ω). Clearly,

Pr{Xj,t(ω) bad} ≤
∑

2≤i≤Q

(i− 1)/2n = Q(Q− 1)/2n+1 < Q2/2n+1.

Now we have a fact : If Xj,t(ω) are not bad for all 1 ≤ j ≤ 2` and odd t

with 1 ≤ t ≤ 2`, then A(ω) = B′(ω). The reason is as follows. X1,t(ω) is not bad
which implies u(i, 2, t) = i which implies αi

2,t = Xi,2,t(ω). X2,t(ω) is not bad which
implies u(i, 3, t) = i which implies αi

3,t = Xi,3,t(ω). ...... X2`,t(ω) is not bad which
implies u(i, 2`+1, t) = i which implies αi

2`+1,t = Xi,2`+1,t(ω). These imply that the
output of Ckn when the oracle gates are computed as the gates Ri and the output
computed as P ′i are identical. In other words, A(ω) = B′(ω).

Let Ωg be the set of ω ∈ Ω such that Xj,t(ω) are not bad for all 1 ≤ j ≤ 2` and
odd t with 1 ≤ t ≤ 2`, and let Ωb = Ω− Ωg. Denote by ]S the number of elements
in the set S. Thus

]Ωb/]Ω =Pr{Xj,t(ω) bad for some 1 ≤ j ≤ 2` and odd t with 1 ≤ t ≤ 2`}
=

∑

1≤j≤2`
t=1,3,...,2`−1

Pr{Xj,t(ω) bad}

≤`2Q2/2n,
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and hence

|Pr{Ckn[r] = 1} − Pr{Ckn[ψ2(hk+1, . . . , h2, h1)] = 1}|
=

∑

ω∈Ω

|A(ω)−B′(ω)|/2Q(2`+1)`n

=
( ∑

ω∈Ωg

|A(ω)−B′(ω)|+
∑

ω∈Ωb

|A(ω)−B′(ω)|
)
/2Q(2`+1)`n

=
∑

ω∈Ωb

|A(ω)−B′(ω)|/2Q(2`+1)`n

≤
∑

ω∈Ωb

1/2Q(2`+1)`n

=]Ωb/]Ω

≤`2Q2/2n.

This completes the proof.

Appendix B —Minimum Rounds for Security

This appendix discusses minimum rounds for achieving security when a
permutation is constructed from some kind of transformations.

(1) Transformations Related to Type-3 ones

First we introduce a useful lemma.

[Lemma B1] Let P be a subset of Hkn. If for any function p ∈ P and for any input
s = (si, s`, sj) ∈ Ikn, the output of p takes the form of (. . . , s` ⊕ (· · · ŝ` · · ·), . . .),
where 0 ≤ i, `, j ≤ kn, ` ≥ 1, i + ` + j = kn, si ∈ Ii, s` ∈ I`, sj ∈ Ij and (· · · ŝ` · · ·)
means that the string does not depend on s`, then there is a simple oracle circuit
distinguishing between a function p ∈ P and a function randomly and uniformly
selected from Hkn.

Proof: Our oracle circuit has two oracle gates. It works as follows: Select two
strings s1 = (si, s

′
`, sj) and s2 = (si, s

′′
` , sj) from Ikn such that s′` 6= s′′` . Then input

s1 to the first oracle gate and s2 to the second oracle gate. Assume the outputs of
the two oracle gates are c1 and c2 respectively. Our oracle circuit outputs a bit 1
iff the XOR of c1 and c2 is (. . . , s′` ⊕ s′′` , . . .).

When the oracle gates are evaluated by a function p ∈ P , we have c1 =
(. . . , s′` ⊕ (· · · ŝ′` · · ·), . . .) and c2 = (. . . , s′′` ⊕ (· · · ŝ′′` · · ·), . . .), respectively. And the
XOR of c1 and c2 is always (. . . , s′` ⊕ s′′` , . . .). Thus with probability 1 the oracle
circuit outputs 1.

On the other hand, when the oracle gates are evaluated by a function randomly
and uniformly selected from Hkn, the probability that the XOR of c1 and c2 is equal
to (. . . , s′` ⊕ s′′` , . . .) is 1

2` .
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Recall that for a function-tuple hi = (fi,1, fi,2, . . . , fi,k−1), where fi,j ∈ Hn, a
Type-3 transformation is defined as g3,i = L(1)

rot ◦ π3,i, where π3,i(B1, B2, . . . , Bk) =
(B1, B2 ⊕ fi,1(B1), B3 ⊕ fi,2(B2), . . . , Bk ⊕ fi,k−1(Bk−1)), and that for s function-
tuples h1, h2, . . . , hs, a permutation consisting of s rounds of Type-3 transformations
is defined as ψ3(hs, . . . , h2, h1) = g3,s ◦ · · · ◦ g3,2 ◦ g3,1.

Let πτ,i be a permutation obtained from π3,i by dropping certain functions
fi,j in hi = (fi,1, fi,2, . . . , fi,k−1). (πτ,i = π3,i when dropping no function.) Define
gτ,i = L(1)

rot ◦ πτ,i, and call it a Type-τ transformation. Also let ψτ (hs, . . . , h2, h1)
be a permutation in Hkn consisting of s rounds of Type-τ transformations.

Let λτ denote the minimum number s at which ψτ (hs, . . . , h2, h1) is secure.
Now we are in a position to prove that λτ ≥ k + 1, i.e., a necessary condition for
ψτ (hs, . . . , h1, h1) to be secure is that s ≥ k + 1.

[Theorem B2] (1) λτ ≥ k + 1. (2) λ1 ≥ 2k − 1.

Proof: (1) Consider Type-3 transformations. Let (B1, B2, . . . , Bk), where
Bi ∈ In, be an input string to ψ3(hs, . . . , h2, h1). Call B1 the first substring of
(B1, B2, . . . , Bk), B2 the second substring of (B1, B2, . . . , Bk) and so on. Focus our
attention on the last substring Bk of (B1, B2, . . . , Bk).

The output of g3,1 is (B2⊕f1,1(B1), B3⊕f1,2(B2), . . . , Bk⊕f1,k−1(Bk−1), B1).
Note that Bk is XORed with f1,k−1(Bk−1), where Bk−1 is Bk’s left neighborhood,
and then the result is shifted to the (k− 1)th position. Also note that no substring
in the position 1 to the position (k − 2) of the output of g3,1 depends on Bk. That
is, substrings in the position 1 to the position (k− 2) of the output of g3,1 take the
forms of (· · · B̂k · · ·).

Now Bk appears in the (k − 2)th substring of the output of g3,2, in the form
of Bk ⊕ (· · · B̂k · · ·), and substrings in the position 1 to the position (k − 3) of
the output of g3,2 take the forms of (· · · B̂k · · ·). So on, the first substring of the
output of g3,k−1, and hence the last substring of the output of g3,k, is of the form
Bk ⊕ (· · · B̂k · · ·).

Thus for any 1 ≤ s ≤ k, there is a substring in the output of ψ3(hs, . . . , h2, h1)
taking the form of Bk⊕ (· · · B̂k · · ·). By Lemma B1, such a function in Hkn can not
be secure. In other words, λ3 ≥ k + 1.

Now consider a Type-τ transformation gτ,i = L(1)
rot ◦πτ,i. Since πτ,i is obtained

from π3,i by dropping certain functions fi,j in hi = (fi,1, fi,2, . . . , fi,k−1), the
total number of substrings in the output of ψτ (hk, . . . , h2, h1) that take the forms
of Bi ⊕ (· · · B̂i · · ·) is not less than that of ψ3(hk, . . . , h2, h1). Consequently,
λτ ≥ λ3 ≥ k + 1.

(2) The last substring of the output of g1,k is of the form of Bk ⊕ (· · · B̂k · · ·).
From round to round, this substring is left-shifted, one position by one position and
with no change in form. Finally, it reaches the second position of the output of
g1,k+(k−2) = g1,2k−2. By Lemma B1, λ1 ≥ 2k − 1.
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A type of transformations is called singular if a transformation g of that type is
defined as g(B1, . . . , Bi, . . . , Bk) = (C1, . . . , Cj−1, Cj , Cj+1, . . . , Ck), where Cj = Bi

and neither (C1, . . . , Cj−1) nor (Cj+1, . . . , Ck) depends on Bi. For example, Type-1
transformations are singular, but Type-2 and Type-3 ones are non-singular.

[Theorem B3] Let Q be a polynomial in n and Ckn be an oracle circuit with
Q(n) < 2n oracle gates. Let ψτ (hs, . . . , h2, h1) be a permutation consisting of s

rounds of singular Type-τ transformations, where hs, . . . , h2, h1 are independent
random function tuples. Then (1) when s ≤ k + 1, ψτ (hs, . . . , h2, h1) is insecure,
and (2) when s = 2k − 1, |Pr{Ckn[r] = 1} − Pr{Ckn[ψτ (hs, . . . , h2, h1)] = 1}| ≤
(k−1)2Q(n)2

2n , where r∈R Hkn.

Proof: The proof for (1) is similar to that for (1) of Theorem B2, and the proof
for (2) to that for Theorem 2.

[Theorem B4] Let Q be a polynomial in n and Ckn be an oracle circuit with
Q(n) < 2n oracle gates, and let ψτ (hs, . . . , h2, h1) be a permutation consisting
of s rounds of non-singular Type-τ transformations, where hs, . . . , h2, h1 are
independent random function tuples. Then when s = k + 1, |Pr{Ckn[r] =
1} − Pr{Ckn[ψτ (hs, . . . , h2, h1)] = 1}| ≤ k(k−1)Q(n)2

2n+1 , where r∈R Hkn.

Proof: Similar to that for Theorem 2.

(2) Generalized Transformations

Consider Generalized Type-τ transformations g
(ρ)
τ,i = L(ρ)

rot ◦ πτ,i. Let

ψ
(ρ)
τ (hs, . . . , h2, h1) be a permutation in Hkn consisting of s rounds of Generalized

Type-τ transformations. Denote by λ
(ρ)
τ the minimum number s at which

ψ
(ρ)
τ (hs, . . . , h2, h1) is secure, where hi are independent random function tuples.

In particular, λ
(ρ)
τ is defined to be +∞ if ψ

(ρ)
τ (hs, . . . , h2, h1) is insecure no matter

how large s is. We have the following theorem which is easy to prove.

[Theorem B5] (1) λ
(ρ)
τ ≥ λτ ≥ k + 1. (2) λ

(ρ)
2 = λ2 when ρ is an odd integer in

[1, k], and λ
(ρ)
2 = +∞ when ρ is an even integer in [1, k].

Appendix C — Optimal Transformations

In this appendix we examine what kinds of transformations are optimal in a
reasonable sense to be defined below.

The computing procedures for Generalized Type-τ transformations g
(ρ)
τ,i , and

hence for ψ
(ρ)
τ (hs, . . . , h2, h1), can be represented by acyclic computation graphs.

There are three kinds of nodes in a computation graph: input nodes, output nodes
and internal nodes. Each internal node in a computation graph represents a generic
operation : computing a function fi,j or XORing two strings.
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The length of a path between two nodes is defined as the number of arcs in
the path. Now assume that the length of the longest path(s) from input nodes to
output nodes in a computation graph is L. Then the depth of the graph is defined to
be L−1. The normal-delay D+(ρ, τ, s) of a permutation ψ

(ρ)
τ (hs, . . . , h2, h1) ∈ Hkn

is defined as the depth of the computation graph for the permutation, the inverse-
delay D−(ρ, τ, s) is defined as that for the inverse of the permutation, and the
sum-delay D(ρ, τ, s) is defined as D(ρ, τ, s) = D+(ρ, τ, s) + D−(ρ, τ, s).

Clearly, D+(ρ, τ, s) = 2s, and D−(ρ, τ, s) ≥ D+(ρ, τ, s) ≥ 2s. Thus D(ρ, τ, s) =
D+(ρ, τ, s) + D−(ρ, τ, s) ≥ 2D+(ρ, τ, s) ≥ 4s.

Recall that λ
(ρ)
τ denotes the minimum number of rounds s at which

ψ
(ρ)
τ (hs, . . . , h2, h1) is secure. From Theorem B5, we have λ

(ρ)
τ ≥ k + 1. Hence,

D(ρ, τ, λ
(ρ)
τ ) ≥ 4(k + 1).

[Definition] A Generalized Type-τ transformation is called optimal if
D(ρ, τ, λ

(ρ)
τ ) = 4(k + 1).

Now we discuss the optimality of transformations. First we have two facts: (1)
When g

(ρ)
τ,i = L(ρ)

rot ◦π(ρ)
τ,i with π

(ρ)
τ,i being not an involution, we have D−(ρ, τ, s) > 2s.

So, transformations like Type-3 cannot be optimal. (2) When π
(ρ)
τ,i is an involution

but g
(ρ)
τ,i is singular, we have λ

(ρ)
τ > k + 1, and hence D(ρ, τ, λ

(ρ)
τ ) > 4(k + 1). So

transformations like Type-1 cannot be optimal.
Consider the following two cases: odd k and even k. In the former case, either

g
(ρ)
τ,i = L(ρ)

rot ◦ π
(ρ)
τ,i is singular or π

(ρ)
τ,i is not an involution. Thus by the above two

facts, no optimal transformation can be obtained. In the latter case, it is not hard to
verify that the only non-singular transformations g

(ρ)
τ,i = L(ρ)

rot ◦ π
(ρ)
τ,i with π

(ρ)
τ,i being

involutions are Generalized Type-2 ones with ρ odd. For such transformations we
have D(ρ, 2, λ(ρ)

2 ) = 4(k + 1). Thus we have proved:

[Theorem C1] Among all types of transformations discussed in this paper,
Generalized Type-2 transformations g

(ρ)
2,i = L(ρ)

rot ◦ π
(ρ)
2,i with even k and odd ρ, are

the only optimal ones.

Appendix D — Super-Security

Luby and Rackoff introduced also the notion of super-secure pseudorandom
permutation generators in [LR]. (They owed the notion to O. Goldreich.) Intuitively,
a pseudorandom permutation generator is super-secure if no super-oracle circuit
can tell a permutation randomly specified by the generator from a randomly and
uniformly chosen one. A super-oracle circuit is an oracle circuit with two kinds of
oracle gates. The first is called the normal oracle gates which are evaluated using
some permutation, and the second the inverse oracle gates which are evaluated
using the inverse of the permutation.
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When a secure pseudorandom permutation generator is used to construct a
block cipher, the cipher is secure against the chosen plaintext attack, but not
necessarily secure against the chosen plaintext/ciphertext attack. When a super-
secure pseudorandom permutation generator is used to construct a block cipher,
the cipher is secure against the chosen plaintext/ciphertext attack [LR].

Luby and Rackoff showed that functions consisting of 4 rounds of FTT’s are
super-secure. In this appendix we generalize the result to the following one.

[Theorem D1] Let k = 2`, where ` ∈ N, and let ρ be an odd integer
in [1, k]. Assume that ψ

(ρ)
2 (hs, . . . , h2, h1) consists of s rounds of Generalized

Type-2 transformations, where hi = (fi,1, fi,3, . . . , fi,k−1) with fi,j∈R Hn. Then
ψ

(ρ)
2 (hs, . . . , h2, h1) is super-secure iff s ≥ k + 2.

Proof: (1) When s < k + 1, ψ
(ρ)
2 (hs, . . . , h2, h1) is not secure, hence not

super-secure. Next we prove that when s = k + 1, ψ
(ρ)
2 (hs, . . . , h2, h1) is not

super-secure. We do it by showing a super-oracle circuit Ckn which distinguishes
ψ

(ρ)
2 (hs, . . . , h2, h1) from a permutation randomly and uniformly chosen from

Symkn, the set of all permutations on Ikn.
Suppose that C = (C1, C2, . . . , Ck) = ψ

(ρ)
2 (hs, . . . , h2, h1)(B), where B =

(B1, B2, . . . , Bk) and Ci, Bi ∈ In. Note that for each 1 ≤ i ≤ k, Ci is a function of
B1, B2, . . . , Bk. For each 1 ≤ i, j ≤ k, denote by MB(i, j) the maximum number
of functions applied to Bj in Ci. For example, if C2 = B1 ⊕ f2(B2 ⊕ f1(B1)) then
MB(2, 1) = 2 and MB(2, 2) = 1.

Since s = k + 1, there must exist i1, j such that MB(i1, j) = 1. Suppose that
Ci1 = Be ⊕ fxy(Bj ⊕ (· · · B̂j · · ·)) ⊕ (· · ·), where (· · · B̂j · · ·) means that the string
does not depend on Bj . There must also exist an i2 such that Ci2 = Bj ⊕ (· · ·).

Our super-oracle circuit Ckn has two normal oracle gates and one inverse oracle
gate. Ckn works as follows: Choose two strings B = (B1, B2, . . . , Bj , . . . , Bk)
and B′ = (B′

1, B
′
2, . . . , B

′
j , . . . , B

′
k) from Ikn such that B′

i = Bi for all i 6= j and
B′

j 6= Bj . Input B to the first normal oracle gate and B′ to the second normal oracle
gate. Assume the two corresponding outputs are C = (C1, C2, . . . , Ci2 , . . . , Ck) and
C ′ = (C ′1, C

′
2, . . . , C

′
i2

, . . . , C ′k) respectively. Now let C ′′ = (C ′′1 , C ′′2 , . . . , C ′′i2 , . . . , C
′′
k )

where C ′′i2 = Ci2 ⊕ Bj ⊕ B′
j and C ′′i = Ci for all i 6= i2. Then input C ′′ to

the inverse oracle gate. Assume that the output of the inverse oracle gate is
B′′ = (B′′

1 , B′′
2 , . . . , B′′

e , . . . , B′′
k ).

The super-oracle circuit Ckn outputs 1 iff B′′
e = Be ⊕ Ci1 ⊕ C ′i1 . Whenever

ψ
(ρ)
2 (hs, . . . , h2, h1)/its inverse are used to evaluate the oracle gates, Ckn outputs

1 with probability 1; and whenever a random permutation/its inverse over Ikn are
used to evaluate the oracle gates, Ckn outputs 1 with probability 1

2n .
(2) When s ≥ k + 2, super-security for ψ

(ρ)
2 (hs, . . . , h2, h1) can be proved in a

similar way as for proving Theorem 2.
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