Security Characterisation and Integrity Assurance for Software
Components and Component-Based Systems

Jun Han and Yuliang Zheng
Peninsula School of Computing and Information Technology
Monash University, McMahons Road, Frankston, Vic 3199, Australia
e-mails: {jhan,yzheng}@monash.edu.au

Abstract

Software systems are increasingly assembled from components that are developed by
and purchased from third parties, for technical and economic gains. In such component
based software development, the functionality and quality-of-service attributes of the soft-
ware components should be clearly and adequately specified (or packaged) through their
interfaces, so that the characteristics of the systems assembled from the components can
be analysed relative to the system requirements. In this paper, we consider one particular
quality-of-service attribute, i.e., security, and outline an approach to (1) specifying the
security characteristics of software components and (2) analysing the security properties of
component-based systems in terms of their component characteristics and system architec-
tures. The approach is partially based on the Common Criteria for Information Technology
Security Evaluation. In addition, we also introduce our work on ensuring the integrity of
software components as part of the infrastructural support for component based software
engineering.

1 Introduction

Component based software engineering (CBSE) has recently attracted tremendous attention
from both the software industry and the research community. It has been widely recognised
that more and more software systems are being built by assembling existing and new compo-
nents. In Web-based systems, for example, the software components may even be distributed
over the Internet and dynamically assembled into target systems. It has been shown that
CBSE not only delivers technical benefits for the development of large scale systems, but also
has positive impacts on the management and structuring of projects and organisations [1]. A
key to the success of CBSE is its ability to use software components that are often developed
by and purchased from third parties. In such a scenario, it is the norm that the components
are delivered in binary form and their source code and design information are not available to
the system developers. As such, the software components should be adequately specified or
packaged through their interfaces, to facilitate proper usage.

In general, the interface specification or packaging of a software component should involve
the syntactic and semantic specification of its functional interface and the specification of its
quality-of-service attributes (such as security, reliability and performance). Support for syn-
tactic interface specification has been well studied in the form of interface definition languages
(IDLs), e.g., those from the three major industry leaders: Sun’s JavaBeans, Microsoft’s COM
components, and the expected CORBA components. While having made CBSE practical,
these industrial standards generally do not support semantic interface specification. To achieve

component (re)use with confidence, precise semantic specification of component interfaces is
necessary. Semantic specifications of individual interface operations have been advocated in
object oriented programming languages like Eiffel [5] and CBSE approaches like Catalysis [2],
in the form of pre-/post-conditions. Additional semantic constraints about how the interface
elements of a component depend on each other and how the component is to interact with
other components should also be specified [3].

In [3], we have proposed a framework for defining interfaces of software components. This
framework not only deals with the syntactic and semantic specification of component interface,
but also allows the specification of non-functional quality-of-service (QoS) attributes (code
named illities [7]) of components. In the context of building systems from existing components,
the characterisation of the components’ illities and their impact on the assembled systems are
particularly important because the components are usually provided as blackboxes.

For a particular non-functional property or QoS attribute, we need to address two issues:
(1) how to characterise that specific property for a given component, and (2) how to analyse
the component’s impact on the enclosing system in a given context of use (i.e., in the context
of a system architecture). A related issue is whether the characterisation of the non-functional
property will change in different contexts of use. The interface definition of component illity
characterisation is dependent on the specific characterisation models developed. In this paper,
we investigate the security aspect of software components and its impact on system compo-
sition, and outline an approach to the development of a security characterisation model for
software components and component-based systems. Besides, we also identify the need for
ensuring the integrity of software components.

In the next section, we give a brief overview of our general framework for the characterisa-
tion of software components. In section 3, we present our approach to security characterisation
of software components and component-based systems, which is partially based on the Com-
mon Criteria for Information Technology Security Evaluation [6]. In section 4, we introduce
our work on ensuring the integrity of software components as part of the infrastructural support
for component based software engineering. Finally we conclude in section 5.

2 A framework for software component characterisation

As argued in the previous section, proper characterisation of software components is essential
to their effective management and use in the context of component based software engineering.
While there have been industrial and experimental projects that build systems from (exist-
ing) components, the approaches taken are ad hoc and heavily rely on the specifics of the
systems and components concerned. That is, component-based system development is still
very much in its infancy, and there are no proven systematic approaches to follow. Charac-
terisation of components through comprehensive interface definition is a step towards such
systematic approaches and their enabling technologies. In this section, we introduce a model
for comprehensive component interface characterisation, in the hope to provide a basis for the
development, management and use of components.

Figure 1 shows the overall structure for component interface characterisation in our frame-
work. At the bottom level is the interface signature of the component, which forms the basis for
the component’s interaction with the outside world and includes all the necessary mechanisms
for such interaction (i.e., properties, operations and events). The next level up is the interface
constraints about the component signature to ensure their proper use. That is, the use of the
component will be subject to these constraints. The interface signature and constraints of a

Configurations

R R
Constraints i 8
ERE IR =
Signature 2
| popeties | operions | ©

Figure 1: Structure of Component Interface

component define the overall capability of the component. The third level concerns the pack-
aging of the interface signature according to the component’s roles in given contexts of use, so
that the component interface has different configurations depending on the use scenarios. The
fourth aspect of component interface is about the characterisation of the component in terms of
their non-functional QoS attributes or illities. The non-functional properties occupy a special
place in this component interface structure, and may interact with the interface signature and
configurations.

Further details about the framework can be found in [3], especially about interface sig-
nature, interface constraints and interface configurations. In the next section, we consider
security as one of the illities in the context of this framework, and outline an approach to
security characterisation of software components and component-based systems.

3 An approach to security characterisation

Security is an important aspect of software systems, especially for distributed security-sensitive
systems. When we assemble systems from existing components, it is vital that we must be
able to trust these components. Therefore, we need to be aware of the security characteris-
tics of these components and their impact on the target systems. In order to provide such
security-related information of a component, a model for security characterisation of com-
ponents and component-based systems is required to augment our framework for component
interface definition.

Security of information technology products and systems. Over the years, there has
been much effort in evaluating Information Technology (IT) security, i.e., the security proper-
ties of I'T products and systems, including hardware, software and firmware. There have been
the Trusted Computer System Evaluation Criteria (TCSEC) developed in the United States,
the Information Technology Security Evaluation Criteria (ITSEC) developed by the European
Commission, the Canadian Trusted Computer Product Evaluation Criteria (CTCPEC), and
the Federal Criteria for Information Technology Security (FC) from the United States. Since
the early 1990s, the sponsoring organisations of the above standards under the coordination
of ISO have been working together to align their criteria and create a single international
standard of IT security evaluation criteria for general use in the global IT market. The result

is the current draft international standard, Common Criteria for Information Technology Se-
curity Evaluation, version 2.0 — commonly referred to as the Common Criteria or simply CC,
released in May 1998 [6].

Given the ever-increasing wide-spread use and trade of I'T products, IT security concerns
are not only for the highly security-sensitive IT products. In fact, any IT products acquired
from the market present certain security risks, although with different levels of sensitivity. To
use the acquired IT products with confidence, their security properties must be measured and
made explicit. The Common Criteria represent a coordinated effort addressing this issue.

In component based software engineering, the security issue becomes more prevalent. Many
components of a target software system to be assembled may be acquired from or delegated
to third parties. The security properties of each component will be part of and impact on
the target system’s security. In such a scenario, we must know the security characteristics
of the components to be able to evaluate the assembled system. Another equally important
aspect that impacts on the target system’s security is the system architecture that connects
the components in a specific manner. In addressing the issue of security characterisation of
software components and component-based systems, we propose to

1. identify and measure the security characteristics of a software component through the
use and adaptation of the Common Criteria, and

2. analyse and evaluate the security properties of a composed system in terms of character-
istics of its components and its system architecture.

The Common Criteria identify the various security requirements for IT products and sys-
tems, and provide a good starting point for characterising software components, i.e., with the
components being regarded as IT products/systems. However, the Common Criteria do not
directly address system composition, and therefore much investigation is required to evaluate
a composed system based on the component characteristics and the system architecture.

Security characteristics of software components. As mentioned above, we propose to
use the Common Criteria as the basis of a security characterisation model for software compo-
nents. The Common Criteria provide a framework for evaluating IT systems, and enumerate
the specific security requirements for such systems. The security requirements are divided into
two categories: security functional requirements and security assurance requirements. The
security functional requirements describe the desired security behaviour or functions expected
of an IT system to counter threats in the system’s operating environment. These requirements
are classified according to the security issues they address, and with varied levels of security
strength. They include requirements in the following classes: security audit, communica-
tion, cryptographic support, user data protection, identification and authentication, security
management, privacy, protection of system security functions (security meta-data), resource
utilisation, system access, and trusted path/channels.

The security assurance requirements mainly concern the development and operating pro-
cess of the IT system, with the view that a more defined and rigorous process delivers higher
confidence in the system’s security behaviour and operation. These requirements are classi-
fied according to the process issues they address, and with varied levels of security strength.
The process issues include: life cycle support, configuration management, development, tests,
vulnerability assessment, guidance documents, delivery and operation, and assurance mainte-
nance. The Common Criteria have also identified seven evaluation assurance levels by including
assurance requirements of appropriate strength into each of these levels.

Besides, the functional and assurance security requirements for a particular IT system
are usually specified in a security target document by selecting and instantiating the relevant
requirements with particular security strengths from the above general classes. This document
is developed according to a security policy, and is the basis of the security assurance process.

In characterising the security properties of a software component, we regard the component
as an IT system to be evaluated according to the Common Criteria. Such characterisation
will include both the security functional properties and security assurance properties of the
component. These properties will identify which requirements of the Common Criteria are met
at which levels of security strength. For example, a set of properties based on the Common
Criteria will characterise how user data is protected with which levels of strength.

For a given software component, only certain security requirements may apply depending
on the nature of the component. In general, therefore, a CC requirement may or may not
be applicable; for an applicable CC requirement, the component will have a specific level of
protection strength. This applies to both the security functional requirements and the security
assurance requirements. For the security assurance requirements, the characterisation of a
component may directly use the detailed individual requirements, use one of the more coarse-
grained evaluation assurance levels, or use a combination of both. The use of the detailed
requirements will provide more information for system analysis.

Such a CC-based security characterisation of software component will be similar to a secu-
rity target document, except that the characterisation shows the security properties that the
component possesses while the security target document sets out the security requirements
for the component that may or may not be actually realised. Besides, the characterisation
should take a more formulated and succinct form rather than a lengthy document, but may
have additional justification documentation.

Given the large number of security requirements to be considered under the Common
Criteria, tool support is very much desirable. The tools will manage the security evaluation
framework as well as the security properties of given components. In general, the characterised
security properties of a component are delivered together with the component as meta-data,
just like other interface definition information of the component. The Common Criteria as an
international standard provide an ideal starting point for the understanding and exchange of
the security characterisation information.

We are currently analysing the security functional requirements of the Common Criteria
to formulate a practical model for characterising the security properties of software compo-
nents. Among the issues addressed are the formalisation of individual requirements and their
dependencies. At the same time, relevant tool support is also being investigated.

Security properties of component-based software systems. The security characteri-
sation of a software system assembled from components should take a form similar to that of a
component. After all, the composed system is an IT system and may be used as a component
of another larger system. As such, the security characterisation of the target system could be
done in a way similar to that of an atomic component. Given that the security properties of the
components used are already available, however, it is natural and advisable to use these com-
ponent properties together with the system’s composition architecture and process to arrive at
the system’s security characterisation. That is, the security properties of a component-based
system depend on those of the components used and the system architecture. Assuming the
component properties are characterised and defined as outline above, we have to consider the
ways of interaction between these components according to the system architecture and how

these interactions impact on the components and the composed system. Therefore, we need
a component- and architecture-based composition model for software security. Unfortunately,
the Common Criteria do not directly address system composition issues. According to the
security concerns covered by the Common Criteria, this software security composition model
should be based on the following aspects:

1. the security properties of individual components,
2. the system architecture of the target system, and
3. the process of architecture design and system composition.

While the first two items contribute to both the security functional properties and the security
assurance properties of the target system, the last item is mainly concerned with the system’s
security assurance properties.

In developing the security composition model, we need to consider the security compatibility
of the components as dictated by the architectural interactions, the trade-offs and compromises
between individual components’ security strength in the system context, the derivation of
system-wide properties from component properties and component interactions, the security
impact of the overall architecture topology, and the relationships or dependencies between the
system and its underlying enabling technologies (as part of the system’s security environment).
We are currently investigating these issues.

4 Integrity assurance for software components

In the previous sections, emphasis has been placed on characterising inherent properties of
software components, especially those pertinent to security. Another important issue in the
development, distribution and application of software components is related to the integrity
of the components, namely, how to ensure that any unauthorised modification of a software
component, be it accidental or malicious, can be easily detected by a customer or another
software component that depends on it. It applies to not only the implementation of the
component functionality but also the characterisation or interface definition of the component.
This issue is especially important in dynamically configurable distributed software systems,
where system components may be acquired or purchased on the Internet on a per-use basis.
It has the same importance for software systems involving mobile agents.

We further pursue this direction of research in [4], where we propose a comprehensive
authentication infrastructure that supports the integrity of software components, including
commercial-of-the-shelf software. This authentication infrastructure is an integral part of the
infrastructural support for component based software engineering.

5 Conclusions

In this paper, we have proposed an approach to the security characterisation of software com-
ponents and component-based systems, and introduced our work on ensuring the integrity of
software components as part of the infrastructural support for component based software engi-
neering. Our approach to security characterisation is partially based on the draft international
security evaluation standard, the Common Criteria, and aims to develop a composition model

for software security. Our work on integrity assurance focuses on the development of a com-
prehensive authentication infrastructure for the development, distribution and use of software
components.

References

[1]
[2]

3]

CBSE98. Proceedings of International Workshop on Component-Based Software Engineering. Kyoto,
Japan, April 1998.

D. D’Souza and A.C. Wills. Objects, Components and Frameworks with UML: The Catalysis Ap-
proach. Addison-Wesley, 1998.

J. Han. A comprehensive interface definition framework for software components. In Proceedings
of 1998 Asia-Pacific Software Engineering Conference, pages (in press — 8 pages), Taipei, Taiwan,
December 1998. IEEE Computer Society.

J. Han and Y. Zheng. Infrastructural support for the integrity of software components. Work in
progress, Peninsula School of Computing and Information Technology, Monash University, Mel-
bourne, Australia, 1998.

B. Meyer. Object-Oriented Software Construction. Prentice Hall, Upper Saddle River, NJ, USA,
2nd edition, 1997.

Common Criteria Project. Common Criteria for Information Technology Security Evaluation. NIST,
USA, http://csrc.nist.gov/cc/, May 1998.

C. Thompson. Workshop on Compositional Software Architectures: ~ Workshop Report.
http://www.objs.com/workshops/ws9801 /report.html, Monterey, USA, January 1998.

